[go: up one dir, main page]

JPH07195924A - Grounded condition deciding method of wheel - Google Patents

Grounded condition deciding method of wheel

Info

Publication number
JPH07195924A
JPH07195924A JP35018493A JP35018493A JPH07195924A JP H07195924 A JPH07195924 A JP H07195924A JP 35018493 A JP35018493 A JP 35018493A JP 35018493 A JP35018493 A JP 35018493A JP H07195924 A JPH07195924 A JP H07195924A
Authority
JP
Japan
Prior art keywords
relative distance
wheel
vehicle body
wheels
reduction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35018493A
Other languages
Japanese (ja)
Inventor
Hiroshi Tokumasu
宏始 徳枡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP35018493A priority Critical patent/JPH07195924A/en
Publication of JPH07195924A publication Critical patent/JPH07195924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To simplify the structure and to realize a low cost, by finding a mean relative distance from the detected relative distance between the body and the wheel, and comparing the reduction amount of the mean relative distance to the still condition with a standard value, so as to decide the grounding condition of the wheel by a single sensor and a simple processing circuit. CONSTITUTION:The relative distance between a body and a wheel is detected by a stroke sensor, and the result is input to a mean relative distance operation means 10. In the operation means 10, the input signal is time differetiated to find a mean relative distance between the body and the wheel, and the reduction amount of the mean relative distance to the still condition is given to a comparison means 11. In the comparison means 11, the reduction amount of the mean relative distance is compared with a standard value, and when the reduction amount is smaller than the standard value, it is decided that the grounding condition is good, and when it is larger, it is decided that the grounding condition is not good, and a grounding condition signal is output. In this case, the standard value of the comparison means 11 is decided experimetally according to the characteristics of the wheels, the suspension, and the like. Consequently, only a single sensor is used, and the structure of the circuit can be simplified, so as to realize a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車輪の接地状態判定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wheel grounding state determination method.

【0002】[0002]

【従来の技術】車両走行時において、車体および車輪は
路面の凹凸により振動する。一般に、車体は1Hz近傍
の路面からの振動で共振して乗り心地が悪くなり、車輪
は10Hz近傍で共振して操縦安定性が悪くなる。これ
ら2つの共振域での振動を低下することができれば乗り
心地および操縦安定性を共に向上させることができる
が、しかし、これらは相反する特性があり、通常のパッ
シブサスペンションでは一方の振動を低下させると他方
が悪化してしまう。そのため、サスペンション制御によ
りこの問題を解決しようとする試みがなされており、そ
のひとつとして、スカイフック理論を応用したサスペン
ションがある。これによれば、車輪共振域での車輪の振
動を悪化させることなく、車体共振域での車体の振動を
有効に改善することができ、乗り心地が向上するが、車
輪共振域での振動は直接的には改善されない。車輪共振
域での振動を改善するためには、車輪の共振域において
車輪の制振を重視した制御則に切換える必要があるが、
このためには、車輪の運動状況等をセンシングし、車輪
の接地状態の悪化を検出することが必要となる。
2. Description of the Related Art When a vehicle is running, a vehicle body and wheels vibrate due to road surface irregularities. Generally, the vehicle body resonates due to vibrations from the road surface in the vicinity of 1 Hz to deteriorate the riding comfort, and the wheels resonate in the vicinity of 10 Hz to deteriorate the steering stability. If it is possible to reduce the vibrations in these two resonance regions, it is possible to improve both the riding comfort and the steering stability, but these have contradictory characteristics, and one of the vibrations is reduced in a normal passive suspension. And the other gets worse. Therefore, attempts have been made to solve this problem by suspension control, and one of them is a suspension that applies the skyhook theory. According to this, it is possible to effectively improve the vibration of the vehicle body in the vehicle body resonance region without deteriorating the vibration of the wheel in the wheel resonance region and improve the riding comfort. Not directly improved. In order to improve the vibration in the wheel resonance range, it is necessary to switch to a control law that emphasizes wheel damping in the wheel resonance range.
For this purpose, it is necessary to sense the movement state of the wheels and detect the deterioration of the ground contact state of the wheels.

