JPH0722709B2 - Method for producing denitration catalyst using ceramics paper - Google Patents
Method for producing denitration catalyst using ceramics paperInfo
- Publication number
- JPH0722709B2 JPH0722709B2 JP1007152A JP715289A JPH0722709B2 JP H0722709 B2 JPH0722709 B2 JP H0722709B2 JP 1007152 A JP1007152 A JP 1007152A JP 715289 A JP715289 A JP 715289A JP H0722709 B2 JPH0722709 B2 JP H0722709B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- paper
- tio
- sol
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 99
- 239000000919 ceramic Substances 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 38
- 239000000835 fiber Substances 0.000 claims description 26
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 34
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 21
- 239000000843 powder Substances 0.000 description 20
- 239000011230 binding agent Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 229910004298 SiO 2 Inorganic materials 0.000 description 15
- 238000005452 bending Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000012784 inorganic fiber Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- -1 dried and fired Chemical compound 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、排ガス中の窒素酸化物(NOx)のアンモニ
ア(NH3)による選択的還元用脱硝触媒の製造方法に関
し、さらに詳しくは、いわゆるセラミックスペーパーを
用いた脱硝触媒の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a NOx removal catalyst for selective reduction of nitrogen oxides (NOx) in exhaust gas by using ammonia (NH 3 ), and more specifically, so-called ceramic paper. The present invention relates to a method for producing a NOx removal catalyst.
従来技術およびその問題点 従来よりNH3還元選択脱硝触媒として、アナターゼ型の
チタニア(TiO2)にV2O5のような金属酸化物を担持させ
た触媒が優れた性能を示すことが知られている。この触
媒は、粉状の触媒成分に適当な無機系バインダーと水を
加え、混合物をよく練り、混練物を適当な粒径の粒状触
媒に造粒するか、または適当な寸法のモノリシス触媒
(第2図参照)に押し出し成型することによって製造せ
られる。NH3による選択還元脱硝法においては、触媒床
におけるガス流通抵抗や、ダストによる触媒床の目詰り
などを考慮すると、粒状触媒よりモノリシス型の触媒の
方が有利であるとされている。Conventional technology and its problems Conventionally, as an NH 3 reduction selective denitration catalyst, a catalyst in which a metal oxide such as V 2 O 5 is supported on anatase type titania (TiO 2 ) is known to show excellent performance. ing. This catalyst is prepared by adding a suitable inorganic binder and water to a powdery catalyst component, kneading the mixture well, and granulating the kneaded product into a granular catalyst having an appropriate particle size, or a monolysis catalyst having an appropriate size (first It is manufactured by extrusion molding (see FIG. 2). In the selective reduction denitrification method using NH 3, a monolysis type catalyst is considered to be more advantageous than a granular catalyst in consideration of gas flow resistance in the catalyst bed and clogging of the catalyst bed due to dust.
しかしながら、アナターゼ型のTiO2は熱的安定性に欠
け、たとえば500〜600℃といった比較的低温においても
焼結による比表面積の低下や、触媒不活性のルチル型結
晶への転移などが起る。そのため、押し出し成型後の焼
結を充分に行なうことができず、モノリシス触媒の機械
的強度は非常に低い。したがって第2図に示すモノリシ
ス触媒において、高流速ガスに使用する目開き(1)が
大きい触媒では、壁厚(2)は一般に1mm以上を必要と
し、また目開き(1)が小さい低流速用触媒でも壁厚
(2)は0.5mm以下にするのは困難であるとされてい
る。さらにこの触媒は、その取扱いに注意を要し、触媒
充填作業の効率化を妨げるという問題も持っている。However, anatase-type TiO 2 lacks thermal stability, and even at a relatively low temperature of, for example, 500 to 600 ° C., a specific surface area decreases due to sintering, and a transition to catalytically inactive rutile type crystals occurs. Therefore, the sintering after extrusion cannot be sufficiently performed, and the mechanical strength of the monolysis catalyst is very low. Therefore, in the monolysis catalyst shown in Fig. 2, for a catalyst with a large opening (1) used for high flow rate gas, the wall thickness (2) generally needs to be 1 mm or more, and for a low flow rate with a small opening (1). Even with a catalyst, it is said that it is difficult to reduce the wall thickness (2) to 0.5 mm or less. Further, this catalyst has a problem that it requires careful handling and hinders the efficiency of the catalyst filling work.
以上の欠点を克服するために、金網またはメタルラス状
の金属で補強された板状触媒も提案されている。しかし
ながら、これは板厚が1mm前後と厚く、かつ製造コスト
が高くつくものであるため、押し出し成型によるモノリ
シス触媒と比べ、その有利性は疑わしい。さらに、この
触媒では、機械的強度を向上させるために触媒を極力緻
密な酸化物として形成する必要があるので、触媒細孔内
でのNOx、NH3などのガス拡散性が損なわれ、その結果V2
O5/TiO2系触媒本来の性能が発揮されていないきらいが
ある。In order to overcome the above drawbacks, a plate catalyst reinforced with a metal wire or metal lath-like metal has been proposed. However, since this has a large plate thickness of about 1 mm and is expensive to manufacture, its advantage is doubtful as compared with an extrusion-molded monolysis catalyst. Furthermore, in this catalyst, since it is necessary to form the catalyst as a dense oxide as much as possible in order to improve the mechanical strength, the gas diffusibility of NOx, NH 3, etc. in the catalyst pores is impaired, and as a result, V 2
There is a tendency that the original performance of the O 5 / TiO 2 based catalyst is not exhibited.
