JPH08182928A - Nitrogen oxide occlusion composition and exhaust gas purification - Google Patents
Nitrogen oxide occlusion composition and exhaust gas purificationInfo
- Publication number
- JPH08182928A JPH08182928A JP6340948A JP34094894A JPH08182928A JP H08182928 A JPH08182928 A JP H08182928A JP 6340948 A JP6340948 A JP 6340948A JP 34094894 A JP34094894 A JP 34094894A JP H08182928 A JPH08182928 A JP H08182928A
- Authority
- JP
- Japan
- Prior art keywords
- nox
- exhaust gas
- silver
- nitrogen oxide
- alkaline earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動車などの内燃機
関、ボイラーや化学プラントなどから排出される排気ガ
スに含まれる窒素酸化物(NOx)の浄化装置に使用さ
れる窒素酸化物吸蔵用組成物(以下、NOx吸蔵物質と
もいう。)およびそれを用いた排気ガス浄化方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen oxide storage composition used in a device for purifying nitrogen oxide (NOx) contained in exhaust gas discharged from internal combustion engines such as automobiles, boilers and chemical plants. The present invention relates to a substance (hereinafter, also referred to as NOx storage substance) and an exhaust gas purification method using the same.
【0002】[0002]
【従来の技術】近年、自動車用リーンバーンエンジンや
デーゼルエンジン、ガスタービンや化学プラントから排
出される排気ガスのような、化学量論量より過剰の酸素
が存在する排気ガス中のNOxの除去が環境汚染を防止
する観点から重要課題となっている。従来、排気ガス中
に含まれるNOxの除去方法としては、排気ガスの空燃
比を化学量論量の近傍に制御しながら、白金−ロジウム
/γ−アルミナなどの三元触媒を用いて、排気ガス中の
NOxを還元し、かつ一酸化炭素(CO)、炭化水素
(HC)を酸化除去する3元触媒法が用いられてきた。
一方、最近では過剰酸素雰囲気(リーン雰囲気)下の排
気ガス中のNOxの除去を目的として、NOxを金属酸
化物に吸蔵させる方法が研究されており、特開平05−
317652号には、Pt−BaO/Al2O3を用い
て酸化雰囲気下ではNOxを吸蔵させ、その後還元雰囲
気にすることによりNOxを放出させ、還元雰囲気下で
ガソリン自動車用三元触媒と同様にNOxをHC及びC
Oで還元し、除去する方法が提案されている。その他、
過剰酸素雰囲気下でのNOxの吸着除去にMn−Zr系
やMn−Y系の複合酸化物を用いる方法も知られてい
る。(荒井、江口ら第74回触媒討論会講演予稿集3A
05 1994)2. Description of the Related Art In recent years, it has been possible to remove NOx in exhaust gas in which oxygen is present in excess of stoichiometric amount, such as exhaust gas emitted from lean burn engines for automobiles, diesel engines, gas turbines and chemical plants. It has become an important issue from the viewpoint of preventing environmental pollution. Conventionally, as a method of removing NOx contained in exhaust gas, a three-way catalyst such as platinum-rhodium / γ-alumina is used to control the exhaust gas while controlling the air-fuel ratio of the exhaust gas to near the stoichiometric amount. A three-way catalyst method has been used in which NOx therein is reduced and carbon monoxide (CO) and hydrocarbons (HC) are removed by oxidation.
On the other hand, recently, a method of occluding NOx in a metal oxide for the purpose of removing NOx in exhaust gas under an excess oxygen atmosphere (lean atmosphere) has been studied.
No. 317652 uses Pt-BaO / Al 2 O 3 to occlude NOx in an oxidizing atmosphere, and then releases the NOx in a reducing atmosphere, similar to a three-way catalyst for a gasoline vehicle in a reducing atmosphere. NOx is HC and C
A method of reducing and removing with O has been proposed. Other,
A method of using a Mn-Zr-based or Mn-Y-based composite oxide for the adsorption removal of NOx in an excess oxygen atmosphere is also known. (Arai, Eguchi et al. Proceedings of the 74th Catalysis Debate Conference 3A
05 1994)
【0003】他方、銀担持アルミナ触媒を用いた過剰酸
素雰囲気下の排気ガス中のHCによるNOxの選択還元
(特開平4−281844号)は公知であるが、低温域
でのNOx除去性能はなく、また銀担持アルミナがNO
xの吸蔵−放出に使用できることは知られていない。On the other hand, although selective reduction of NOx by HC in exhaust gas under an excess oxygen atmosphere using a silver-supported alumina catalyst (Japanese Patent Laid-Open No. 4-281844) is known, NOx removal performance at low temperatures is not available. , And silver-loaded alumina is NO
It is not known that it can be used for storage-release of x.
【0004】[0004]
【発明が解決しようとする課題】前記の3元触媒方式
は、過剰酸素を含む排気ガス中のNOx除去には効果が
無い。また、前記のNOx吸蔵物質は、過剰酸素雰囲気
下で200〜300℃でNOx吸蔵還元能を有するもの
の、300℃以上においては十分な量のNOxを吸蔵で
きないという欠点があった。また、前記NOx吸蔵物質
は、耐熱性に乏しく、700℃以上の高温のエージング
後では十分な量のNOxを吸蔵できないという欠点があ
った。本発明は、過剰酸素雰囲気において耐熱性に優
れ、300℃以上で優れたNOx吸蔵能を発揮できるN
Ox吸蔵物質とそれを用いた排気ガス浄化方法を提供す
る事を目的とするものである。The above-mentioned three-way catalyst system is not effective in removing NOx in exhaust gas containing excess oxygen. Further, although the above-mentioned NOx storage substance has a NOx storage reduction ability at 200 to 300 ° C. in an excess oxygen atmosphere, it has a drawback that it cannot store a sufficient amount of NOx at 300 ° C. or higher. Further, the NOx storage substance has a poor heat resistance and has a drawback that it cannot store a sufficient amount of NOx after aging at a high temperature of 700 ° C. or higher. INDUSTRIAL APPLICABILITY The present invention has excellent heat resistance in an excess oxygen atmosphere, and can exhibit an excellent NOx storage capacity at 300 ° C. or higher.
An object is to provide an Ox storage material and an exhaust gas purification method using the same.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明はアルミナ系金属酸化物担体に、該担体と担
持成分の全重量に対し、金属換算でそれぞれ銀を5〜4
0wt%、アルカリ土類金属元素の少なくとも一種を5
〜40wt%及び白金族元素の少なくとも一種を0.0
5〜8wt%担持してなるNOx吸蔵物質を提供する。
本発明は、担持成分が上記した組成であって、かつ銀と
アルカリ土類金属元素の少なくとも一種の合計量が10
〜50wt%であるNOx吸蔵物質を提供する。To achieve the above object, the present invention provides an alumina-based metal oxide carrier containing 5 to 4 silver in terms of metal, based on the total weight of the carrier and the supported component.
0 wt%, at least one of alkaline earth metal elements 5
-40 wt% and at least one of the platinum group elements is 0.0
Provided is a NOx storage substance loaded with 5 to 8 wt%.
In the present invention, the supported component has the above-mentioned composition, and the total amount of at least one of silver and alkaline earth metal elements is 10 or less.
Provide a NOx storage material that is ˜50 wt%.
【0006】本発明は上記NOx吸蔵物質含有層また
は、排気ガス流の上流側に本発明のNOx吸蔵物質含有
層を設け、その下流側に3元触媒を設けて、その雰囲気
がリーンからリッチまで変化する排気ガスと接触させ
て、排気ガス中の窒素酸化物を除去する方法を提供す
る。本発明は、排気ガス流の上流側に本発明のNOx吸
蔵物質含有層を設け、その下流側に過剰酸素含有排気ガ
ス浄化用触媒を設けて、その排気ガス温度が低温から高
温まで変化するリーン雰囲気の排気ガスを接触させて、
該排気ガス中のNOxを除去する方法を提供する。According to the present invention, the NOx storage substance-containing layer or the NOx storage substance-containing layer of the present invention is provided on the upstream side of the exhaust gas flow, and the three-way catalyst is provided on the downstream side thereof so that the atmosphere is from lean to rich. Provided is a method of contacting with changing exhaust gas to remove nitrogen oxides in the exhaust gas. According to the present invention, the NOx storage substance-containing layer of the present invention is provided on the upstream side of the exhaust gas flow, and the excess oxygen-containing exhaust gas purification catalyst is provided on the downstream side thereof, and the exhaust gas temperature changes from a low temperature to a high temperature. Contact the exhaust gas of the atmosphere,
A method for removing NOx in the exhaust gas is provided.