【0003】この種の制御手段として、特開平4−50
0492号公報に記載の走行路に従って車台を制御する
装置がある。これは、ショックアブソーバの緩衝力を検
出するセンサ、車体に対する車輪の弾性圧縮量を検出す
るセンサ、および車輪加速度を検出するセンサを設け、
各センサのデータから走行路の凹凸ないし走行路の凹凸
の時間的変化の瞬間値を検出し、これに基づいて車両の
ばね装置の制御則を切換えるようにしている。
As this kind of control means, Japanese Patent Laid-Open No. 4-50
There is a device for controlling a chassis according to a traveling route described in Japanese Patent No. 0492. This is provided with a sensor for detecting the shock absorbing force of the shock absorber, a sensor for detecting the elastic compression amount of the wheel with respect to the vehicle body, and a sensor for detecting the wheel acceleration.
The unevenness of the traveling road or the instantaneous value of the temporal variation of the unevenness of the traveling road is detected from the data of each sensor, and the control law of the spring device of the vehicle is switched based on this.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術によれ
ば、複数のセンサを設ける必要があるばかりでなく、こ
れらセンサのデータを処理して制御信号をつくりだすた
めに複雑な処理回路を必要とし、構成が複雑化し、ま
た、コスト高になるなどの問題がある。
According to the above-mentioned prior art, not only is it necessary to provide a plurality of sensors, but also a complicated processing circuit is required for processing the data of these sensors to generate a control signal. There are problems that the configuration becomes complicated and the cost becomes high.

【0005】本発明は上記観点に基づいてなされたもの
で、その目的は、単一のセンサと簡単な処理回路によっ
て車輪の接地状態を判定することができ、構成の簡略化
および低コスト化に寄与する車輪の接地状態判定方法を
提供することにある。
The present invention has been made based on the above point of view, and an object thereof is to determine the ground contact state of a wheel by a single sensor and a simple processing circuit, thereby simplifying the configuration and reducing the cost. It is to provide a method for determining a ground contact state of a wheel that contributes.

【0006】[0006]

【課題を解決するための手段】本発明においては、車体
と車輪との間の相対距離を検出し、検出した相対距離か
ら車体と車輪との間の平均相対距離を求め、静止状態に
対する平均相対距離の減少量を所定の基準値と比較する
ことによって車輪の接地状態を判定するようにした車輪
の接地状態判定方法によって、上記目的を達成する。
In the present invention, the relative distance between the vehicle body and the wheels is detected, the average relative distance between the vehicle body and the wheels is determined from the detected relative distance, and the average relative to the stationary state is calculated. The above object is achieved by a wheel grounding state determination method in which the wheel grounding state is determined by comparing the amount of decrease in distance with a predetermined reference value.

【0007】[0007]

【作用】本発明者は、路面の凹凸の振幅および周波数に
対する車体と車輪との間の平均相対距離の減少量が、路
面の凹凸の振幅および周波数に対する車輪の接地力変動
幅の増加に略対応していることを、実験的に認識した。
この観点から、本発明では、車体と車輪との間の相対距
離を検出し、この相対距離から車体と車輪との間の平均
相対距離を求め、静止状態に対する平均相対距離の減少
量を所定の基準値と比較することによって車輪の接地状
態を判定する。本発明によれば、相対距離を検出するた
めに単一のセンサを設けるだけでよく、また、相対距離
の平均値および静止状態に対する平均相対距離の減少量
を求め、この減少量と所定の基準値とを比較するだけで
あるので、回路的にも構成を簡単化することができる。
According to the present inventor, the decrease amount of the average relative distance between the vehicle body and the wheel with respect to the amplitude and frequency of the road surface unevenness substantially corresponds to the increase of the variation range of the ground contact force of the wheel with respect to the road surface unevenness amplitude and frequency. We have experimentally recognized that we are doing.
From this viewpoint, in the present invention, the relative distance between the vehicle body and the wheels is detected, the average relative distance between the vehicle body and the wheels is obtained from this relative distance, and the reduction amount of the average relative distance with respect to the stationary state is set to a predetermined value. The ground contact state of the wheel is determined by comparing with a reference value. According to the present invention, only a single sensor is required to detect the relative distance, and the average value of the relative distance and the reduction amount of the average relative distance with respect to the stationary state are obtained, and the reduction amount and a predetermined reference value are determined. Since only the value is compared, the configuration can be simplified in terms of the circuit.

【0008】[0008]

【実施例】図1は本発明の一実施例を説明するための車
両モデルである。
1 is a vehicle model for explaining an embodiment of the present invention.