本発明者らは、先に、上記諸問題を解決する目的で、ガ
ラス繊維集合体(プレフォーム体)にTiO2微粉を分散保
持させることを特徴とする脱硝触媒を提案した(特開昭
55−155744号公報および特公昭58−1976号公報参照)。
しかしながら、この触媒では高活性は得られるものの、
新たにつぎのような問題が生じた。すなわち、 (1)ガラス繊維集合体に剛性を付与するために金属支
持板を使用する必要があり、 (2)触媒の板厚が1mm〜2mmと厚くなり、 (3)激しい機械的衝撃によって触媒粉がわずかずつ剥
落して飛散する。The present inventors have previously proposed, for the purpose of solving the above-mentioned problems, a denitration catalyst characterized in that TiO 2 fine powder is dispersed and held in a glass fiber aggregate (preform body) (Japanese Patent Laid-Open Publication No. Sho.
55-155744 and Japanese Patent Publication No. 58-1976).
However, although high activity is obtained with this catalyst,
The following new problems arose. That is, (1) it is necessary to use a metal supporting plate to impart rigidity to the glass fiber aggregate, (2) the plate thickness of the catalyst becomes as thick as 1 mm to 2 mm, and (3) the catalyst is subjected to a severe mechanical impact. The powder peels off little by little and scatters.
そこでさらに、本発明者らは、従来技術の上記の如き諸
問題をことごとく克服することができる触媒として、セ
ラミックスペーパーを用いた新規構造の脱硝触媒を、本
件と同時に提案した。この触媒は、セラミックスペーパ
ーにチタニアゾルを含浸させて乾燥および焼成し、得ら
れたチタニア保持ペーパーにバナジウム酸化物を担持さ
せるものである。この触媒は薄くて軽く、機械的強度が
大きく、またTiO2のバインダー効果で同ペーパーが硬化
され、触媒に剛性か与えられて曲げ強度が増大され、そ
の結果機械的衝撃による粉落ちが少なくされ、さらに繊
維間空隙によって触媒内部の反応ガスの拡散性を確保し
て優れた活性を示すものである。この触媒では、その製
造過程で、前処理としてセラミックペーパーを低酸素雰
囲気で加熱し、さらに含浸後に焼成を行なうため、有機
質バインダーは全て焼失・分解する。したがって、同バ
インダーの焼失後の触媒の強度は、もっぱらTiO2のバイ
ンダー効果に頼っている。しかし、ゾルの乾燥によって
得られるTiO2は比較的強度に劣り、かつ繊維への固着性
も低いので、それほど強力なバインダー効果は示さな
い。焼成を500〜600℃の温度で行なえば、TiO2の強度が
増しバインダー効果も向上するが、アナターゼ型のTiO2
は熱的安定性に欠け、上記の如き比較的低温の加熱によ
っても比表面積の低下や、ルチル型結晶への転移による
触媒の不活性が起る。Therefore, the present inventors also proposed a denitration catalyst having a novel structure using ceramic paper as a catalyst capable of overcoming the above-mentioned problems of the prior art, at the same time as the present case. In this catalyst, ceramic paper is impregnated with titania sol, dried and calcined, and the resulting titania holding paper carries vanadium oxide. This catalyst is thin and light, has high mechanical strength, and the binder effect of TiO 2 cures the paper, giving rigidity to the catalyst and increasing bending strength, and as a result, powder falling due to mechanical impact is reduced. Further, the inter-fiber voids ensure the diffusibility of the reaction gas inside the catalyst and exhibit excellent activity. In this catalyst, the ceramic paper is heated in a low oxygen atmosphere as a pretreatment during the manufacturing process, and is further baked after impregnation, so that all the organic binder is burned and decomposed. Therefore, the strength of the catalyst after burning out of the binder relies exclusively on the binder effect of TiO 2 . However, TiO 2 obtained by drying the sol is relatively inferior in strength and has low adhesiveness to fibers, so that it does not show such a strong binder effect. If calcination is performed at a temperature of 500 to 600 ° C, the strength of TiO 2 increases and the binder effect also improves, but anatase type TiO 2
Lacks thermal stability, and even when heated at a relatively low temperature as described above, the specific surface area decreases and the catalyst becomes inactive due to transfer to rutile type crystals.