【0007】以下、本発明について詳細に説明する。 担体 本発明のNOx吸蔵物質の担体としては、アルミナ系金
属酸化物が用いられる。アルミナ系金属酸化物として
は、例えばγ−アルミナ、η−アルミナ等の活性アルミ
ナやシリカ−アルミナ、チタニア−アルミナ、ジルコニ
ア−アルミナ等のアルミナ系複合酸化物が使用でき、好
ましくは活性アルミナが用いられる。Hereinafter, the present invention will be described in detail. Carrier As a carrier for the NOx storage substance of the present invention, an alumina-based metal oxide is used. As the alumina-based metal oxide, for example, activated alumina such as γ-alumina and η-alumina and alumina-based composite oxides such as silica-alumina, titania-alumina and zirconia-alumina can be used, and activated alumina is preferably used. .
【0008】担持成分 本発明のNOx吸蔵物質は担持成分として銀、アルカリ
土類金属元素の少なくとも一種及び白金族元素の少なく
とも一種を含有する。銀の含有量は、担体と担持成分の
全重量に対し金属換算で5〜40wt%であり、好まし
くは10〜30wt%である。銀の含有量が少なすぎる
と300℃以上でのNOx吸蔵量が低下し、さらに耐熱
性が向上しない。多すぎると逆に耐熱性が低下する傾向
にある。アルカリ土類金属元素としてストロンチウム、
バリウム、カルシウム及びマグネシウムの少なくとも一
種を用いる。好ましくはストロンチウム及び/又はバリ
ウムである。これら元素は担持されたときは、酸化物の
状態で存在する。これら元素の含有量は、担体と担持成
分の全重量に対し、金属換算で5〜40wt%であり、
好ましくは、10〜30wt%である。少なすぎても多
すぎてもNOx吸蔵量は低下する傾向にある。Supporting Component The NOx storage substance of the present invention contains at least one of silver, an alkaline earth metal element and at least one of platinum group elements as a supporting component. The content of silver is 5 to 40 wt%, preferably 10 to 30 wt% in terms of metal, based on the total weight of the carrier and the supported component. If the content of silver is too small, the NOx storage amount at 300 ° C. or higher will decrease, and the heat resistance will not improve. On the contrary, if the amount is too large, the heat resistance tends to decrease. Strontium as an alkaline earth metal element,
At least one of barium, calcium and magnesium is used. Preferred is strontium and / or barium. When these elements are supported, they exist in an oxide state. The content of these elements is 5 to 40 wt% in terms of metal, based on the total weight of the carrier and the supported component,
Preferably, it is 10 to 30 wt%. If the amount is too small or too large, the NOx storage amount tends to decrease.
【0009】白金元素として、ロジウム、イリジウム、
白金およびパラジウムの少なくとも一種を用いる。好ま
しくはロジウム及び/又は白金である。これら白金族元
素の含有量は担体と担持成分の全重量に対し、金属換算
で0.05〜8wt%であり、好ましくは、0.1〜6
wt%である。少なすぎると、NOx吸蔵量は低下する
傾向にあり、多すぎると、NOxが排気ガス中に含まれ
るHC等の還元剤によって還元され易くなり、好ましく
ない副生成物である亜酸化窒素(N2O)の生成量が増
える。本発明のさらに好ましい形態は、担持成分の銀と
アルカリ土類金属元素の少なくとも一種の合計量が、担
体と担持成分の全重量に対し金属換算で10〜50wt
%であり、より好ましくは15〜40wt%である。銀
対アルカリ土類金属元素の重量比は特に限定されない
が、好ましくは金属換算で1:0.1〜1:20であ
り、より好ましくは1:0.2〜1:10である。As platinum elements, rhodium, iridium,
At least one of platinum and palladium is used. Rhodium and / or platinum are preferable. The content of these platinum group elements is 0.05 to 8 wt% in terms of metal, preferably 0.1 to 6 with respect to the total weight of the carrier and supported components.
wt%. If it is too small, the NOx storage amount tends to decrease, and if it is too large, NOx is easily reduced by a reducing agent such as HC contained in the exhaust gas, which is an undesirable by-product nitrous oxide (N 2 The production amount of O) increases. In a further preferred embodiment of the present invention, the total amount of at least one of the supported component silver and the alkaline earth metal element is 10 to 50 wt% in terms of metal based on the total weight of the carrier and the supported component.
%, And more preferably 15 to 40 wt%. The weight ratio of silver to alkaline earth metal element is not particularly limited, but is preferably 1: 0.1 to 1:20 in terms of metal, and more preferably 1: 0.2 to 1:10.
【0010】次に本発明のNOx吸蔵物質の製造方法に
ついて述べる。本発明のNOx吸蔵物質の製造法は特に
限定されず、吸着法、含侵法、イオン交換法等触媒調整
の常法が適用される。出発原料の金属源は限定されず各
種の塩や錯体が使用される。例えば銀源としては硝酸
銀、酢酸銀などが使われ、アルカリ土類金属源として
は、硝酸ストロンチウム、水酸化ストロンチウム、酸化
ストロンチウム、硝酸バリウム、水酸化バリウム、酸化
バリウムなど、白金族源としては硝酸ロジウム、塩化ロ
ジウム、テトラアンミン白金硝酸塩、塩化白金酸、テト
ラアンミン白金塩化物、硝酸パラジウム、塩化パラジウ
ム、塩化イリジウム酸、硝酸イリジウムなどが使用され
る。Next, a method for producing the NOx storage substance of the present invention will be described. The method for producing the NOx occluding substance of the present invention is not particularly limited, and an ordinary method for catalyst preparation such as an adsorption method, an impregnation method, an ion exchange method is applied. The metal source as a starting material is not limited and various salts and complexes are used. For example, silver nitrate, silver acetate, etc. are used as the silver source, strontium nitrate, strontium hydroxide, strontium oxide, barium nitrate, barium hydroxide, barium oxide, etc. as the alkaline earth metal source, and rhodium nitrate as the platinum group source. , Rhodium chloride, tetraammine platinum nitrate, chloroplatinic acid, tetraammine platinum chloride, palladium nitrate, palladium chloride, iridic acid chloride, iridium nitrate and the like are used.
【0011】例えば、銀、アルカリ土類金属元素及び白
金族元素をアルミナ担体上に担持させるには、アルミナ
担体を銀源、アルカリ土類金属源および白金族源を溶解
させた混合水溶液と接触させる。より具体的には該水溶
液に侵漬してもよいし、該水溶液をアルミナ担体に含侵
してもよい。ただし、混合水溶液として使用する場合
は、配位子同士の反応で沈澱の生じない組合せを選ぶ必
要がある。例えば、硝酸銀と塩化ロジウムを使用するこ
とは、塩化銀の沈澱を生じるので避けた方が良い。こう
して全ての担持成分を担持させた後、乾燥後、焼成す
る。焼成温度は通常500〜700℃でよい。For example, in order to support silver, an alkaline earth metal element and a platinum group element on an alumina carrier, the alumina carrier is brought into contact with a mixed aqueous solution in which a silver source, an alkaline earth metal source and a platinum group source are dissolved. . More specifically, it may be immersed in the aqueous solution, or the aqueous solution may be impregnated in an alumina carrier. However, when used as a mixed aqueous solution, it is necessary to select a combination that does not cause precipitation due to the reaction between the ligands. For example, the use of silver nitrate and rhodium chloride should be avoided as it will precipitate silver chloride. After all the supported components are supported in this way, they are dried and then baked. The firing temperature may usually be 500 to 700 ° C.