【0009】図1において、1は車体、2は車輪で、車
体1と車輪2との間にサスペンション3が介装されてい
る。サスペンション3はバネ装置3aとショックアブソ
ーバ3bとを有している。車輪2の下のバネ4は車輪2
のタイヤ部を表わしている。車輪2は走行路5上を転動
する。6は車体1と車輪2との間の相対距離を検出する
ためのストロークセンサで、走行路5の凹凸に応じて変
化する車体1と車輪2との間の相対距離を表わす相対距
離信号を与える。
In FIG. 1, reference numeral 1 is a vehicle body, 2 is a wheel, and a suspension 3 is interposed between the vehicle body 1 and the wheel 2. The suspension 3 has a spring device 3a and a shock absorber 3b. The spring 4 under the wheel 2 is the wheel 2
Represents the tire part. The wheels 2 roll on the traveling path 5. A stroke sensor 6 detects a relative distance between the vehicle body 1 and the wheels 2, and gives a relative distance signal representing a relative distance between the vehicle body 1 and the wheels 2 which changes according to the unevenness of the traveling path 5. .

【0010】本発明者は、上記車両モデルにおいて、車
輪2の質量を25Kg、車体1の質量を250Kg、車
輪2のバネ4のバネ定数を150000N/m、サスペ
ンション3のバネ定数を20000N/m、サスペンシ
ョン3の伸び側の減衰係数を2500N・s/m、サス
ペンション3の縮み側の減衰係数を1000N・s/m
とし、また、走行路5の路面変位を正弦波と仮定して、
路面変位が±1.5cm,±2.5cmおよび±5.0
cmの3つの条件について、車体1と車輪2との間の平
均相対距離の周波数特性、および、車輪2の接地力変動
の周波数特性をシミュレートした。図2は車体1と車輪
2との間の平均相対距離の周波数特性のシミュレート結
果であり、特性カーブaは路面変位が±1.5cmの場
合、特性カーブbは路面変位が±2.5cmの場合、特
性カーブcは路面変位が±5.0cmの場合を表わして
いる。図2から明らかなように、車体1と車輪2との間
の平均相対距離は、静止状態の場合(平均相対距離=
0.0m)に対して、0.5Hzをすぎたあたりから減
衰が始まり、10.0Hzをすぎたあたりで最大とな
る。図3は車輪2の接地力変動の周波数特性のシミュレ
ート結果であり、特性カーブdは路面変位が±1.5c
mの場合、特性カーブeは路面変位が±2.5cmの場
合、特性カーブfは路面変位が±5.0cmの場合を表
わしている。図3から明らかなように、車輪2の接地力
変動の幅dw ,ew ,fw は、静止状態の場合(接地力
変動=1)に対して、0.5Hzをすぎたあたりから増
大し、10.0Hzをすぎたあたりで最大となる。図2
と図3との比較から明らかなように、車体1と車輪2と
の間の平均相対距離の周波数特性は車輪2の接地力変動
の周波数特性に略対応しており、従って、静止状態に対
する車体1と車輪2との間の平均相対距離の減少を知る
ことで車輪2の接地状態を推定することができる。
In the above vehicle model, the inventor of the present invention has a wheel 2 having a mass of 25 kg, a vehicle body 1 having a mass of 250 kg, a spring 4 having a spring constant of 150,000 N / m, and a suspension 3 having a spring constant of 20000 N / m. The extension side damping coefficient of the suspension 3 is 2500 N · s / m, and the contraction side damping coefficient of the suspension 3 is 1000 N · s / m.
And assuming that the road surface displacement of the traveling road 5 is a sine wave,
Road displacement ± 1.5 cm, ± 2.5 cm and ± 5.0
The frequency characteristics of the average relative distance between the vehicle body 1 and the wheels 2 and the frequency characteristics of the ground contact force variation of the wheels 2 were simulated for three conditions of cm. FIG. 2 is a simulation result of the frequency characteristic of the average relative distance between the vehicle body 1 and the wheels 2. The characteristic curve a is ± 1.5 cm for road surface displacement, and the characteristic curve b is ± 2.5 cm for road surface displacement. In the case of, the characteristic curve c represents the case where the road surface displacement is ± 5.0 cm. As is clear from FIG. 2, the average relative distance between the vehicle body 1 and the wheels 2 is in the stationary state (average relative distance =
0.0m), the attenuation starts around 0.5 Hz and reaches the maximum around 10.0 Hz. FIG. 3 is a simulation result of the frequency characteristic of the grounding force fluctuation of the wheel 2, and the characteristic curve d shows that the road surface displacement is ± 1.5 c
In the case of m, the characteristic curve e shows the case where the road surface displacement is ± 2.5 cm, and the characteristic curve f shows the case where the road surface displacement is ± 5.0 cm. As apparent from FIG. 3, the width d w of the ground force variation of the wheel 2, e w, f w is increased relative to the case of the stationary state (ground force variation = 1), from around past the 0.5Hz However, it becomes the maximum around 10.0 Hz. Figure 2
As is clear from the comparison between FIG. 3 and FIG. 3, the frequency characteristic of the average relative distance between the vehicle body 1 and the wheels 2 substantially corresponds to the frequency characteristic of the ground contact force variation of the wheels 2, and therefore Knowing the decrease in the average relative distance between 1 and the wheel 2, the ground contact state of the wheel 2 can be estimated.

【0011】図4は本発明の一実施例を示すブロック図
で、10は平均相対距離演算手段、11は比較手段であ
る。平均相対距離演算手段10は、図1のストロークセ
ンサ6からの相対距離信号を入力し、入力した相対距離
信号を例えば時間積分することによって車体1と車輪2
との間の平均相対距離を求め、静止状態に対する平均相
対距離の減少量を比較手段11に与える。比較手段11
は、平均相対距離の減少量を所定の基準値と比較し、減
少量が基準値よりも小であれば接地状態を良と判定し、
減少量が基準値よりも大であれば接地状態を不良と判定
する接地状態判定信号を与える。比較手段11の所定の
基準値は車輪,サスペンション等の特性に応じて実験的
に定められる。比較手段11から与えられる接地状態判
定信号はサスペンション制御の制御則の変更に用いられ
る。
FIG. 4 is a block diagram showing an embodiment of the present invention. 10 is an average relative distance calculating means, and 11 is a comparing means. The average relative distance calculating means 10 inputs the relative distance signal from the stroke sensor 6 of FIG. 1 and integrates the input relative distance signal by, for example, time integration to thereby detect the vehicle body 1 and the wheels 2.
The average relative distance between and is calculated, and the decrease amount of the average relative distance with respect to the stationary state is given to the comparison means 11. Comparison means 11
Compares the reduction amount of the average relative distance with a predetermined reference value, and if the reduction amount is smaller than the reference value, it is determined that the grounding state is good,
If the amount of decrease is larger than the reference value, a grounding state determination signal for determining the grounding state as defective is given. The predetermined reference value of the comparison means 11 is experimentally determined according to the characteristics of the wheels, suspensions and the like. The grounding state determination signal provided from the comparison means 11 is used for changing the control law of suspension control.

【0012】以上のごとき構成によれば、車体1と車輪
2との間の相対距離を検出するためのストロークセンサ
6を設けるだけでよく、また、相対距離の平均値および
静止状態に対する平均相対距離の減少量を求め、この減
少量と所定の基準値とを比較するだけであるので、回路
的にも構成を簡単化することができる。
According to the above configuration, it is only necessary to provide the stroke sensor 6 for detecting the relative distance between the vehicle body 1 and the wheels 2, and the average value of the relative distance and the average relative distance to the stationary state. Is obtained, and the amount of reduction is compared with a predetermined reference value. Therefore, the circuit can be simplified in configuration.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、車
体と車輪との間の平均相対距離の減少量が車輪の接地力
変動幅の増加に略対応していることに基づいて、車体と
車輪との間の相対距離を検出し、この相対距離から車体
と車輪との間の平均相対距離を求め、静止状態に対する
平均相対距離の減少量を所定の基準値と比較することに
よって車輪の接地状態を判定するようにしたので、相対
距離を検出するために単一のセンサを設けるだけでよ
く、また、相対距離の平均値および静止状態に対する平
均相対距離の減少量を求め、この減少量と所定の基準値
とを比較するだけであるので、回路的にも構成を簡単化
することができ、構成の簡略化および低コスト化に寄与
する車輪の接地状態判定方法を提供することができる。
As described above, according to the present invention, the amount of decrease in the average relative distance between the vehicle body and the wheels substantially corresponds to the increase in the variation range of the ground contact force of the wheels. The relative distance between the wheel and the wheel is detected, the average relative distance between the vehicle body and the wheel is calculated from this relative distance, and the reduction amount of the average relative distance with respect to the stationary state is compared with a predetermined reference value to determine the wheel Since the ground contact state is determined, it is only necessary to provide a single sensor for detecting the relative distance. Also, the average value of the relative distance and the reduction amount of the average relative distance with respect to the stationary state are obtained, and this reduction amount is calculated. And a predetermined reference value are simply compared, the configuration can be simplified in terms of circuitry, and a wheel grounding state determination method that contributes to the configuration simplification and cost reduction can be provided. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を説明するための車両
モデルである。
FIG. 1 is a vehicle model for explaining an embodiment of the present invention.

【図2】図2は車体と車輪との間の平均相対距離の周波
数特性のシミュレート結果を示す図である。
FIG. 2 is a diagram showing a simulation result of frequency characteristics of an average relative distance between a vehicle body and wheels.

【図3】図3は車輪の接地力変動の周波数特性のシミュ
レート結果を示す図である。
FIG. 3 is a diagram showing a simulation result of frequency characteristics of wheel ground contact force fluctuations.

【図4】図4は本発明の一実施例を示すブロック図であ
る。
FIG. 4 is a block diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 車体 2 車輪 3 サスペンション 5 走行路 6 ストロークセンサ 10 平均相対距離演算手段 11 比較回路 1 vehicle body 2 wheels 3 suspension 5 traveling path 6 stroke sensor 10 average relative distance calculation means 11 comparison circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車体と車輪との間の相対距離を検出し、
検出した相対距離から車体と車輪との間の平均相対距離
を求め、静止状態に対する平均相対距離の減少量を所定
の基準値と比較することによって車輪の接地状態を判定
するようにした車輪の接地状態判定方法。
1. A relative distance between a vehicle body and a wheel is detected,
The average relative distance between the vehicle body and the wheel is calculated from the detected relative distance, and the ground contact state of the wheel is determined by comparing the reduction amount of the average relative distance with respect to the stationary state with a predetermined reference value. State determination method.
JP35018493A 1993-12-29 1993-12-29 Grounded condition deciding method of wheel Pending JPH07195924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35018493A JPH07195924A (en) 1993-12-29 1993-12-29 Grounded condition deciding method of wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35018493A JPH07195924A (en) 1993-12-29 1993-12-29 Grounded condition deciding method of wheel

Publications (1)

Publication Number Publication Date
JPH07195924A true JPH07195924A (en) 1995-08-01

Family

ID=18408791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35018493A Pending JPH07195924A (en) 1993-12-29 1993-12-29 Grounded condition deciding method of wheel

Country Status (1)

Country Link
JP (1) JPH07195924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045280A1 (en) * 1996-05-29 1997-12-04 Rover Group Limited Motor vehicle suspension system
JP2016536596A (en) * 2014-06-09 2016-11-24 ニラ・ダイナミクス・エイビイ Detection of short-term unevenness on the road surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045280A1 (en) * 1996-05-29 1997-12-04 Rover Group Limited Motor vehicle suspension system
JP2016536596A (en) * 2014-06-09 2016-11-24 ニラ・ダイナミクス・エイビイ Detection of short-term unevenness on the road surface

Similar Documents

Publication Publication Date Title
US6412788B1 (en) Suspension control system
US7333882B2 (en) Suspension control apparatus
JP4972440B2 (en) Control device for damping force variable damper
KR100715594B1 (en) Damping force control method of electronically controlled suspension system
US7991529B2 (en) Method and system for detecting a vibration level of a wheel within a resonating frequency range of a vehicle suspension
KR940000332B1 (en) Suspension control system
JP2560564B2 (en) Suspension control device
JP2010511567A (en) Road surface condition determination method and vehicle usage log creation method
JPH10119528A (en) Controller for damping force generator
JP2748546B2 (en) Vehicle vibration control device
JPH07195924A (en) Grounded condition deciding method of wheel
JP3186474B2 (en) Road surface shape detection device
JPH1194018A (en) Dynamic damper for transportation device
JP3347169B2 (en) Control device for vehicle suspension
JP4636544B2 (en) Suspension control device
JP3206315B2 (en) Vehicle damping force control device
JP2953675B2 (en) Vehicle suspension system
JPH11321269A (en) Control device for suspension mechanism
KR100394142B1 (en) Method for controlling a ride control of semi-active suspension system
KR0143257B1 (en) Driving control device of car
KR100578025B1 (en) Vibration absorber of vehicle
JP3122573B2 (en) Suspension control device
JPH0616026A (en) Control device for vehicular suspension
KR100747994B1 (en) Suspension Control Method
JPH06143964A (en) Electric control device for vehicle suspension device