この発明の目的は、上述したセラミックスペーパー利用
触媒の優れた諸特性をそのまま保持し、しかも触媒の強
度をさらに高めるとともに、より薄くてより軽い脱硝触
媒の製造方法を提供することにある。An object of the present invention is to provide a method for producing a thinner and lighter denitration catalyst while maintaining the excellent characteristics of the above-mentioned catalyst using ceramics paper as it is, and further increasing the strength of the catalyst.
問題点を解決手段 この発明による脱硝触媒の製造方法は、上記目的の達成
のために、シリカ・アルミナ系またはアルミナ系のセラ
ミックスファイバーの抄紙によって製造されるセラミッ
クスペーパーに、チタニアゾルとシリカゾルの混合物を
含浸させて乾燥および焼成し、得られた固形物保持ペー
パーにバナジウム酸化物を担持させることを特徴とす
る。Means for Solving the Problems In order to achieve the above-mentioned object, the method for producing a denitration catalyst according to the present invention impregnates a ceramic paper produced by paper-making of silica-alumina-based or alumina-based ceramic fibers with a mixture of titania sol and silica sol. It is characterized in that it is dried and calcined, and the vanadium oxide is carried on the obtained solid holding paper.
(1) この発明においては、セラミックスペーパーへ
の含浸用ゾルとして、チタニアゾルとシリカゾルの混合
物を使用する。(1) In the present invention, a mixture of titania sol and silica sol is used as a sol for impregnating ceramic paper.
セラミックスペーパーにチタニアゾルとシリカゾルの混
合物を含浸させて乾燥および焼成し、得られた固形物保
持ペーパーにバナジウム酸化物を担持させて成る触媒
は、含浸用ゾルとしてチタニアゾルのみを使用して得た
触媒に比べ、後述する実施例の耐振動試験で示すように
耐振動性の点で各段に優れているとともに、後述する実
施例の曲げ強度試験で示すように曲げ強度の点で遜色が
ない。これは、セラミックスペーパー内でゾルが乾燥固
化するときに、混入されたシリカゾルが同ペーパーの表
面に固形物を比較的均一に形成せしめ、同表面に過大な
粒径の固形物が局在化するのを防ぐ効果を果たしている
ことによるものと考えられる。A catalyst composed of ceramic paper impregnated with a mixture of titania sol and silica sol, dried and fired, and vanadium oxide supported on the obtained solid holding paper is a catalyst obtained by using only titania sol as an impregnating sol. On the other hand, as shown in the vibration resistance test of the examples described later, it is superior in each step in terms of vibration resistance, and as shown in the bending strength test of the examples described below, it is comparable in bending strength. This is because when the sol is dried and solidified in the ceramics paper, the mixed silica sol causes the solid matter to form relatively uniformly on the surface of the paper, and the solid matter having an excessive particle size is localized on the surface. It is considered that this is due to the effect of preventing
触媒の脱硝活性は、後述する実施例の活性試験結果から
明らかなように、SiO2の混入によって低下する傾向にあ
るが、SiO4混入率=[SiO2/(TiO2+SiO2)]×100が80
重量%以下であれば、SiO2の混入による影響はほとんど
ない。チタニアゾルとシリカゾルの混合比は、SiO2混入
率が通常は5〜16重量%、好ましくは7〜13重量%にな
るように設定される。The denitration activity of the catalyst tends to decrease due to the incorporation of SiO 2 , as is clear from the activity test results of the examples described later, but the SiO 4 incorporation rate = [SiO 2 / (TiO 2 + SiO 2 )] × 100 Is 80
If the amount is less than or equal to the weight%, there is almost no effect of mixing SiO 2 . The mixing ratio of the titania sol and the silica sol is set so that the mixing ratio of SiO 2 is usually 5 to 16% by weight, preferably 7 to 13% by weight.
(2) 繊維プレフォーム体に触媒粉が分散保持せられ
る。(2) The catalyst powder is dispersed and held in the fiber preform.
触媒活性を損なわず焼結作用によりV2O5/TiO2系の板状
触媒および/またはモノリシス触媒の強度を向上させる
ことは、原理的に無理があるので、何らかの繊維質物質
による補強を考える必要がある。この場合、触媒粉と繊
維を混練し、押し出し成型によりモノリシス触媒を製作
する方法(混練法)と、繊維集合物すなわち繊維プレフ
ォーム体に触媒粉を分散保持させる方法(繊維プレフォ
ーム法)が考えられる。Since it is theoretically impossible to improve the strength of the V 2 O 5 / TiO 2 type plate-like catalyst and / or monolysis catalyst without losing the catalytic activity, consider reinforcement with some fibrous substance. There is a need. In this case, a method of kneading the catalyst powder and the fiber and producing a monolysis catalyst by extrusion molding (kneading method) and a method of dispersing and holding the catalyst powder in the fiber aggregate, that is, the fiber preform (fiber preform method) are considered. To be
板状触媒では、板面積当りの触媒量を増大するには混練
法が優れているが、混練法では触媒内部の反応ガスの拡
散性が低く、触媒本来の性能が発揮されない。また、繊
維を混練したペーストの押し出し成型性の関係で、板厚
を0.5mm以下にするのは困難である。For plate catalysts, the kneading method is excellent for increasing the amount of catalyst per plate area, but in the kneading method, the diffusibility of the reaction gas inside the catalyst is low and the original performance of the catalyst cannot be exhibited. Further, it is difficult to reduce the plate thickness to 0.5 mm or less due to the extrusion moldability of the paste in which the fibers are kneaded.