【0012】また、その他の方法としては、まず銀源を
アルミナに担持した後、焼成固定化し、ついでアルカリ
土類金属源、ついで白金族源というように逐次担持して
もよい。担持する順序は任意である。なお本発明のNO
x吸蔵物質の形状、形態は特に限定されない。粉末や粒
で用いてもよいし、球あるいはペレットなど種々の形状
に成形して使用することもできる。好ましい実施態様と
して、排気ガス中に置かれたとき排気ガスを貫通させる
ことのできる多数の貫通孔を有する耐火性支持基質、例
えばコージェライト製あるいはステンレス製などのハニ
カム状モノリス基質に上記NOx吸蔵物質粉末を被覆し
て用いる形態が挙げられる。このような一体構造体基質
の表面に被覆して用いると、排気ガスとの接触において
圧力損失を抑え排気ガス処理量を増やすことが出来る。As another method, first, a silver source may be supported on alumina, followed by baking and fixation, then an alkaline earth metal source, and then a platinum group source, which are sequentially supported. The order of loading is arbitrary. The NO of the present invention
The shape and form of the x storage material are not particularly limited. It may be used in the form of powder or granules, or may be molded into various shapes such as spheres or pellets before use. In a preferred embodiment, the NOx storage material is a refractory support substrate having a large number of through holes that allow the exhaust gas to penetrate when placed in the exhaust gas, for example, a honeycomb monolith substrate made of cordierite or stainless steel. Examples include a form in which the powder is coated and used. When the surface of such a monolithic structure substrate is coated and used, it is possible to suppress the pressure loss in contact with the exhaust gas and increase the throughput of the exhaust gas.
【0013】本発明のNOx吸蔵物質は、銀とアルカリ
土類元素を含んでいるために、リーン雰囲気ではNOx
と接触することにより、銀とアルカリ土類元素の酸化物
が、硝酸化物となることにより、銀とアルカリ土類元素
中に吸蔵される。吸蔵されたNOxは、450℃以上の
高温に曝すか、ストイキオまたはリッチ雰囲気にするこ
とにより、容易に放出する。特に、ストイキオまたはリ
ッチ雰囲気にて放出されたNOxは、本発明のNOx吸
蔵物質に含有される白金族により、放出と同時にHC等
の還元成分により還元除去することができる。本発明の
NOx吸蔵物質は、アルカリ土類金属元素の他に銀を含
むので、NOxの吸蔵に対する二酸化炭素(CO2)等
の雰囲気ガスの被毒を抑制し、かつ耐熱性に優れてい
る。すなわち、アルカリ土類金属酸化物やMn酸化物に
NOx吸蔵能を依存した従来のNOx吸蔵物質は、耐熱
性に乏しく700℃空気中のエージングで容易にNOx
吸蔵能が失われるのに対して、本発明のNOx吸蔵物質
は、アルカリ土類金属元素以外に銀によってもNOx吸
蔵能が保持されるため700℃を越え800℃まで耐熱
性を有する点において従来のNOx吸蔵物質より優れた
性能を有する。Since the NOx storage material of the present invention contains silver and an alkaline earth element, NOx is stored in a lean atmosphere.
The oxide of silver and the alkaline earth element is converted into nitric oxide by coming into contact with, and is occluded in the silver and the alkaline earth element. The stored NOx is easily released by exposing it to a high temperature of 450 ° C. or higher, or in a stoichiometric or rich atmosphere. In particular, NOx released in a stoichio atmosphere or a rich atmosphere can be reduced and removed at the same time as being released by a reducing component such as HC by the platinum group contained in the NOx storage substance of the present invention. Since the NOx storage substance of the present invention contains silver in addition to the alkaline earth metal element, it suppresses poisoning of atmospheric gas such as carbon dioxide (CO2) with respect to NOx storage and has excellent heat resistance. That is, the conventional NOx storage material that depends on the NOx storage capacity for alkaline earth metal oxides and Mn oxides has poor heat resistance and is easily oxidized by aging in air at 700 ° C.
While the NOx storage capacity of the present invention is lost, the NOx storage material of the present invention has a heat resistance of more than 700 ° C to 800 ° C because the NOx storage capacity is maintained by silver in addition to the alkaline earth metal element. It has superior performance to other NOx storage materials.
【0014】排気ガス浄化方法 本発明は、排気ガス中のNOxを除去する2種類の方法
を提供する。まず、第1の方法について説明する。この
方法は、その雰囲気がリーンからリッチまで変化する排
気ガスに含まれるNOxを除去する方法である。その雰
囲気がリーンからリッチまで変化する排気ガスの流れの
中に本発明のNOx吸蔵物質含有層を配置する。この含
有層とは、NOx吸蔵物質が含有されている形態を言う
のであって、例えば粉末状のNOx吸蔵物質を一定空間
内に充填した形態でも良いし、NOx吸蔵物質を所定の
形状に成形した物でも良い。また、NOx吸蔵物質を耐
火性支持基質に被覆した形態であっても良い。Exhaust Gas Purification Method The present invention provides two types of methods for removing NOx in exhaust gas. First, the first method will be described. This method is a method of removing NOx contained in the exhaust gas whose atmosphere changes from lean to rich. The NOx storage substance-containing layer of the present invention is arranged in the flow of exhaust gas whose atmosphere changes from lean to rich. The term “containing layer” refers to a form in which a NOx storage substance is contained. For example, a powdery NOx storage substance may be filled in a certain space, or the NOx storage substance may be formed into a predetermined shape. It can be a thing. Alternatively, the NOx storage substance may be coated on the refractory support substrate.
【0015】本発明のNOx吸蔵物質はリーン雰囲気で
NOxを吸蔵し、吸蔵されたNOxの一部を還元する
が、雰囲気が化学量論量(以下、ストイキオともい
う。)からリッチにかわると吸蔵されていたNOxを放
出し、放出したNOxの少なくとも一部は、本NOx吸
蔵物質中に含有される白金族成分上で排気ガス中に共存
するCO,HC等の還元性成分に依って還元分解され
る。さらに好ましくは、排気ガスの流れの中のNOx吸
蔵物質含有層の下流に、ストイキオからリッチでNOx
をCO,HCに依って還元できる三元触媒を配置するこ
とにより、還元されずに放出されたNOxが除去され
る。車両駆動用ガソリンリーンバーンエンジンの場合、
通常、運転状態の負荷の変動に応じて雰囲気はリーンか
らストイキオあるいはリッチへと頻繁に変動する。この
場合、特別な制御無しでも負荷変動に伴う雰囲気の変動
がそのまま排気ガス浄化方法に利用され、その排気ガス
をNOx吸蔵物質を含む触媒系と接触させることにより
運転中の平均のNOx除去率は向上する。NOx吸蔵物
質のNOx飽和吸蔵量を超えてリーン域が継続する場合
は、排気ガスの雰囲気をリーンからストイキオあるいは
リッチへと変化させる公知の方法、例えば燃料供給量の
増加、空気供給量の低減、あるいは排気ガスへの還元剤
の追加添加等に従って、触媒系と接触させる排気ガスの
雰囲気をNOx放出または還元に必要な時間だけ変化さ
せ、その後は元のリーン状態に戻す制御を行えば良い。
NOx吸蔵物質に銀を含有させた本発明の方法は、触媒
系の耐熱性を向上させることができる点で、従来の方法
より優れている。The NOx occluding substance of the present invention occludes NOx in a lean atmosphere and reduces a part of the occluded NOx, but when the atmosphere changes from stoichiometric amount (hereinafter also referred to as stoichio) to rich, it occludes. The released NOx is released, and at least a part of the released NOx is reduced and decomposed by the reducing components such as CO and HC coexisting in the exhaust gas on the platinum group component contained in the NOx storage substance. To be done. More preferably, it is rich in NOx from the stoichio downstream of the NOx storage material-containing layer in the exhaust gas stream.
NOx released without reduction is removed by arranging a three-way catalyst that can reduce CO 2 and CO depending on HC. In the case of a gasoline lean burn engine for vehicle drive,
Usually, the atmosphere frequently changes from lean to stoichiometric or rich depending on the fluctuation of the load in the operating state. In this case, the fluctuation of the atmosphere due to the fluctuation of the load is directly used for the exhaust gas purification method without any special control, and the average NOx removal rate during operation is reduced by bringing the exhaust gas into contact with the catalyst system containing the NOx storage substance. improves. When the lean region continues beyond the NOx saturated storage amount of the NOx storage substance, a known method of changing the atmosphere of the exhaust gas from lean to stoichiometric or rich, for example, increasing the fuel supply amount, reducing the air supply amount, Alternatively, control may be performed by changing the atmosphere of the exhaust gas that is brought into contact with the catalyst system for a time required for NOx release or reduction according to additional addition of a reducing agent to the exhaust gas, and then returning to the original lean state.
The method of the present invention in which the NOx storage material contains silver is superior to the conventional method in that the heat resistance of the catalyst system can be improved.
【0016】つぎに第2の方法を説明する。第2の方法
は雰囲気がリーンである排気ガスの除去に適用される。
本発明のNOx吸蔵物質は図1に示すように、それをリ
ーン雰囲気でNOx含有排気ガスに接触させながらガス
温度を常温〜400℃の低温域から450℃〜600℃
の高温域へと昇温させると、250〜400℃低温域で
NOxを吸蔵し、450℃以上の高温域で放出する。低
温域で吸蔵されたNOxは、本発明のNOx吸蔵物質中
に含有する白金族成分上で排気ガス中に共存するCO,
HC等の還元成分に依って一部還元分解されるが、大部
分は還元されず、高温域への昇温時放出される。さら
に、高温域でNOxを放出させた後、NOx吸蔵物質に
接触させるガス温度を400℃以下200℃さらには常
温まで降温させることによって、500〜200℃の範
囲で排気ガス中のNOxをその飽和吸蔵量まで吸蔵し続
けることができる。このように降温過程で吸蔵されたN
Oxはそのつぎの昇温過程で再び一部還元されながらも
大部分は450℃以上の高温域への昇温に依って放出さ
れる。それに対し、図2に示すような従来の物質は、リ
ーン雰囲気でNOx含有排気ガスに接触させながらガス
温度を常温から昇温させると、150〜350℃の低温
域でNOxを吸蔵し、400℃以上の高温域で放出す
る。高温域でNOxを放出させた後、ガス温度を常温ま
で降温させることによって、500〜200℃の範囲で
排気ガス中のNOxをその飽和吸蔵量まで吸蔵し続ける
ことができる。Next, the second method will be described. The second method is applied to the removal of lean exhaust gases.
As shown in FIG. 1, the NOx storage material of the present invention is brought into contact with the NOx-containing exhaust gas in a lean atmosphere, and the gas temperature is from a low temperature range of normal temperature to 400 ° C to 450 ° C to 600 ° C.
When the temperature is raised to the high temperature region of NOx, NOx is occluded in the low temperature region of 250 to 400 ° C. and released in the high temperature region of 450 ° C. or higher. The NOx stored in the low temperature range is CO that coexists in the exhaust gas on the platinum group component contained in the NOx storage material of the present invention.
Although it is partially reductively decomposed depending on a reducing component such as HC, most of it is not reduced and is released when the temperature rises to a high temperature range. Furthermore, after releasing NOx in a high temperature range, the temperature of the gas that comes into contact with the NOx storage substance is lowered to 400 ° C. or lower, 200 ° C., or even to room temperature, so that NOx in the exhaust gas is saturated in the range of 500 to 200 ° C. Can continue to occlude up to the occluded amount. Thus, the N stored in the temperature decreasing process
Ox is partially reduced again in the subsequent temperature raising process, but most of it is released by the temperature rise to a high temperature region of 450 ° C. or higher. On the other hand, the conventional material as shown in FIG. 2 absorbs NOx in a low temperature range of 150 to 350 ° C. and raises the temperature to 400 ° C. when the gas temperature is raised from normal temperature while being brought into contact with NOx-containing exhaust gas in a lean atmosphere. It is released in the above high temperature range. After releasing NOx in the high temperature range and then lowering the gas temperature to room temperature, NOx in the exhaust gas can be continuously stored up to its saturated storage amount in the range of 500 to 200 ° C.
【0017】貴金属触媒がリーン雰囲気で、NOxの還
元作用を有することは公知であるが、本発明のNOx吸
蔵物質および従来の物質は貴金属を含有しているため、
NOxの吸蔵と共にNOxの還元が一部生じている。N
Oxの除去が吸蔵による寄与か還元による寄与かは、高
温域で放出されるNOx量に対する低温域でのNOx除
去量の比から、低温域での還元と正味の吸蔵の寄与を推
算できる。例えば、図2の初期の昇温曲線では、150
〜350℃の低温域でNOxを吸蔵または還元し、40
0℃以上の高温域で放出する。しかし、エージング後の
昇温曲線では、150〜350℃の低温域でNOxを吸
蔵または還元するが、400℃以上の高温域での放出は
ない。このことから、従来の物質はエージング後ではN
Ox吸蔵能は失われ、NOxの還元が生じていることが
わかる。これに対し、図1の本発明のNOx吸蔵物質
は、エージング後の昇温曲線では、300〜450℃の
低温域でNOxを吸蔵または還元し、450℃以上の高
温域でNOxを放出する。このことから、本発明のNO
x吸蔵物質はエージング後でもNOx吸蔵能は維持して
いることがわかる。It is known that the noble metal catalyst has a NOx reducing action in a lean atmosphere, but since the NOx storage substance of the present invention and the conventional substance contain the noble metal,
A part of the reduction of NOx occurs together with the storage of NOx. N
Whether Ox removal contributes by occlusion or reduction can be estimated from the ratio of the NOx removal amount in the low temperature region to the NOx amount released in the high temperature region, and the contribution of reduction and net occlusion in the low temperature region. For example, in the initial temperature rising curve of FIG.
Stores or reduces NOx in the low temperature range of ~ 350 ° C
It is released in the high temperature range above 0 ° C. However, in the temperature rising curve after aging, NOx is occluded or reduced in the low temperature range of 150 to 350 ° C., but NOx is not released in the high temperature range of 400 ° C. or higher. From this, the conventional material is
It can be seen that the Ox storage capacity is lost and NOx is reduced. On the other hand, the NOx storage substance of the present invention in FIG. 1 stores or reduces NOx in a low temperature range of 300 to 450 ° C. and releases NOx in a high temperature range of 450 ° C. or higher in the temperature rising curve after aging. From this, the NO of the present invention
It can be seen that the x storage material maintains the NOx storage capacity even after aging.
【0018】車両駆動用エンジンの場合その排気ガス温
度は運転中のエンジン回転数と負荷の変動に応じて15
0℃程度の低温から600℃程度の高温へ、また高温か
ら低温へと頻繁に変動するので、この昇降温をそのまま
NOxの吸蔵放出に利用できる。また高温域が維持する
ような排気ガスの場合、NOx吸蔵物質を含む触媒系の
前で、2次空気を導入する等の排気ガス温度を変動させ
る公知の方法で排気ガス温度を降温させ、NOx吸蔵温
度域に達したらこれを解除する制御方法が適用される。
昇温時放出されるNOxは、排気ガスの流れの中のNO
x吸蔵物質の下流に、NOx吸蔵物質とは別に配置され
た、リーン域でNOxを選択的に還元できるNOx還元
触媒と接触させることによって除去される。In the case of an engine for driving a vehicle, its exhaust gas temperature is 15 depending on the engine speed and the fluctuation of the load during operation.
Since the temperature frequently changes from a low temperature of about 0 ° C. to a high temperature of about 600 ° C. and from a high temperature to a low temperature, this temperature increase / decrease can be directly used for NOx storage / release. In the case of exhaust gas that maintains a high temperature range, the exhaust gas temperature is lowered by a known method that changes the exhaust gas temperature, such as introducing secondary air, in front of the catalyst system containing the NOx storage substance. When the storage temperature range is reached, a control method for canceling this is applied.
NOx released when the temperature rises is NO in the exhaust gas flow.
It is removed by bringing it into contact with a NOx reduction catalyst, which is arranged separately from the NOx storage material, and which is capable of selectively reducing NOx in the lean region, downstream of the x storage material.