繊維プレフォーム法の場合、例えば反応温度が200℃以
上であれば、触媒粉は100g/m2以下でよく、また、板厚
は繊維プレフォーム体の厚さで定まり、0.15mm以上であ
れば自在に設定できる。したがって、繊維プレフォーム
法による触媒が有利である。In the case of the fiber preform method, for example, if the reaction temperature is 200 ° C. or higher, the catalyst powder may be 100 g / m 2 or less, and the plate thickness is determined by the thickness of the fiber preform body and is 0.15 mm or more. Can be set freely. Therefore, the catalyst by the fiber preforming method is advantageous.
(3) 繊維プレフォーム体としてはセラミックスペー
パーが使用される。(3) Ceramic paper is used as the fiber preform.
極力薄くかつ高密度に繊維が集積しておりかつ繊維自身
の剛性がある程度期待できる繊維プレフォーム体として
は、ガラス繊維ペーパーとセラミックスペーパーがあ
る。Glass fiber paper and ceramic paper are examples of fiber preforms in which fibers are accumulated as thinly and densely as possible and the rigidity of the fibers themselves can be expected to some extent.
ガラス繊維ペーパーは、一般にこれに対する無機質バイ
ンダーのバインダー効果が低く、ペーパーとしての強度
がセラミックスペーパーの強度と比べ低いので、セラミ
ックスペーパーの使用が望ましい。Since glass fiber paper generally has a low binder effect of an inorganic binder against the glass fiber paper and has a lower strength as paper than the strength of ceramic paper, it is preferable to use ceramic paper.
無機質繊維をペーパーとして成型するには、繊維にバイ
ンダーを加える必要がある。バインダーとしては、有機
質バインダーは触媒の使用条件下で分解および/または
燃焼しその効果を失うので、原則的には無機質バインダ
ーを使用するのが好ましい。To form the inorganic fiber as paper, it is necessary to add a binder to the fiber. As the binder, since an organic binder decomposes and / or burns under the use condition of the catalyst and loses its effect, it is in principle preferable to use an inorganic binder.
(4) TiO2粉またはこれを含む触媒粉を無機質繊維ペ
ーパーに保持させるには、ゾル含浸法が適用される。(4) A sol impregnation method is applied to hold the TiO 2 powder or the catalyst powder containing the TiO 2 powder on the inorganic fiber paper.
無機質繊維ペーパーに触媒粉を保持させる方法として
は、TiO2コロイドゾルを含浸させる方法(ゾル含浸法)
と、抄紙段階においてTiO2粉またはこれにV2O5を担持さ
せた触媒粉を漉き込む方法(触媒粉漉き込み法)とが考
えられる。ゾル含浸法でTiO2を保持させた場合、セラミ
ックス繊維は、TiO2との接触性がガラス繊維とTiO2との
接着性と比べ良好であり、ガラス繊維ペーパー使用の場
合と比べ触媒の粉落ち量が少ない特徴を示す。As a method of holding the catalyst powder on the inorganic fiber paper, a method of impregnating TiO 2 colloid sol (sol impregnation method)
And a method of filtering TiO 2 powder or catalyst powder supporting V 2 O 5 on it at the papermaking stage (catalyst powder filtering method). If allowed to hold the TiO 2 sol impregnation method, ceramic fibers, contact between the TiO 2 is good compared with the adhesion between the glass fibers and TiO 2, dusting of the catalyst compared to the case of the glass fiber paper using Shows the feature of small quantity.
セラミックスペーパーを使用する場合、ゾル含浸法によ
りTiO2を保持させると、保持されたTiO2はバインダーと
しての効果を示し、板状触媒としての剛性とくに曲げ強
度が向上するので、触媒粉漉込み法と比べ有利である。When TiO 2 is retained by the sol impregnation method when using ceramics paper, the retained TiO 2 exhibits the effect as a binder and improves the rigidity as a plate catalyst, especially the bending strength. Is more advantageous than
このようにして製造された触媒は、触媒内部の反応成分
の拡散性が高く、触媒粉が本来の性能を発揮できるの
で、押し出し成型法による従来のモノリシス触媒と比べ
活性が高い。また、触媒厚さを0.1mm程度にまで薄肉化
できる。したがって、この触媒は、体積当りの触媒表面
積を一定とした場合、従来のV2O5/TiO2系モノリシス触
媒と比べ、空隙率が高く、したがってガス流通抵抗が低
いという特徴を示す。The catalyst produced in this manner has a high diffusivity of the reaction components inside the catalyst, and the catalyst powder can exhibit its original performance. Therefore, the catalyst has higher activity than the conventional monolysis catalyst prepared by the extrusion molding method. Moreover, the catalyst thickness can be reduced to about 0.1 mm. Therefore, when the catalyst surface area per volume is constant, this catalyst exhibits a higher porosity and therefore a lower gas flow resistance than the conventional V 2 O 5 / TiO 2 monolithic catalyst.