【0019】これまでのNOx還元触媒は一般に有効温
度域が限定されていた。例えばPt/ゼオライト触媒は
150〜300℃で、銅/ゼオライト触媒は350〜5
00℃で活性を発揮していたが、これ以外の温度域では
NOx除去率は十分ではなく、NOxは除去されないで
排出されていた。これに対し前段にNOx吸蔵物質を置
き、後段にNOx放出の温度域で活性を示すNOx還元
触媒を組み合わせれば、広い温度域でのNOx浄化が可
能になる。NOx還元触媒としてはリーン雰囲気下、N
Ox吸蔵物質によってNOxが放出される温度域でNO
x還元能を有する触媒なら特に限定されない。NOx吸
蔵物質を出たガス中の還元性成分の量がNOxの選択還
元に不十分な量ならばNOx吸蔵物質の下流であってN
Ox還元触媒の前で排気ガス流路に、雰囲気がストイキ
オ〜リッチにならない範囲で必要最小限のHC等の還元
剤を追加添加し、NOx還元の転化率を高めることもで
きる。NOx還元触媒としては例えば、公知のCu/ゼ
オライト触媒(米国特許第4297328号、特開昭6
3−100919号)や銀/アルミナ触媒(特開平4−
281844号)、Ir/SiC触媒(特開平6−31
173号)等の触媒が使用できる。Conventional NOx reduction catalysts have generally been limited in the effective temperature range. For example, Pt / zeolite catalyst at 150-300 ° C, copper / zeolite catalyst 350-5
Although it exhibited activity at 00 ° C, the NOx removal rate was not sufficient in other temperature regions, and NOx was discharged without being removed. On the other hand, if a NOx storage substance is placed in the front stage and a NOx reduction catalyst that is active in the temperature range of NOx release is combined in the rear stage, NOx purification in a wide temperature range becomes possible. As a NOx reduction catalyst, in a lean atmosphere, N
NO in the temperature range where NOx is released by the Ox storage material
There is no particular limitation as long as it is a catalyst having x-reducing ability. If the amount of the reducing component in the gas discharged from the NOx storage substance is insufficient for the selective reduction of NOx, the amount of N is downstream of the NOx storage substance and N
It is also possible to increase the conversion rate of NOx reduction by additionally adding the minimum necessary reducing agent such as HC within the range where the atmosphere is not stoichiometric to rich in front of the Ox reduction catalyst. As the NOx reduction catalyst, for example, a known Cu / zeolite catalyst (U.S. Pat. No. 4,297,328, Japanese Patent Laid-Open Publication No. Sho 6) is used.
3-100919) and silver / alumina catalyst (JP-A-4-1004).
281844), Ir / SiC catalyst (Japanese Patent Laid-Open No. 6-31)
No. 173) and the like can be used.
【0020】[0020]
【実施例】次に本発明の実施例を述べるが、本発明はこ
れらの実施例に限定されるものではない。EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited to these examples.
【0021】実施例1 (a)アルミニウムイソプロポキシド120.4gをイ
ソプロパノール30mlに溶解し、窒素中で60℃に加
熱還流した。この溶液に脱イオン水10mlとイソプロ
パノール20mlの混合溶液を滴下し、ゼリー状に固化
するまで攪拌を行い固形物を得た。冷却後、固形物をろ
過洗浄し、乾燥器中で120℃で12時間乾燥した。得
られた固形物を粉砕後、電気炉中で600℃で3時間焼
成し、アルミナ担体を得た。 (b)(a)で得られたアルミナ担体20.7gに、担
持成分の出発原料として銀6gを含む硝酸銀水溶液8.
8g、ストロンチウム3gを含む硝酸ストロンチウム水
溶液7.2g及びロジウム0.3gを含む硝酸ロジウム
水溶液3.9gとからなる混合水溶液19.9gを含侵
させた。その後、乾燥器中で120℃で12時間乾燥
し、粉砕した後、電気炉中で600℃で3時間焼成して
NOx吸蔵物質粉末を得た。得られた粉末の担持成分の
組成は金属換算で銀20wt%、ストロンチウム10w
t%、ロジウム1wt%であった。 (c)(b)で得られた粉末30g、アルミナゾル(1
0wt%アルミナ)10gおよび脱イオン水30gをボ
ールミルポットで混練しスラリーを得た。このスラリー
中に市販のコージェライト質400セルのハニカム(直
径1インチ、長さ2.5インチ)を浸漬し、取り出した
後、エアーナイフで余分なスラリーを取り除き、ハニカ
ムへの物質粉末の被覆量がドライベースで100g/L
になるように調整した。次に、乾燥器中で150℃で1
時間乾燥し、電気炉中で500℃で30分間焼成して、
NOx吸蔵物質被覆ハニカム(A−1)を得た。Example 1 (a) 120.4 g of aluminum isopropoxide was dissolved in 30 ml of isopropanol, and heated to 60 ° C. under reflux in nitrogen. A mixed solution of 10 ml of deionized water and 20 ml of isopropanol was added dropwise to this solution, and the mixture was stirred until it solidified into a jelly form to obtain a solid. After cooling, the solid matter was filtered and washed, and dried in a dryer at 120 ° C. for 12 hours. The obtained solid was crushed and then calcined in an electric furnace at 600 ° C. for 3 hours to obtain an alumina carrier. (B) An aqueous solution of silver nitrate containing 20.7 g of the alumina carrier obtained in (a) and 6 g of silver as a starting material for the supporting component.
19.9 g of a mixed aqueous solution consisting of 8 g, 7.2 g of a strontium nitrate aqueous solution containing 3 g of strontium, and 3.9 g of a rhodium nitrate aqueous solution containing 0.3 g of rhodium was impregnated. Then, it was dried in a dryer at 120 ° C. for 12 hours, pulverized, and then calcined in an electric furnace at 600 ° C. for 3 hours to obtain a NOx storage substance powder. The composition of the supporting component of the obtained powder is 20 wt% of silver and 10 w of strontium in terms of metal.
It was t% and rhodium 1 wt%. (C) 30 g of the powder obtained in (b), alumina sol (1
10 g of 0 wt% alumina) and 30 g of deionized water were kneaded in a ball mill pot to obtain a slurry. A commercially available cordierite 400-cell honeycomb (1 inch in diameter, 2.5 inch in length) was dipped in this slurry and taken out. Then, the excess slurry was removed by an air knife to cover the honeycomb with the substance powder. Is dry base 100g / L
I adjusted it to be. Then 1 at 150 ° C in a dryer
Dried for an hour and baked in an electric furnace at 500 ° C for 30 minutes,
A NOx storage material-coated honeycomb (A-1) was obtained.
【0022】実施例2 実施例1(a)と同様なアルミナ担体13.7g、担持
成分の出発原料として、銀9gを含む硝酸銀水溶液1
3.3g、バリウム6gを含む硝酸バリウム水溶液1
1.4g、白金1.2gを含むテトラアンミン白金硝酸
銀水溶液12g、ロジウム0.15gを含む硝酸ロジウ
ム水溶液2.0gを含む混合水溶液38.7gを使用し
た以外は実施例1(b)と同様にして粉末を得た。得ら
れた粉末の担持成分の組成は金属換算で銀30wt%、
バリウム20wt%、白金4wt%、ロジウム0.5w
t%であった。この粉末を実施例1(c)と同様にして
NOx吸蔵物質被覆ハニカム(A−2)を得た。Example 2 Aqueous silver nitrate solution 1 containing 13.7 g of the same alumina carrier as in Example 1 (a) and 9 g of silver as a starting material for the supported component.
Barium nitrate aqueous solution 1 containing 3.3 g and 6 g of barium
Example 1 (b) except that 1.4 g, 12 g of a tetraammine platinum silver nitrate aqueous solution containing 1.2 g of platinum, and 38.7 g of a mixed aqueous solution containing 2.0 g of a rhodium nitrate aqueous solution containing 0.15 g of rhodium were used. A powder was obtained. The composition of the supporting component of the obtained powder was 30 wt% of silver in terms of metal,
Barium 20wt%, Platinum 4wt%, Rhodium 0.5w
It was t%. This powder was treated in the same manner as in Example 1 (c) to obtain a NOx storage material-coated honeycomb (A-2).
【0023】実施例3 実施例1(a)と同様なアルミナ担体21.9g、担持
成分の出発原料として、銀3gを含む硝酸銀水溶液4.
4g、ストロンチウム4.5gを含む硝酸ストロンチウ
ム水溶液10.7g,白金0.6gを含むテトラアンミ
ン白金硝酸水溶液6.0gを含む混合水溶液21.1g
を使用した以外は実施例1(b)と同様にして粉末を得
た。得られた粉末の担持成分の組成は金属換算で銀10
wt%、ストロンチウム15wt%、白金2wt%であ
った。この粉末を実施例1(c)と同様にしてNOx吸
蔵物質被覆ハニカム(A−3)を得た。Example 3 Aqueous silver nitrate solution containing 21.9 g of the same alumina carrier as in Example 1 (a) and 3 g of silver as a starting material for the supported component.
21.1 g of a mixed aqueous solution containing 4 g, an aqueous solution of strontium nitrate containing 4.5 g of strontium and 10.7 g of an aqueous solution of tetraammine platinum nitrate containing 0.6 g of platinum
A powder was obtained in the same manner as in Example 1 (b) except that was used. The composition of the supported component of the obtained powder was 10 in terms of metal.
% by weight, 15% by weight of strontium, and 2% by weight of platinum. This powder was treated in the same manner as in Example 1 (c) to obtain a NOx storage material-coated honeycomb (A-3).
【0024】比較例1 実施例1(a)と同様なアルミナ担体23.4g、担持
成分の出発原料として、バリウム6.0gを含む硝酸バ
リウム水溶液11.4g、白金0.6gを含むテトラア
ンミン白金硝酸水溶液6.0gを含む混合水溶液17.
4gを使用した以外は実施例1(b)と同様にして粉末
を得た。得られた粉末の担持成分の組成は金属換算でバ
リウム20wt%、白金2wt%であった。この粉末を
実施例1(c)と同様にして粉末被覆ハニカム(B−
1)を得た。この触媒系は銀を含まない従来の公知のも
の(特開平5−317652号参照)との比較のために
作成した。Comparative Example 1 23.4 g of the same alumina carrier as in Example 1 (a), 11.4 g of an aqueous barium nitrate solution containing 6.0 g of barium as a starting material for the supported component, and tetraammine platinum nitric acid containing 0.6 g of platinum. 17. A mixed aqueous solution containing 6.0 g of the aqueous solution.
A powder was obtained in the same manner as in Example 1 (b) except that 4 g was used. The composition of the supporting component of the obtained powder was barium 20 wt% and platinum 2 wt% in terms of metal. This powder was treated in the same manner as in Example 1 (c) with a powder-coated honeycomb (B-
1) was obtained. This catalyst system was prepared for comparison with a conventionally known catalyst system containing no silver (see JP-A-5-317652).
【0025】比較例2 実施例1(a)と同様なアルミナ担体26.7g、担持
成分の出発原料として、ストロンチウム3.0gを含む
硝酸ストロンチウム水溶液7.2g、ロジウム0.3g
を含む硝酸ロジウム水溶液3.9gを含む混合水溶液1
1.1gを使用した以外は実施例1(b)と同様にして
粉末を得た。得られた粉末の担持成分の組成は金属換算
でストロンチウム10wt%、ロジウム1wt%であっ
た。この粉末を実施例1(c)と同様にして粉末被覆ハ
ニカム(B−2)を得た。Comparative Example 2 26.7 g of the same alumina carrier as in Example 1 (a), 7.2 g of an aqueous strontium nitrate solution containing 3.0 g of strontium as a starting material for the supported component, and 0.3 g of rhodium.
Mixed aqueous solution 1 containing 3.9 g of aqueous rhodium nitrate solution containing
A powder was obtained in the same manner as in Example 1 (b) except that 1.1 g was used. The composition of the supported component of the obtained powder was 10 wt% strontium and 1 wt% rhodium in terms of metal. This powder was treated in the same manner as in Example 1 (c) to obtain a powder-coated honeycomb (B-2).
【0026】比較例3 実施例1(a)と同様なアルミナ担体21.0g、担持
成分の出発原料として、銀6gを含む硝酸銀水溶液8.
8g、ストロンチウム3.0gを含む硝酸ストロンチウ
ム水溶液7.2gを含む混合水溶液16.0gを使用し
た以外は実施例1(b)と同様にして粉末を得た。得ら
れた粉末の担持成分の組成は金属換算で銀20wt%、
ストロンチウム10wt%であった。この粉末を実施例
1(c)と同様にして粉末被覆ハニカム(B−3)を得
た。Comparative Example 3 Aqueous silver nitrate solution containing 21.0 g of the same alumina carrier as in Example 1 (a) and 6 g of silver as a starting material for the supported component.
Powder was obtained in the same manner as in Example 1 (b), except that 1 g of a mixed aqueous solution containing 7.2 g of an aqueous strontium nitrate solution containing 8 g and 3.0 g of strontium was used. The composition of the supporting component of the obtained powder was 20 wt% of silver in terms of metal,
It was 10 wt% of strontium. This powder was treated in the same manner as in Example 1 (c) to obtain a powder-coated honeycomb (B-3).
【0027】次に性能評価例について述べる。試料とし
て実施例A−1〜A−3、比較例B−1〜B−3とそれ
ぞれを10%水蒸気を含む空気中で700℃で5時間エ
ージング処理した物を準備した。 性能評価例1(リーン−リッチモデルガスによるNOx
の吸蔵及び除去性能評価)試料にA−1及びB−1のそ
れぞれ初期とエージングした物を、モデルガスとして下
記する表1の組成のリーンガスおよびリッチガスを用い
た。Next, an example of performance evaluation will be described. Samples A-1 to A-3 and Comparative Examples B-1 to B-3 and aging treatment at 700 ° C. for 5 hours in air containing 10% steam were prepared. Performance evaluation example 1 (NOx with lean-rich model gas
(Evaluation of Storage and Removal Performances) The samples of A-1 and B-1 in the initial stage and in the aged state were used as model gases of lean gas and rich gas having the compositions shown in Table 1 below.
【0028】[0028]
【表1】 [Table 1]
【0029】ハニカム入口ガス温度を350℃一定にし
て、表1のモデルガスをSV38,000/hrで供給
しながら、5分毎にガス雰囲気をリーン−リッチ間で切
り替え、ハニカム出口ガス中のNOx濃度を化学発光式
NOx計で測定し、リーン雰囲気ではNOxの吸蔵によ
る除去性能を、リッチ雰囲気では還元によるNOx除去
性能を評価した。NOx吸蔵率及び除去率は次の計算式
で算出される値を用いた。While the temperature of the honeycomb inlet gas was kept constant at 350 ° C., while supplying the model gas of Table 1 at SV38,000 / hr, the gas atmosphere was switched between lean and rich every 5 minutes, and NOx in the honeycomb outlet gas was changed. The concentration was measured by a chemiluminescence type NOx meter, and the removal performance by NOx occlusion in a lean atmosphere and the NOx removal performance by reduction in a rich atmosphere were evaluated. As the NOx occlusion rate and the removal rate, the values calculated by the following calculation formulas were used.
【0030】[0030]
【数1】 [Equation 1]
【0031】NOxの吸蔵率及び除去率の経時変化を表
2に示す。さらに、A−1を半分の長さとしガス流れ中
の上流側に充填し、同じ長さの常用のPt−Rh/Al
2O3三元触媒被覆ハニカムをその下流側に配置した結
合触媒系およびB−1についても同様に結合触媒系につ
いて評価した。その結果も表2に示す。Table 2 shows changes with time in the NOx occlusion rate and removal rate. Furthermore, A-1 is made half the length and is filled in the upstream side in the gas flow, and the same length of conventional Pt-Rh / Al is used.
The bonded catalyst system in which the 2 O 3 ternary catalyst-coated honeycomb was arranged on the downstream side and B-1 were similarly evaluated for the bonded catalyst system. The results are also shown in Table 2.