(5) 予めセラミックスペーパーを低酸素雰囲気で加
熱処理するのが好ましい。(5) It is preferable to preheat the ceramic paper in a low oxygen atmosphere.
触媒の剛性を高めるには、セラミックスペーパーとして
高密度のものを使用する必要がある。高密度のセラミッ
クスペーパーは一般に有機バインダーと無機質バインダ
ーを併用して抄紙されている。このようなペーパーにゾ
ル含浸法を施す場合、TiO2およびSiO2と繊維との固着性
を改善する目的で、ゾルの含浸の前に、低酸素雰囲気で
ペーパーを加熱し、繊維表面の有機質バインダーの炭化
除去しておくのが好ましい。この場合、酸素が5%以上
存在すると有機質バインダーが完全に除去され、ペーパ
ーとしての強度がはなはだしく低下する。また酸素が全
く存在しないと、繊維表面に炭素が多量に残留し、密着
性が改善できない。したがって、酸素濃度1〜5%でセ
ラミックスペーパーを加熱することが望ましい。加熱条
件は300〜500℃で0.5〜4時間、好ましくは350〜400℃
で2〜3時間である。In order to increase the rigidity of the catalyst, it is necessary to use high density ceramic paper. High-density ceramic paper is generally made by using an organic binder and an inorganic binder in combination. When such a paper is subjected to the sol impregnation method, the paper is heated in a low oxygen atmosphere before impregnation with the sol to improve the adhesion between TiO 2 and SiO 2 and the fiber, and the organic binder on the fiber surface is heated. It is preferable to remove the carbonization. In this case, if oxygen is present in an amount of 5% or more, the organic binder is completely removed, and the strength of the paper is remarkably reduced. Further, if oxygen is not present at all, a large amount of carbon remains on the fiber surface and the adhesion cannot be improved. Therefore, it is desirable to heat the ceramic paper with an oxygen concentration of 1 to 5%. Heating conditions are 300-500 ℃ for 0.5-4 hours, preferably 350-400 ℃
It takes 2-3 hours.
TiO2としては、硫酸チタン、四塩化チタン、テトラプロ
ピルチタネート等のチタン塩の加水分解により形成した
アナターゼ型TiO2が好ましい。こうして形成したTiO2は
1000Å以上の大きな細孔を多く有しているため、粉体内
での反応ガスの拡散速度が大きい。As TiO 2 , anatase-type TiO 2 formed by hydrolysis of titanium salt such as titanium sulfate, titanium tetrachloride, tetrapropyl titanate is preferable. The TiO 2 thus formed is
Since it has many large pores of 1000Å or more, the diffusion rate of the reaction gas in the powder is high.
チタン分はセラミックスペーパー表面1m2当りTiO2とし
て20〜300g、好ましくは30〜200g含ませられている。The titanium content is 20 to 300 g, preferably 30 to 200 g as TiO 2 per 1 m 2 of the surface of the ceramic paper.
シリカゾルとしては市販のものが使用できる。バナジウ
ム酸化物は、たとえば、セラミックスペーパーにメタバ
ナジン酸アンモン溶液を含浸させ、乾燥および焼成する
ことによってセラミックスペーパーに担持される。バナ
ジウム酸化物の前駆物質は上記のものに限定されない。Commercially available silica sol can be used. The vanadium oxide is supported on the ceramics paper, for example, by impregnating the ceramics paper with an ammonium metavanadate solution, drying and firing. The vanadium oxide precursors are not limited to those described above.
発明の効果 この発明による脱硝触媒の製造方法は、セラミックスペ
ーパーへのチタニアゾルとシリカゾルの混合物の含浸に
よって同ペーパーにTiO2とSiO2を保持させ、得られた固
形物保持ペーパーにバナジウム酸化物を担持させるもの
であるので、セラミックスペーパーの使用によって触媒
の厚みを著しく薄くすることができるとともに、機械的
強度を大巾に増大させることができる。また、チタニア
ゾルとシリカゾルの混合物の使用によってセラミックス
ペーパーの繊維にTiO2を強固に固着させることができ
る。すなわち、本発明ではチタニアゾルは、触媒として
だけでなく、繊維間に入り込んでバインダーとしても働
くのである。したがって、セラミックペーパーをより強
固に硬化させ、触媒に剛性を与えて曲げ強度を増大させ
ることができる。その結果、機械的衝撃による粉落ちを
極力少なくすることができる。さらにセラミックスペー
パーを構成する繊維の繊維間空隙によって、触媒内部の
反応ガスの拡散性を確保し、本書冒頭で述べた従来のV2
O5/TiO2系脱硝触媒に比べ、高い活性を示すことができ
る。EFFECTS OF THE INVENTION The method for producing a denitration catalyst according to the present invention is to impregnate a ceramic paper with a mixture of titania sol and silica sol so that TiO 2 and SiO 2 are retained in the paper, and vanadium oxide is supported on the obtained solid-retaining paper. By using ceramic paper, the thickness of the catalyst can be remarkably reduced and the mechanical strength can be greatly increased. Further, by using a mixture of titania sol and silica sol, TiO 2 can be firmly fixed to the fibers of the ceramic paper. That is, in the present invention, the titania sol acts not only as a catalyst, but also as a binder by getting between the fibers. Therefore, it is possible to harden the ceramic paper more strongly, give rigidity to the catalyst, and increase bending strength. As a result, powder falling due to mechanical shock can be minimized. Furthermore, the inter-fiber voids of the fibers that make up the ceramic paper ensure the diffusivity of the reaction gas inside the catalyst, and the conventional V 2
It can exhibit higher activity than the O 5 / TiO 2 based denitration catalyst.
実 施 例 つぎに、この発明の実施例を比較例とともに示す。Examples Next, examples of the present invention will be shown together with comparative examples.
a.触媒の調製 表1に示す仕様の3種類のセラミックスペーパー(A)
(B)(C)を、3%の酸素と残N2との混合ガスで400
℃2時間焼成した。ついで表2に示す各種混合比のチタ
ニアゾル(TiO2分=33重量%、pH=3〜4)とシリカゾ
ル(SiO2分=20重量%、pH=6〜7)との混合物に、セ
ラミックスペーパーをそれぞれ浸漬し、120℃で乾燥
し、300℃で3時間焼成した。こうしてセラミックスペ
ーパーにTiO2とSiO2の固形物を保持させた。固形物の保
持量は混合液を純水で希釈することによって調整した。a. Preparation of catalyst Three types of ceramic paper (A) with the specifications shown in Table 1
(B) and (C) are mixed with 3% oxygen and the residual N 2 in a mixed gas of 400
It was baked at ℃ for 2 hours. Then, ceramic paper was added to a mixture of titania sol (TiO 2 content = 33% by weight, pH = 3 to 4) and silica sol (SiO 2 content = 20% by weight, pH = 6 to 7) having various mixing ratios shown in Table 2. Each was dipped, dried at 120 ° C., and baked at 300 ° C. for 3 hours. In this way, the solid material of TiO 2 and SiO 2 was held on the ceramic paper. The amount of solids retained was adjusted by diluting the mixed solution with pure water.
つぎにTiO2とSiO2を保持したセラミックスペーパーをメ
タバナジン酸アンモンの室温飽和溶液中にそれぞれ8時
間浸漬し、120℃で乾燥し、300℃で3時間焼成した。こ
うして表2に示す9種類のV2O5/TiO2系触媒を得た。Next, the ceramic papers holding TiO 2 and SiO 2 were respectively immersed in a room temperature saturated solution of ammonium metavanadate for 8 hours, dried at 120 ° C., and calcined at 300 ° C. for 3 hours. Thus, 9 kinds of V 2 O 5 / TiO 2 based catalysts shown in Table 2 were obtained.
b.耐振動性 上記の如く調製した各触媒について、第1図に示す耐振
動試験機を用いて振動による触媒の粉落ち量を測定し
た。同試験機は箱体(3)と、この上に水平に配置され
た厚さ0.8mmのステンレス鋼製の振動板(4)と、この
上面に設けられた60Hzの加振機(5)とより構成されて
おり、供試触媒(6)は振動板(4)の下面に両面接着
テープで固着されている。b. Vibration resistance For each of the catalysts prepared as described above, the amount of powder falling of the catalyst due to vibration was measured using a vibration resistance tester shown in FIG. The tester includes a box (3), a 0.8 mm thick stainless steel diaphragm (4) horizontally arranged on the box, and a 60 Hz vibration exciter (5) provided on the upper surface of the box. The test catalyst (6) is fixed to the lower surface of the diaphragm (4) with a double-sided adhesive tape.
積算粉落ち量の測定結果を表2に示す。同表から明らか
なように、含浸用ゾルとしてチタニアゾルとシリカゾル
の混合物を使用して得た触媒は、チタニアゾルのみを使
用して得た触媒に比べ、激しい振動に対しても粉落ち量
が著しく少なく、耐振動性の点で格段に優れている。Table 2 shows the measurement results of the accumulated powder drop amount. As is clear from the table, the catalyst obtained by using a mixture of titania sol and silica sol as the impregnating sol has a significantly smaller amount of powder fallout even under violent vibration, as compared with the catalyst obtained by using only the titania sol. , And is extremely superior in terms of vibration resistance.
c.曲げ強度 上記表1のセラミックスペーパー(A)(B)を用いか
つ上述した方法に従って、TiO2保持量の異なる多種類の
触媒と、SiO2混入率10重量%で固形物保持量の異なる多
種類の触媒とをそれぞれ調製した。これら触媒について
支点間距離20mmで3点曲げ試験を行ない、次式に従って
曲げ強度を計測した。 c. Bending strength Using the ceramic papers (A) and (B) shown in Table 1 above and according to the method described above, various kinds of catalysts having different TiO 2 retentions and different solid retentions at a SiO 2 content of 10% by weight. Multiple catalysts were prepared respectively. A three-point bending test was performed on these catalysts at a fulcrum distance of 20 mm, and bending strength was measured according to the following formula.
曲げ強度(kgf/mm) =[3×破断荷重(kgf)×支点間距離(mm)] /[2×試験片幅(mm)×試験片厚さ(mm)] 固形物保持量と曲げ強度の関係を第3図のグラフに示
す。同グラフから明らかなように、含浸用ゾルとしてチ
タニアゾルとシリカゾルの混合物を使用して得た触媒
は、チタニアゾルのみを使用して得た触媒に比べ、曲げ
強度の点で全く遜色がない。Bending strength (kgf / mm) = [3 x breaking load (kgf) x distance between fulcrums (mm)] / [2 x test piece width (mm) x test piece thickness (mm)] Solid retention and bending strength The relationship is shown in the graph of FIG. As is clear from the graph, the catalyst obtained by using the mixture of titania sol and silica sol as the impregnating sol is comparable to the catalyst obtained by using only the titania sol in terms of bending strength.
d.SiO2の混入率と触媒活性 上記表1のセラミックスペーパー(B)を用いかつ上述
した方法に従って、SiO2混入率および固形物保持量の異
なる多種類の触媒とをそれぞれ調製した。これら触媒に
ついて、内径1インチのステンレス製流通型反応管を用
いてそれぞれ活性試験を行なった。すなわち触媒を上記
反応管に充填して固定し、ついで反応温度を所定値に制
御して、容量で、入口NOx=50ppm、酸素=15%、水蒸気
=10%の組成の試験用調製排ガスの反応管に流した。面
積速度(A・V)すなわち触媒の幾何表面積(m2)当り
の通ガス流量(Nm3/時)を43m/時とし、またNH3比(入
口NH3濃度ppm/出口NH3濃度ppm)を1.2とし、入口NH3濃
度は60ppmとした。d. Mixing Ratio of SiO 2 and Catalytic Activity Using the ceramic paper (B) shown in Table 1 above and according to the method described above, various kinds of catalysts having different mixing ratios of SiO 2 and solid content retention amounts were prepared. Each of these catalysts was subjected to an activity test using a stainless steel flow type reaction tube having an inner diameter of 1 inch. That is, the catalyst was filled in the above reaction tube and fixed, and then the reaction temperature was controlled to a predetermined value, and the reaction of the prepared exhaust gas for test having a composition of inlet NOx = 50 ppm, oxygen = 15%, steam = 10% by volume. Pour into a tube. Area velocity (A · V), that is, the flow rate of gas (Nm 3 / hour) per geometric surface area (m 2 ) of the catalyst is 43 m / hour, and the NH 3 ratio (inlet NH 3 concentration ppm / outlet NH 3 concentration ppm) Was 1.2, and the NH 3 concentration at the inlet was 60 ppm.
各触媒について、温度150℃、200℃および300℃におけ
る脱硝率=[(入口NOx濃度ppm−出口NOx濃度ppm)/入
口NOx濃度ppm]×100を求めた。得られた脱硝率を表3
に示す。また、SiO2の混入率と触媒活性の関係を第4図
のグラフに示し、固形分保持量と触媒活性の関係を第5
図のグラフに示す。For each catalyst, the denitration rate at temperatures of 150 ° C., 200 ° C. and 300 ° C. = [(Inlet NOx concentration ppm−outlet NOx concentration ppm) / inlet NOx concentration ppm] × 100 was determined. Table 3 shows the obtained NOx removal rates.
Shown in. Further, the relationship between the mixing ratio of SiO 2 and the catalytic activity is shown in the graph of FIG. 4, and the relationship between the solid content retention amount and the catalytic activity is shown in the fifth graph.
Shown in the graph in the figure.
第1図は耐振動試験機の垂直断面図、第2図は従来のモ
ノリシス型触媒の部分斜視図、第3図は固形物保持量と
曲げ強度の関係を示すグラフ、第4図はSiO2混入率と脱
硝率の関係を示すグラフ、第5図は固形物保持量と脱硝
率の関係を示すグラフである。FIG. 1 is a vertical sectional view of a vibration resistance tester, FIG. 2 is a partial perspective view of a conventional monolysis type catalyst, FIG. 3 is a graph showing the relationship between the amount of solids retained and bending strength, and FIG. 4 is SiO 2 FIG. 5 is a graph showing the relationship between the mixing ratio and the denitration ratio, and FIG. 5 is a graph showing the relationship between the solid content retention amount and the denitration ratio.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/22 ZAB A 8017−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01J 23/22 ZAB A 8017-4G
Claims (1)
ラミックスファイバーの抄紙によって製造されるセラミ
ックスペーパーに、チタニアゾルとシリカゾルの混合物
を含浸させて乾燥および焼成し、得られた固形物保持ペ
ーパーにバナジウム酸化物を担持させることを特徴とす
る、セラミックスペーパーを用いた脱硝触媒の製造方
法。1. A vanadium oxide is added to a solid-holding paper obtained by impregnating a ceramics paper produced by papermaking of silica-alumina-based or alumina-based ceramics fiber with a mixture of titania sol and silica sol, drying and firing. A method for producing a denitration catalyst using ceramics paper, which comprises supporting
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1007152A JPH0722709B2 (en) | 1989-01-14 | 1989-01-14 | Method for producing denitration catalyst using ceramics paper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1007152A JPH0722709B2 (en) | 1989-01-14 | 1989-01-14 | Method for producing denitration catalyst using ceramics paper |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02187147A JPH02187147A (en) | 1990-07-23 |
JPH0722709B2 true JPH0722709B2 (en) | 1995-03-15 |
Family
ID=11658097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1007152A Expired - Lifetime JPH0722709B2 (en) | 1989-01-14 | 1989-01-14 | Method for producing denitration catalyst using ceramics paper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0722709B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465389B1 (en) | 1999-07-29 | 2002-10-15 | Sumitomo Chemical Company, Limited | Heat resistant catalyst sheet and process for producing same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2562077B2 (en) * | 1990-08-27 | 1996-12-11 | 日立造船株式会社 | Denitration catalyst |
JP2001137713A (en) | 1999-11-12 | 2001-05-22 | Nichias Corp | Honeycomb structure |
CN100340718C (en) * | 2005-09-22 | 2007-10-03 | 西安交通大学 | Method for preparing ceramic paper |
JP5022697B2 (en) * | 2006-12-25 | 2012-09-12 | 日立造船株式会社 | Method for producing denitration catalyst |
JP6326588B2 (en) * | 2013-11-11 | 2018-05-23 | 群馬県 | Active metal supported catalyst based on fiber sheet and method for producing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5344431A (en) * | 1976-10-06 | 1978-04-21 | Mitsui Mining & Smelting Co | Machine for casting anode plate |
JPS56139139A (en) * | 1980-04-02 | 1981-10-30 | Sakai Chem Ind Co Ltd | Carrier or catalyst |
JPS6075336A (en) * | 1983-10-01 | 1985-04-27 | Sakai Chem Ind Co Ltd | Preparation of catalyst structure for reducing nitrogen oxides |
JPS60190235A (en) * | 1984-03-12 | 1985-09-27 | Matsushita Electric Ind Co Ltd | Catalyst for burning fuel |
-
1989
- 1989-01-14 JP JP1007152A patent/JPH0722709B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465389B1 (en) | 1999-07-29 | 2002-10-15 | Sumitomo Chemical Company, Limited | Heat resistant catalyst sheet and process for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH02187147A (en) | 1990-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4749671A (en) | Exhaust gas cleaning catalyst and process for production thereof | |
US4798813A (en) | Catalyst for removing nitrogen oxide and process for producing the catalyst | |
US5260241A (en) | Controlled pore size phosphate-alumina material and method for producing same | |
US4294806A (en) | Method for preventing the wear of a monolithic catalyst by dusts | |
KR940000869B1 (en) | Preparation of monolithic catalyst supports having an integrated high surface area phase | |
JPS5915028B2 (en) | Manufacturing method of catalyst carrier | |
US4233183A (en) | Process for producing plate-shaped denitrating catalyst | |
GB2026336A (en) | Plate-shaped denitrating catalysts | |
JPH0736895B2 (en) | Catalyst for gas effluent treatment and method for effluent treatment | |
US20060234858A1 (en) | Silicon carbide based catalyst material and method for preparation thereof | |
KR20160087808A (en) | Denitration catalyst and method for producing same | |
JPS5910345A (en) | catalyst carrier | |
JPH0722709B2 (en) | Method for producing denitration catalyst using ceramics paper | |
US5580533A (en) | Catalyst and process for purifying diesel exhaust gases | |
GB2029720A (en) | Plate-shaped Denitrating Catalyst | |
JP4344102B2 (en) | Catalyst slurry for exhaust gas denitration and method for producing the same | |
JP3496964B2 (en) | Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same | |
JPS603859B2 (en) | catalyst molded product | |
JP2002292245A (en) | DeNOx catalyst and dioxin decomposition catalyst | |
JPH02187146A (en) | Denitration catalyst using ceramic paper | |
KR100784483B1 (en) | Ceramic filter and its manufacturing method | |
US20050261127A1 (en) | Catalyst carrier and catalyst body | |
JP3595622B2 (en) | Catalyst and method for reducing and removing nitrogen oxides contained in exhaust gas | |
JP3639790B2 (en) | Catalyst filter | |
JP3386587B2 (en) | Honeycomb element |