【0032】[0032]
【表2】 [Table 2]
【0033】表2から分かるように、リーンガスとリッ
チガスの切り替えに対し、本発明の実施例1のA−1
は、比較例のB−1に比べ、初期およびエージング後で
も平均して高いNOx除去性能を示していることがわか
る。As can be seen from Table 2, when the lean gas and the rich gas are switched, A-1 of the first embodiment of the present invention is used.
It can be seen that, compared with B-1 of the comparative example, shows a high NOx removal performance on average even in the initial stage and after aging.
【0034】性能評価2(リーンモデルガスによるNO
x吸蔵及び除去性能評価) 試料として実施例及び比較例のそれぞれ初期とエージン
グした物を、モデルガスとして下記する表3の組成のガ
スを用いた。Performance evaluation 2 (NO with lean model gas
x Storage and Removal Performance Evaluation) As the sample, the initial and aged products of Examples and Comparative Examples were used, and the gas having the composition shown in Table 3 below was used as a model gas.
【0035】[0035]
【表3】 [Table 3]
【0036】表3のモデルガスをSV38,000/h
rで供給しながら、ハニカム入口ガス温度を100℃か
ら600℃まで30℃/minの昇温速度で上昇させ、
また600℃から100℃まで30℃/minの降温速
度で降温させ、NOx吸蔵及び除去性能を評価した。リ
ーンモデルガスによる昇温時のハニカム入口温度300
〜450℃でのNOx吸蔵及び除去性能評価を表4に示
す。The model gas of Table 3 was SV38,000 / h.
While supplying at r, the honeycomb inlet gas temperature is raised from 100 ° C. to 600 ° C. at a temperature rising rate of 30 ° C./min,
Further, the temperature was lowered from 600 ° C. to 100 ° C. at a temperature lowering rate of 30 ° C./min, and the NOx occlusion and removal performance was evaluated. Honeycomb inlet temperature 300 during heating with lean model gas
Table 4 shows the NOx occlusion and removal performance evaluation at ˜450 ° C.
【0037】[0037]
【表4】 [Table 4]
【0038】表4から明らかなように実施例のNOx吸
蔵物質被覆ハニカムA−1〜A−3は比較例の物質被覆
ハニカムB−1〜B−3に比べ、初期またはエージング
後でも300〜400℃でのNOx吸蔵率及び除去率に
優れていることがわかる。As is clear from Table 4, the NOx storage substance-coated honeycombs A-1 to A-3 of the example are 300 to 400 even after initial or aging, as compared with the substance-coated honeycombs B-1 to B-3 of the comparative example. It can be seen that the NOx occlusion rate and removal rate at ° C are excellent.
【0039】図1に実施例A−1、図2に比較例B−1
のそれぞれの初期およびエージング後の昇温、降温時に
おけるNOx吸蔵率及び除去率とハニカム入り口ガス温
度との関係を示す。図1から、本発明の実施例1のNO
x吸蔵物質被覆ハニカムA−1は、昇温時、入り口ガス
温度150℃から400℃の間でNOxを吸蔵し、40
0℃以上に昇温すると吸蔵されたNOxが放出される
が、次ぎに600℃から降温すると100℃までの広い
温度範囲に亘ってNOxを吸蔵するので、すぐれたNO
x吸蔵物質であることがわかる。本発明の実施例1のN
Ox吸蔵物質被覆ハニカムA−1は、耐久後でも300
〜400℃で吸蔵したNOxを400℃以上で放出して
いることから、耐久後でもNOx吸蔵能を保持している
事がわかる。FIG. 1 shows Example A-1 and FIG. 2 shows Comparative Example B-1.
The relation between the NOx occlusion rate and removal rate at the time of initial temperature rise and temperature decrease after aging and the honeycomb inlet gas temperature are shown below. From FIG. 1, NO of Example 1 of the present invention
The x storage material-covered honeycomb A-1 stores NOx at a temperature of the inlet gas between 150 ° C. and 400 ° C. at a temperature rise,
When the temperature is raised above 0 ° C, the stored NOx is released, but when the temperature is lowered from 600 ° C, the NOx is stored over a wide temperature range up to 100 ° C.
x It can be seen that it is an occlusion substance. N of Example 1 of the present invention
The Ox storage material-coated honeycomb A-1 is 300 even after endurance.
Since NOx stored at ˜400 ° C. is released at 400 ° C. or higher, it can be seen that the NOx storage capacity is retained even after the endurance.
【0040】それに対し比較例の物質B−1は、図2か
ら、物質入り口温度200℃付近でのNOx吸蔵率及び
除去率は高いが、実施例の物質A−1に比べ300〜4
50℃での吸蔵率及び除去率は低い。また、比較例の物
質B−1は、初期では吸蔵したNOxが400℃以上で
放出されていることが確認されたが、エージング後では
NOxの放出はほとんど無くなった。このことから、比
較例の物質B−1は700℃でのエージングによってN
Ox吸蔵性能を失い、200℃から400℃のNOx除
去率は主としてHCによるNOxの還元による寄与であ
ることがわかる。このように本発明のNOx吸蔵物質は
アルミナ系金属酸化物担体に銀とアルカリ土類金属元素
と白金族元素が含有されているので、過剰酸素雰囲気下
において、耐熱性に優れ、HC共存下でも300℃以上
で優れたNOx吸蔵性能を発揮することが判った。On the other hand, according to the substance B-1 of the comparative example, as shown in FIG. 2, the NOx occlusion rate and the removal rate at a substance inlet temperature of around 200 ° C. are high, but 300 to 4 compared with the substance A-1 of the example.
The storage rate and removal rate at 50 ° C are low. Further, in the substance B-1 of the comparative example, it was confirmed that the stored NOx was released at 400 ° C. or higher in the initial stage, but after the aging, the release of NOx almost disappeared. From this fact, the material B-1 of the comparative example was not subjected to N by aging at 700 ° C.
It can be seen that the Ox storage performance is lost and the NOx removal rate from 200 ° C to 400 ° C is mainly due to the reduction of NOx by HC. Thus, since the NOx storage material of the present invention contains silver, an alkaline earth metal element, and a platinum group element in the alumina-based metal oxide carrier, it has excellent heat resistance in an excess oxygen atmosphere and even in the presence of HC. It was found that excellent NOx storage performance is exhibited at 300 ° C or higher.
【0041】[0041]
【発明の効果】本発明によれば、アルミナ系金属酸化物
担体に、該担体と担持成分の全重量に対し、金属換算で
それぞれ銀を5〜40wt%、アルカリ土類金属元素の
少なくとも一種を5〜40wt%及び白金族元素の少な
くとも一種を0.05〜8wt%担持してなる窒素酸化
物吸蔵用組成物により、排気ガス中のNOxを吸蔵、放
出させることにより、その雰囲気がリーンからリッチま
で変化する排気ガスや、排ガス温度が低温から高温まで
変化するリーン雰囲気の排気ガス中のNOxを効率よく
処理することができる。本発明の窒素酸化物吸蔵用組成
物は耐熱性に優れ、700℃〜800℃までの耐熱性を
有している。さらに、本発明の前記組成物の下流側に窒
素酸化物の還元触媒を設けることにより、広範囲の排ガ
ス中の酸素含有量や、排ガス温度領域において、排ガス
中の窒素酸化物を除去することができる。INDUSTRIAL APPLICABILITY According to the present invention, the alumina-based metal oxide carrier contains 5 to 40% by weight of silver in terms of metal, and at least one of alkaline earth metal elements, based on the total weight of the carrier and supported components. A nitrogen oxide storage composition containing 5 to 40 wt% and at least one platinum group element of 0.05 to 8 wt% stores and releases NOx in exhaust gas, thereby making the atmosphere lean to rich. It is possible to efficiently treat the exhaust gas that changes to the exhaust gas and the NOx in the exhaust gas in the lean atmosphere in which the exhaust gas temperature changes from low temperature to high temperature. The nitrogen oxide storage composition of the present invention is excellent in heat resistance and has heat resistance of 700 ° C to 800 ° C. Further, by providing a nitrogen oxide reduction catalyst on the downstream side of the composition of the present invention, it is possible to remove nitrogen oxides in the exhaust gas in a wide range of oxygen content in the exhaust gas and in the exhaust gas temperature range. .
【図1】図1は実施例A−1のNOx吸蔵物質の初期お
よびエージング後の昇温、降温時におけるNOx除去率
とハニカム入り口ガス温度との関係を示す。FIG. 1 shows the relationship between the NOx removal rate and the honeycomb inlet gas temperature at the time of temperature increase / decrease after initial aging and after aging of the NOx storage substance of Example A-1.
【図2】図2は比較例B−1の物質の初期およびエージ
ング後の昇温、降温時におけるNOx除去率とハニカム
入り口ガス温度との関係を示す。FIG. 2 shows the relationship between the NOx removal rate and the honeycomb inlet gas temperature at the time of temperature increase and temperature decrease of the substance of Comparative Example B-1 at the initial stage and after aging.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/81 53/86 ZAB 53/94 B01D 53/36 ZAB 102 B 102 H Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01D 53/81 53/86 ZAB 53/94 B01D 53/36 ZAB 102 B 102 H
Claims (6)
担持成分の全重量に対し、金属換算でそれぞれ銀を5〜
40wt%、アルカリ土類金属元素の少なくとも一種を
5〜40wt%及び白金族元素の少なくとも一種を0.
05〜8wt%担持してなる窒素酸化物吸蔵用組成物。1. Alumina-based metal oxide carrier containing 5 to 5 silver, respectively, in terms of metal, based on the total weight of the carrier and supported components.
40 wt%, 5-40 wt% of at least one alkaline earth metal element, and at least one platinum group element of 0.
A composition for occluding nitrogen oxides, which is supported by 05 to 8 wt%.
一種の合計量が10〜50wt%である請求項1に記載
の窒素酸化物吸蔵用組成物。2. The nitrogen oxide storage composition according to claim 1, wherein the total amount of at least one of silver and an alkaline earth metal element is 10 to 50 wt%.
性支持基質上に被覆されてなる請求項1または2に記載
の窒素酸化物吸蔵用組成物。3. The nitrogen oxide storage composition according to claim 1, which is molded into a certain shape or coated on a refractory support substrate.
する排気ガスを請求項1〜3のいずれか1項に記載の窒
素酸化物吸蔵用組成物と接触させて、排気ガス中の窒素
酸化物をリーン時に吸蔵して除去する方法。4. Exhaust gas whose atmosphere changes from lean to rich is brought into contact with the nitrogen oxide storage composition according to claim 1 to remove nitrogen oxide in the exhaust gas. A method of occluding and removing when leaning.
化するリーン雰囲気の排気ガスを、請求項1〜3のいず
れか1項に記載の窒素酸化物吸蔵用組成物と接触させ
て、該排気ガス中の窒素酸化物を低温時に吸蔵して除去
する方法。5. The exhaust gas in a lean atmosphere, the exhaust gas temperature of which changes from a low temperature to a high temperature, is brought into contact with the nitrogen oxide storage composition according to claim 1, and the exhaust gas is discharged. A method of occluding and removing nitrogen oxides in gas at low temperatures.
媒を設けて、請求項1〜3のいずれか1項に記載の窒素
酸化物吸蔵用組成物から放出された窒素酸化物を還元す
ることからなる窒素酸化物を除去する方法。6. A nitrogen oxide reduction catalyst is provided on the downstream side of the exhaust gas to reduce the nitrogen oxides released from the nitrogen oxide storage composition according to any one of claims 1 to 3. A method of removing nitrogen oxides comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34094894A JP3417702B2 (en) | 1994-12-28 | 1994-12-28 | Nitrogen oxide storage composition and exhaust gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34094894A JP3417702B2 (en) | 1994-12-28 | 1994-12-28 | Nitrogen oxide storage composition and exhaust gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08182928A true JPH08182928A (en) | 1996-07-16 |
JP3417702B2 JP3417702B2 (en) | 2003-06-16 |
Family
ID=18341784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34094894A Expired - Fee Related JP3417702B2 (en) | 1994-12-28 | 1994-12-28 | Nitrogen oxide storage composition and exhaust gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3417702B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000512907A (en) * | 1997-06-11 | 2000-10-03 | ダイムラークライスラー アクチエンゲゼルシヤフト | Storage catalyst |
JP2000342967A (en) * | 1999-03-31 | 2000-12-12 | Toyota Motor Corp | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method |
US6309617B1 (en) * | 1997-07-10 | 2001-10-30 | Dornier Gmbh | Solid for storing/releasing nitrogen oxides as well as nitrogen oxide storage catalyst |
KR100408502B1 (en) * | 1996-07-23 | 2004-02-14 | 삼성전기주식회사 | Catalyst for purifying exhaust gas of vehicle |
WO2012111163A1 (en) * | 2011-02-14 | 2012-08-23 | トヨタ自動車株式会社 | Exhaust conversion apparatus for internal combustion engine |
WO2012111172A1 (en) * | 2011-02-18 | 2012-08-23 | トヨタ自動車株式会社 | Exhaust conversion apparatus for internal combustion engine |
-
1994
- 1994-12-28 JP JP34094894A patent/JP3417702B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100408502B1 (en) * | 1996-07-23 | 2004-02-14 | 삼성전기주식회사 | Catalyst for purifying exhaust gas of vehicle |
JP2000512907A (en) * | 1997-06-11 | 2000-10-03 | ダイムラークライスラー アクチエンゲゼルシヤフト | Storage catalyst |
US6395244B1 (en) * | 1997-06-11 | 2002-05-28 | Daimlerchrysler Ag | Storage catalyst |
US6309617B1 (en) * | 1997-07-10 | 2001-10-30 | Dornier Gmbh | Solid for storing/releasing nitrogen oxides as well as nitrogen oxide storage catalyst |
JP2000342967A (en) * | 1999-03-31 | 2000-12-12 | Toyota Motor Corp | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method |
WO2012111163A1 (en) * | 2011-02-14 | 2012-08-23 | トヨタ自動車株式会社 | Exhaust conversion apparatus for internal combustion engine |
CN103338843A (en) * | 2011-02-14 | 2013-10-02 | 丰田自动车株式会社 | Exhaust conversion apparatus for internal combustion engine |
US8834802B2 (en) | 2011-02-14 | 2014-09-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
WO2012111172A1 (en) * | 2011-02-18 | 2012-08-23 | トヨタ自動車株式会社 | Exhaust conversion apparatus for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP3417702B2 (en) | 2003-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4590733B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method using the catalyst | |
JP4012320B2 (en) | Exhaust gas purification catalyst for lean combustion engine | |
JP3494147B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method | |
JPH11226404A (en) | Catalyst for purification of exhaust gas | |
JP3374569B2 (en) | Exhaust gas purification catalyst and purification method | |
JP3685463B2 (en) | Exhaust gas purification catalyst | |
JP3417702B2 (en) | Nitrogen oxide storage composition and exhaust gas purification method | |
JP2001289035A (en) | Exhaust gas purification method and exhaust gas purification device | |
JP3430823B2 (en) | Exhaust gas purification catalyst | |
JP3446915B2 (en) | Exhaust gas purification catalyst | |
JPH03106446A (en) | Catalyst for purifying exhaust gas and preparation thereof | |
JPH04215845A (en) | Catalyst for exhaust gas purification | |
JP2005087963A (en) | Exhaust purification equipment | |
JP4330666B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP2002168117A (en) | Exhaust emission control system | |
JP2837864B2 (en) | Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel | |
JPH09299795A (en) | Exhaust gas purification catalyst | |
JP3826476B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP5051009B2 (en) | NOx storage reduction catalyst | |
JP3739226B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP2008215359A (en) | Purification method of lean-burn engine exhaust gas | |
JP2001300302A (en) | Nitrogen oxide adsorbent | |
JPH11226402A (en) | Catalyst for purification of exhaust gas and purifying method of exhaust gas | |
JPH0824654A (en) | Matreial and method for pufitying exhaust gas | |
JPH09206594A (en) | Catalyst for purification of exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |