JPH06245764A - Method for stabilizing hydrogen peroxide-sensitive enzyme - Google Patents
Method for stabilizing hydrogen peroxide-sensitive enzymeInfo
- Publication number
- JPH06245764A JPH06245764A JP5352166A JP35216693A JPH06245764A JP H06245764 A JPH06245764 A JP H06245764A JP 5352166 A JP5352166 A JP 5352166A JP 35216693 A JP35216693 A JP 35216693A JP H06245764 A JPH06245764 A JP H06245764A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- carboxyl groups
- large number
- cat
- polysaccharide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、過酸化水素の共存下で
失活し易い酵素(以下、過酸化水素感受性酵素と略記す
る。)の安定性、特に溶液中での安定性を向上させる方
法に関する。FIELD OF THE INVENTION The present invention improves the stability of an enzyme that is easily deactivated in the presence of hydrogen peroxide (hereinafter abbreviated as hydrogen peroxide-sensitive enzyme), particularly in solution. Regarding the method.
【0002】[0002]
【発明の背景】酵素の優れた触媒機能に着目し、これを
生体外に取り出し、有効に利用しようとする技術の開発
が近年盛んである。例えば、酵素の触媒反応を利用した
微量成分の各種測定が臨床化学、生化学、食品化学、食
品工業等の分野で広く実施されている。しかし、酵素は
一般に生体外に取り出すと不安定となり、それらを取り
囲む環境因子によって容易に機能を消失する。これが、
酵素を利用する上での問題点となっている。特に溶液状
態では酸化、混在するプロテアーゼ、微生物汚染、タン
パク質の自然修飾などによって酵素の失活が促進され
る。その為、調製した酵素溶液の使用可能な期間は通常
短いので、効率良く使用するには酵素溶液の必要量を用
時調製する必要がある等、使用上の制約があった。保存
時の失活を防ぐためには、従来より硫安や、例えばポリ
エチレングリコール等のポリオール類、例えばCa
2+塩,Mg2+塩等の塩類、例えばアルブミン,スキムミ
ルク等のタンパク質などの変性防止剤を添加したり、凍
結乾燥法などにより水分を除去して保存する等の方法が
用いられてきた。BACKGROUND OF THE INVENTION In recent years, attention has been focused on the excellent catalytic function of an enzyme, and the development of a technique for taking this out of a living body and utilizing it effectively has been active in recent years. For example, various kinds of measurement of trace components utilizing the catalytic reaction of enzymes are widely carried out in the fields of clinical chemistry, biochemistry, food chemistry, food industry and the like. However, enzymes are generally unstable when taken out of the living body, and their functions are easily lost by the environmental factors surrounding them. This is,
It is a problem in using the enzyme. Particularly in a solution state, inactivation of the enzyme is promoted by oxidation, mixed protease, microbial contamination, natural modification of protein and the like. Therefore, since the usable period of the prepared enzyme solution is usually short, there is a limitation in use such that the required amount of the enzyme solution needs to be prepared before use in order to use it efficiently. In order to prevent deactivation during storage, ammonium sulfate or polyols such as polyethylene glycol, for example, Ca is conventionally used.
Methods have been used in which salts such as 2+ salts and Mg 2+ salts, for example, denaturing inhibitors such as proteins such as albumin and skim milk are added, and water is removed by a freeze-drying method or the like to preserve.
【0003】しかしながら、例えば溶液状態で販売する
無調製試薬などに於ける酵素の安定化の目的で上記した
如き変性防止剤を使用した場合には、これら変性防止剤
の影響により保存中に溶液が発色してしまう等の問題点
があった。また、酵素を長期間水溶液中で保存する際の
酵素の失活原因としては、酸化、自然修飾、プロテアー
ゼ等に対する耐性、温度、pH等が、また、臨床試薬に
於ては更に共存する界面活性剤、金属、防腐剤等による
影響があると考えられていたが、本発明者等は鋭意研究
の結果、水溶液中には自然に発生蓄積する自然の過酸化
水素発生源があり、この過酸化水素に感受性の高い酵素
(過酸化水素感受性酵素)は、従来の保存法では失活が
速められることを見出した。例えば、アスコルビン酸オ
キシダーゼ[(E.C.1.10.3.3)、以下、AODと略記す
る。]の場合、従来よりカタラーゼ[(E.C.1.11.1.6)、
以下、CATと略記する。],ゼラチン,グロブリン,
パーオキシダーゼ[(E.C.1.11.1.7)、以下、PODと略
記する。],ヘモグロビン等を添加することによりその
失活を防止する方法が知られてはいたが、その効果は未
だ充分とは言い難い。However, when the above-mentioned denaturing agents are used for the purpose of stabilizing the enzyme in, for example, an unprepared reagent sold in a solution state, the denaturing agents cause the solution to be stored during storage. There were problems such as color development. In addition, oxidation, natural modification, resistance to protease, etc., temperature, pH, etc. are the causes of enzyme deactivation when the enzyme is stored in an aqueous solution for a long period of time. It was thought that there was an effect of agents, metals, preservatives, etc., but as a result of diligent research by the present inventors, there is a natural source of hydrogen peroxide that is naturally generated and accumulated in an aqueous solution. It has been found that an enzyme highly sensitive to hydrogen (hydrogen peroxide-sensitive enzyme) can be rapidly inactivated by a conventional preservation method. For example, ascorbate oxidase [(EC1.10.3.3), hereinafter abbreviated as AOD. In the case of], it has been the case with catalase [(EC1.11.1.6),
Hereinafter, it is abbreviated as CAT. ], Gelatin, globulin,
Peroxidase [(EC1.11.1.7), hereinafter abbreviated as POD. ], A method of preventing its inactivation by adding hemoglobin and the like has been known, but its effect is still not sufficient.
【0004】[0004]
【発明の目的】本発明は、上記した如き状況に鑑み成さ
れたもので、過酸化水素感受性酵素の安定性を著しく向
上させる方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object thereof is to provide a method for significantly improving the stability of a hydrogen peroxide-sensitive enzyme.
【0005】[0005]
【発明の構成】本発明は、過酸化水素感受性酵素をCA
T又は/及びPODと共に、脱水縮合剤を用いて、多数
個のカルボキシル基を有する多糖類又は多数個のカルボ
キシル基を有するポリアミノ酸に結合させることを特徴
とする、過酸化水素感受性酵素の安定化方法である。ま
た、本発明は過酸化水素感受性酵素に脱水縮合剤を用い
て、多数個のカルボキシル基を有する多糖類又は多数個
のカルボキシル基を有するポリアミノ酸を結合させたも
のと、CAT又は/及びPODに脱水縮合剤を用いて多
数個のカルボキシル基を有する多糖類又は多数個のカル
ボキシル基を有するポリアミノ酸を結合させたものとを
共存させることを特徴とする、過酸化水素感受性酵素の
安定化方法である。また、本発明は過酸化水素感受性酵
素に脱水縮合剤を用いて多数個のカルボキシル基を有す
る多糖類又は多数個のカルボキシル基を有するポリアミ
ノ酸を結合させたものと、CAT又は/及びPODとを
共存させることを特徴とする、過酸化水素感受性酵素の
安定化方法である。また、本発明はCAT又は/及びP
ODに脱水縮合剤を用いて多数個のカルボキシル基を有
する多糖類又は多数個のカルボキシル基を有するポリア
ミノ酸を結合させたものと、過酸化水素感受性酵素とを
共存させることを特徴とする、過酸化水素感受性酵素の
安定化方法である。更に本発明は過酸化水素感受性酵素
をCAT又は/及びPODと共に、脱水縮合剤を用い
て、多数個のカルボキシル基を有する多糖類又は多数個
のカルボキシル基を有するポリアミノ酸に結合させてな
る、修飾過酸化水素感受性酵素の発明である。The present invention uses a hydrogen peroxide-sensitive enzyme as a CA.
Stabilization of hydrogen peroxide-sensitive enzyme, characterized by using a dehydration condensing agent together with T or / and POD to bind to a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups Is the way. In addition, the present invention uses a dehydration condensing agent for a hydrogen peroxide-sensitive enzyme to bind a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups to CAT and / or POD. A method for stabilizing a hydrogen peroxide-sensitive enzyme, which comprises coexisting with a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups bound using a dehydration condensation agent. is there. In addition, the present invention provides CAT or / and POD, which is obtained by combining a hydrogen peroxide-sensitive enzyme with a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups using a dehydration condensing agent. A method for stabilizing a hydrogen peroxide-sensitive enzyme, which is characterized by coexistence. Further, the present invention is CAT or / and P
A hydrogen peroxide-sensitive enzyme is allowed to coexist with a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups bound to OD using a dehydration condensing agent. It is a method for stabilizing a hydrogen oxide-sensitive enzyme. Further, the present invention is a modification in which a hydrogen peroxide-sensitive enzyme is combined with CAT or / and POD to a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups by using a dehydration condensation agent. It is an invention of a hydrogen peroxide-sensitive enzyme.
【0006】即ち、本発明者らは、種々の酵素の安定化
方法について鋭意研究の途上、過酸化水素感受性酵素の
失活、特に水溶液中でのそれは長期保存中の酵素試液中
に発生する過酸化酵素により促進されることを見出し
た。そこで更に研究を重ねた結果、過酸化水素感受性
酵素をCAT(又は/及びPOD)と共に、脱水縮合剤
を用いて、多数個のカルボキシル基を有する多糖類又は
多数個のカルボキシル基を有するポリアミノ酸に結合さ
せた場合、過酸化水素感受性酵素に脱水縮合剤を用い
て多数個のカルボキシル基を有する多糖類又は多数個の
カルボキシル基を有するポリアミノ酸を結合させたもの
と、CAT(又は/及びPOD)に脱水縮合剤を用いて
多数個のカルボキシル基を有する多糖類又は多数個のカ
ルボキシル基を有するポリアミノ酸を結合させたものと
を共存させた場合、過酸化水素感受性酵素に脱水縮合
剤を用いて多数個のカルボキシル基を有する多糖類又は
多数個のカルボキシル基を有するポリアミノ酸を結合さ
せたものと、CAT(又は/及びPOD)とを共存させ
た場合、又は過酸化水素感受性酵素と、CAT(又は
/及びPOD)に脱水縮合剤を用いて多数個のカルボキ
シル基を有する多糖類又は多数個のカルボキシル基を有
するポリアミノ酸を結合させたものとを共存させた場合
には、過酸化水素感受性酵素の保存時の安定性を、特に
水溶液中での安定性を著しく高めることができることを
見出し、本発明を完成するに到った。That is, the inventors of the present invention have been earnestly researching a method for stabilizing various enzymes, and inactivated a hydrogen peroxide-sensitive enzyme, particularly in an aqueous solution, which is a peroxidation that occurs in an enzyme reagent solution during long-term storage. It was found to be promoted by oxidase. Therefore, as a result of further research, a hydrogen peroxide-sensitive enzyme was used in combination with CAT (or / and POD) and a dehydration condensing agent to prepare a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups. When bound, a CAT (or / and POD) is obtained by binding a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups to a hydrogen peroxide-sensitive enzyme using a dehydration condensation agent. When coexisting with a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups bound to it by using a dehydration condensation agent, a dehydration condensation agent is used for the hydrogen peroxide-sensitive enzyme. CAT (or //) a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups bound thereto, And POD), or a hydrogen peroxide-sensitive enzyme and a CAT (or / and POD) using a dehydration condensing agent, a polysaccharide having a large number of carboxyl groups or a polycarboxylic acid having a large number of carboxyl groups. In the case of coexisting with the one to which an amino acid is bound, it was found that the stability of the hydrogen peroxide-sensitive enzyme during storage, particularly the stability in an aqueous solution, can be remarkably enhanced, and the present invention was completed. Arrived
【0007】本発明に係る過酸化水素感受性酵素として
は、過酸化水素共存下で失活が促進される性質を有する
酵素であれば特に限定されないが、例えばAOD、クレ
アチナーゼ[E.C.3.5.3.3)、以下、CRHと略記す
る。]、クレアチニナーゼ[(E.C.3.5.2. )、以下、C
NHと略記する。]、サルコシンオキシダーゼ[(E.C.
1.5.3.1)、以下、SAOと略記する。]、L-α-グリセ
ロフォスフェイトオキシダーゼ[(E.C.1.1.3. )、以
下、GPOと略記する。]、ウレアーゼ[(E.C.3.5.1.
5)、以下、URSと略記する。]、キサンチンオキシダ
ーゼ[(E.C.1.2.3.2)、以下、XODと略記する。]、
乳酸脱水素酵素[(E.C.1.1.1.27)、以下、LDHと略記
する。]、コレステロールエステラーゼ[(E.C.3.1.1.1
3)、以下、CHEと略記する。]、コリンオキシダーゼ
[(E.C.1.1.3.17)、以下、CODと略記する。]等が代
表的なものとして挙げられる。本発明に係る過酸化酵素
感受性酵素、CAT及びPODの由来は特に限定され
ず、動物、植物、微生物等に由来するものが全て挙げら
れる。尚、これらの酵素の純度は特に問題とならない
が、プロテアーゼが混在していないものの方が好ましい
ことは言うまでもない。The hydrogen peroxide-sensitive enzyme according to the present invention is not particularly limited as long as it is an enzyme having a property of promoting inactivation in the presence of hydrogen peroxide, and examples thereof include AOD and creatinase [EC3.5.3.3]. Hereinafter, it is abbreviated as CRH. ], Creatininase [(EC3.5.2.), Hereinafter, C
Abbreviated as NH. ], Sarcosine oxidase [(EC
1.5.3.1), hereinafter abbreviated as SAO. ], L-α-glycerophosphate oxidase [(EC1.1.3.), Hereinafter abbreviated as GPO]. ], Urease [(EC3.5.1.
5), hereinafter abbreviated as URS. ], Xanthine oxidase [(EC1.2.3.2), hereinafter abbreviated as XOD. ],
Lactate dehydrogenase [(EC1.1.1.27), hereinafter abbreviated as LDH. ], Cholesterol esterase [(EC3.1.1.1
3), hereinafter abbreviated as CHE. ], Choline oxidase [(EC 1.1.3.17), hereinafter abbreviated as COD. ] Are typical examples. The origins of the peroxidase-sensitive enzyme, CAT and POD according to the present invention are not particularly limited, and examples thereof include those derived from animals, plants, microorganisms and the like. The purity of these enzymes does not matter, but it is needless to say that those without proteases are preferable.
【0008】過酸化水素感受性酵素溶液に共存させるC
AT又は/及びPODの量は特に限定されないが、CA
Tの場合は、酵素重量に換算して過酸化水素感受性酵素
の0.001〜1000倍、好ましくは0.1〜10倍、活性値に換算
して過酸化水素感受性酵素の0.1〜10万倍、好ましくは1
0〜1000倍が挙げられる。また、PODの場合は、酵素
重量に換算して過酸化水素感受性酵素の0.001〜1000
倍、好ましくは0.1〜100倍、活性値に換算して過酸化酵
素感受性酵素の0.0025〜2500倍、好ましくは0.25〜250
倍が挙げられる。尚、CAT又は/及びPODを多数個
のカルボキシル基を有する多糖類又は多数個のカルボキ
シル基を有するポリアミノ酸と化学結合させずに、未修
飾の状態で酵素溶液中に添加する場合、その使用濃度と
しては、活性値に換算して夫々1u/ml 〜10000u/ml が
好ましく挙げられる。C coexisting in a hydrogen peroxide-sensitive enzyme solution
Although the amount of AT or / and POD is not particularly limited, CA
In the case of T, 0.001 to 1000 times, preferably 0.1 to 10 times, that of hydrogen peroxide-sensitive enzyme in terms of enzyme weight, 0.1 to 100,000 times, and preferably 1 to 100 times that of hydrogen peroxide-sensitive enzyme in terms of activity value.
Examples include 0 to 1000 times. In the case of POD, the amount of hydrogen peroxide-sensitive enzyme is 0.001 to 1000 in terms of enzyme weight.
Times, preferably 0.1 to 100 times, 0.0025 to 2500 times the peroxidase-sensitive enzyme in terms of activity value, preferably 0.25 to 250 times
Double. When CAT and / or POD is added to an enzyme solution in an unmodified state without being chemically bound to a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups, the concentration to be used is The preferred values are 1 u / ml to 10000 u / ml in terms of activity value.
【0009】本発明に係る多数個のカルボキシル基を有
する多糖類又は多数個のカルボキシル基を有するポリア
ミノ酸としては、例えばアルギン酸,ペクチン酸,プロ
スベリン酸,ヒアルロン酸,コンドロイチン,ヘパリン
等のカルボキシル基を有する天然の多糖類、例えばカル
ボキシメチルセルロース,カルボキシメチルデキストラ
ン等に代表されるカルボキシル基を人工的に導入した多
糖類、例えばポリグルタミン酸,ポリアスパラギン酸,
多数個のグルタミン酸残基又は/及び多数個のアスパラ
ギン酸残基を含むポリアミノ酸等のポリアミノ酸等が好
ましく挙げられるが、これらに限定されるものではな
い。The polysaccharide having a large number of carboxyl groups or the polyamino acid having a large number of carboxyl groups according to the present invention has a carboxyl group such as alginic acid, pectic acid, prosuberic acid, hyaluronic acid, chondroitin and heparin. Naturally occurring polysaccharides such as carboxymethyl cellulose, carboxymethyl dextran and other artificially introduced carboxyl groups such as polyglutamic acid, polyaspartic acid,
Preferable examples include polyamino acids such as polyamino acids containing a large number of glutamic acid residues and / or a large number of aspartic acid residues, but are not limited thereto.
【0010】尚、カルボキシル基を人工的に導入した多
糖類としては、上記の他に例えばデキストラン,デキス
トラン硫酸,プルラン,フィコール,デンプン,デキス
トリン,セルロース,α-シクロデキストリン,β-シク
ロデキストリン,γ-シクロデキストリン等の多糖類を
例えばブロムシアン法(Nature,214巻,1302頁,1967
等)、エピクロルヒドリン法(Infect.Immun.,20巻,867
頁,1978等)、1-シアノ-4-ジメチルアミノピリジニウム
塩法、2,4,6-トリクロロ-1,3,5-トリアジン法(J.Solid
-Phase Biochem.,4巻,233頁,1979等)又は過ヨウ素酸酸
化法(Proc.Natl.Acod.Sci.U.S.A.,73巻,2128頁,1976
等)等により活性化し、次いでこれにアミノ酸を反応さ
せる方法により得られたものでもよい。尚、この反応に
於て利用することのできるアミノ酸としては分子内にア
ミノ基とカルボキシル基とを有する化合物であれば特に
限定されることなく挙げられるが、例えばβ-アラニ
ン、4-アミノ酪酸、5-アミノ吉草酸、6-アミノカプロン
酸、p-アミノフェニル酢酸、p-アミノ安息香酸、グルタ
ミン酸、アスパラギン酸等が好ましく挙げられる。更
に、カルボキシル基を人工的に導入した多糖類として
は、例えば上記した如き多糖類に、例えば無水マレイン
酸,無水コハク酸,無水フタル酸,無水ピロメリト酸,
無水メリト酸,無水トリメリト酸等の酸無水物を直接反
応させる方法により得られたものでもよい。Examples of polysaccharides artificially introduced with a carboxyl group include dextran, dextran sulfate, pullulan, ficoll, starch, dextrin, cellulose, α-cyclodextrin, β-cyclodextrin, γ-, in addition to the above. Polysaccharides such as cyclodextrin can be prepared by, for example, Bromcia method (Nature, 214, 1302, 1967).
Etc.), epichlorohydrin method (Infect.Immun., Volume 20, 867)
Page, 1978), 1-cyano-4-dimethylaminopyridinium salt method, 2,4,6-trichloro-1,3,5-triazine method (J. Solid
-Phase Biochem., 4, 233, 1979) or periodic acid oxidation method (Proc. Natl. Acod. Sci. USA, 73, 2128, 1976)
Etc.) and the like, and then obtained by a method of reacting this with an amino acid. The amino acid that can be used in this reaction is not particularly limited as long as it is a compound having an amino group and a carboxyl group in the molecule, for example, β-alanine, 4-aminobutyric acid, Preferred examples include 5-aminovaleric acid, 6-aminocaproic acid, p-aminophenylacetic acid, p-aminobenzoic acid, glutamic acid and aspartic acid. Furthermore, examples of the polysaccharide into which a carboxyl group is artificially introduced include, for example, the above-mentioned polysaccharides such as maleic anhydride, succinic anhydride, phthalic anhydride, pyromellitic anhydride,
It may be obtained by a method of directly reacting an acid anhydride such as mellitic anhydride or trimellitic anhydride.
【0011】上記の方法を更に詳しく述べると以下の如
くなる。即ち、上記した如き多糖類を例えば水,ピロリ
ン酸緩衝液等のアミン成分を含まない溶媒に通常0.5〜1
0%(w/w)、好ましくは4〜8%(w/w)となるように
溶解したものにpHスタット等を用いてpHを通常7〜1
0、好ましくは8〜9の範囲に保ちながら例えば無水マ
レイン酸,無水コハク酸,無水フタル酸,無水ピロメリ
ト酸,無水メリト酸,無水トリメリト酸等の酸無水物の
適当量を少量ずつ添加する。添加終了後、反応液のpH
が変動しなくなるまで撹拌を行った後、透析やゲル瀘過
等の方法により反応液の脱塩を行い、要すれば濃縮や凍
結乾燥を行えば、目的のカルボキシル基を人工的に導入
した多糖類を得ることができる。尚、この方法によれ
ば、原料となる多糖類の全ての水酸基にカルボキシル基
を導入することができるが、酸無水物の種類及び量を適
宜選択調整することにより導入するカルボキシル基量を
調節することもできるので、利用する多糖類や酸無水物
の種類或はこれらのモル比等は目的に応じて適宜選択す
ればよい。The above method will be described in more detail below. That is, the above-mentioned polysaccharide is usually added to a solvent containing no amine component such as water or pyrophosphate buffer solution in an amount of 0.5 to 1
The pH is usually 7 to 1 by using a pH stat or the like in a solution of 0% (w / w), preferably 4 to 8% (w / w).
A suitable amount of acid anhydride such as maleic anhydride, succinic anhydride, phthalic anhydride, pyromellitic anhydride, mellitic anhydride, trimellitic anhydride, etc. is added little by little while maintaining the range of 0, preferably 8 to 9. After the addition is complete,
After stirring until the concentration does not change, the reaction solution is desalted by a method such as dialysis or gel filtration, and if necessary, concentrated or lyophilized to artificially introduce the desired carboxyl group. Sugars can be obtained. According to this method, carboxyl groups can be introduced into all the hydroxyl groups of the starting polysaccharide, but the amount of carboxyl groups to be introduced is adjusted by appropriately selecting and adjusting the type and amount of acid anhydride. Therefore, the types of polysaccharides and acid anhydrides to be used, their molar ratios, etc. may be appropriately selected according to the purpose.
【0012】カルボキシル基を人工的に導入した多糖類
を調製する際に用いられる上記した如き多糖類の分子量
は特に限定されないが、通常数千〜1000万程度、好まし
くは1万〜50万程度の範囲が挙げられる。本発明に係る
多数個のカルボキシル基を有する多糖類又は多数個のカ
ルボキシル基を有するポリアミノ酸中のカルボキシル基
量としては、本発明の目的を達成し得る量であれば特に
限定されないが、多糖類の場合には多糖類の構成糖単位
(グルコース残基、グルコサミン残基等)当りのカルボ
キシル基量として通常0.1〜5個、好ましくは0.2〜4
個、より好ましくは2〜4個の範囲が、ポリアミノ酸の
場合にはポリアミノ酸中のアミノ酸残基の25%以上がグ
ルタミン酸残基又は/及びアスパラギン酸残基であるも
のが好ましく挙げられる。The molecular weight of the above-mentioned polysaccharide used in the preparation of the polysaccharide into which the carboxyl group is artificially introduced is not particularly limited, but it is usually several tens to 10 million, preferably about 10,000 to 500,000. The range is mentioned. The amount of carboxyl groups in the polyamino acid having multiple carboxyl groups or multiple carboxyl groups according to the present invention is not particularly limited as long as it is an amount that can achieve the object of the present invention, polysaccharides In the case of, the amount of carboxyl group per constituent sugar unit (glucose residue, glucosamine residue, etc.) of the polysaccharide is usually 0.1 to 5, preferably 0.2 to 4.
In the case of a polyamino acid, 25% or more of amino acid residues in the polyamino acid are preferably glutamic acid residues and / or aspartic acid residues.
【0013】本発明に於て用いられる脱水縮合剤として
は、カルボキシル基とアミノ基とを脱水縮合し得るもの
であれば特に限定されることなく挙げられるが、例えば
ジシクロヘキシルカルボジイミド(DCC),ジ-p-トルオ
イルカルボジイミド、ベンジルメチルアミノプロピルカ
ルボジイミド(BDC),1-エチル-3-(3-ジメチルアミノ
プロピル)カルボジイミド塩酸塩(WSC)等のカルボジイミ
ド誘導体やウッドワード(Woodward)試薬等が好ましく
挙げられる。The dehydrating and condensing agent used in the present invention is not particularly limited as long as it can dehydrate and condense a carboxyl group and an amino group. For example, dicyclohexylcarbodiimide (DCC), di- Preferable examples include carbodiimide derivatives such as p-toluoyl carbodiimide, benzylmethylaminopropyl carbodiimide (BDC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC), and Woodward reagents. .
【0014】本発明に係る多数個のカルボキシル基を有
する多糖類又は多数個のカルボキシル基を有するポリア
ミノ酸(以下、これらを総称して単にカルボキシ高分子
と略称する。)とAOD、CAT、POD等の酵素との
結合は、例えば以下の如くして容易に達成することがで
きる。即ち、カルボキシ高分子の適当量を、水又は例え
ばリン酸緩衝液,キノリン緩衝液等の緩衝液に溶解し、
この溶液に、加えたカルボキシ高分子中のカルボキシル
基に対し通常1〜10倍当量、好ましくは2〜6倍当量の
脱水縮合剤を添加する。次いで、この溶液に、溶解した
カルボキシ高分子の重量の通常0.1〜10倍重量、好まし
くは0.5〜3倍重量の酵素原末を加えた後、pHスタット
等を用いて該溶液のpHを通常4.0〜8.0、好ましくは5.5
〜6.5の範囲に固定し、通常0〜40℃、好ましくは4〜30
℃で通常1〜48時間、好ましくは10〜24時間反応させ
る。反応終了後、反応液を透析、ゲル瀘過等によって精
製を行うことにより、本発明の修飾酵素が得られる。
尚、要すれば、これを更に分子量分画等により精製する
等は任意である。Polysaccharides having a large number of carboxyl groups or polyamino acids having a large number of carboxyl groups according to the present invention (hereinafter, these are collectively referred to simply as "carboxy polymer"), AOD, CAT, POD, etc. The binding with the enzyme can be easily achieved, for example, as follows. That is, an appropriate amount of a carboxy polymer is dissolved in water or a buffer solution such as a phosphate buffer solution or a quinoline buffer solution,
A dehydration condensing agent is usually added to this solution in an amount of 1 to 10 times equivalent, preferably 2 to 6 times equivalent to the carboxyl groups in the added carboxy polymer. Then, 0.1 to 10 times by weight, preferably 0.5 to 3 times by weight, the weight of the dissolved carboxy polymer is added to this solution, and then the pH of the solution is usually adjusted to 4.0 using a pH stat or the like. ~ 8.0, preferably 5.5
Fixed to a range of ~ 6.5, usually 0 ~ 40 ℃, preferably 4 ~ 30
The reaction is carried out at a temperature of 1 to 48 hours, preferably 10 to 24 hours. After completion of the reaction, the modified enzyme of the present invention can be obtained by purifying the reaction solution by dialysis, gel filtration or the like.
Incidentally, if necessary, it is optional to further purify it by molecular weight fractionation or the like.
【0015】本発明を実施するには、下記〜の何れ
かの方法によればよい。 例えば、過酸化水素感受性酵素をCAT(又は/及び
POD)と共に脱水縮合剤を用いて、カルボキシ高分子
に上記した如き割合で結合させる。 例えば、過酸化水素感受性酵素に脱水縮合剤を用いて
カルボキシ高分子を結合させたものと、CAT(又は/
及びPOD)に脱水縮合剤を用いてカルボキシ高分子を
結合させたものとを、上記した如き割合で水溶液中に共
存させる。 例えば、過酸化水素感受性酵素に脱水縮合剤を用いて
カルボキシ高分子を結合させたものと、CAT(又は/
及びPOD)とを、上記した如き割合で水溶液中に共存
させる。 例えば、過酸化水素感受性酵素と、CAT(又は/及
びPOD)に脱水縮合剤を用いてカルボキシ高分子を結
合させたものとを、上記した如き割合で水溶液中に共存
させる。In order to carry out the present invention, any one of the following methods may be used. For example, a hydrogen peroxide-sensitive enzyme is combined with CAT (or / and POD) and a dehydration condensing agent to bind to the carboxy polymer at the ratio as described above. For example, a carboxy polymer bound to a hydrogen peroxide-sensitive enzyme using a dehydration condensing agent, CAT (or /
And POD) to which a carboxy polymer is bound using a dehydration condensing agent are allowed to coexist in the aqueous solution in the proportions as described above. For example, a carboxy polymer bound to a hydrogen peroxide-sensitive enzyme using a dehydration condensing agent, CAT (or /
And POD) are allowed to coexist in the aqueous solution in the proportions as described above. For example, the hydrogen peroxide-sensitive enzyme and CAT (or / and POD) to which a carboxy polymer is bound by using a dehydration condensation agent are allowed to coexist in the aqueous solution in the above-described proportions.
【0016】ここで、過酸化水素感受性酵素をCAT又
は/及びPODと共に脱水縮合剤を用いてカルボキシ高
分子に結合させた修飾酵素は、本発明者らにより初めて
合成されたものであり、これがAOD等の過酸化水素感
受性酵素の酵素活性維持に有効であることは本発明者等
によって初めて明らかにされたことである。Here, a modified enzyme in which a hydrogen peroxide-sensitive enzyme is bound to a carboxy polymer together with CAT and / or POD using a dehydration condensing agent is the first one synthesized by the present inventors, which is AOD. It was first revealed by the present inventors that they are effective in maintaining the enzyme activity of hydrogen peroxide-sensitive enzymes such as.
【0017】尚、本発明の方法を利用して臨床検査用試
液を調製する場合には、過酸化水素感受性酵素とCAT
(又は/及びPOD)以外に、通常の臨床検査薬試液中
に含有される試薬類、例えば目的の検査を行うために必
要なその他の酵素類、補酵素類、酵素の基質、酵素賦活
剤、通常用いられる酵素の安定化剤、発色剤、緩衝剤、
防腐剤、界面活性剤等が共存していてもよいことは言う
までもない。またこれらの使用濃度は、通常の臨床検査
薬溶液中の濃度範囲から適宜選択すれば足りる。本発明
に係るカルボキシ高分子と結合した酵素類は、Km値、
至適pH範囲等の酵素反応に際しての基本的性質は原料
のそれとほぼ同じであるが、本発明の安定化方法を利用
して臨床検査試液の調製を行った場合、得られる臨床検
査試液に含まれる過酸化水素感受性酵素は溶液状態で該
酵素活性が殆ど変化しないため、最初の該酵素仕込み量
を少なくすることができる。また、本発明を利用して調
製された臨床検査試液は、凍結乾燥品としての保存性も
良好であり、再溶解時の溶解性や再溶解後の該酵素の安
定性も良好である。以下に実施例、実験例等を挙げ、本
発明を更に具体的に説明するが、本発明はこれらにより
何ら限定されるものではない。When a test solution for clinical examination is prepared using the method of the present invention, hydrogen peroxide-sensitive enzyme and CAT are used.
Other than (or / and POD), reagents contained in a normal clinical test reagent solution, for example, other enzymes necessary for performing a desired test, coenzymes, enzyme substrates, enzyme activators, Commonly used enzyme stabilizers, color formers, buffers,
It goes without saying that a preservative, a surfactant and the like may coexist. Further, the concentration of these used may be appropriately selected from the concentration range in a usual clinical test drug solution. The enzymes bound to the carboxy polymer according to the present invention have Km values,
The basic properties in the enzymatic reaction such as the optimum pH range are almost the same as those of the raw material, but when the clinical test reagent is prepared using the stabilization method of the present invention, it is included in the obtained clinical test reagent. Since the hydrogen peroxide-sensitive enzyme has almost no change in the enzyme activity in a solution state, the initial amount of the enzyme charged can be reduced. Further, the clinical test reagent solution prepared by utilizing the present invention has good storability as a freeze-dried product, and has good solubility at the time of re-dissolution and stability of the enzyme after re-dissolution. Hereinafter, the present invention will be described in more detail with reference to Examples, Experimental Examples, etc., but the present invention is not limited thereto.
【0018】[0018]
【実施例】以下の実施例、実験例等に於いて、酵素活性
の測定は、夫々下記の方法により行った。 ・AOD(E.C.1.10.3.3.)の活性測定法 (基質溶液)50mMリン酸緩衝液(pH5.6)に、アスコル
ビン酸を140mMとなるように溶解したものを基質溶液と
した。 (測定操作法)予め25℃に予備加温しておいた基質緩衝
液3.0mlと試料40μlとを良く混合した後、得られた溶液
の295nmに於ける吸光度変化を、25℃に保温した分光光
度計を用いて測定する。得られた1分間当りの吸光度変
化率(ΔE)を下記式1に代入してAOD活性を求め
る。EXAMPLES In the following Examples and Experimental Examples, the enzyme activity was measured by the following methods. AOD (EC1.10.3.3.) Activity measurement method (substrate solution) A substrate solution was prepared by dissolving ascorbic acid in 140 mM in 50 mM phosphate buffer (pH 5.6). (Measurement procedure) 3.0 ml of the substrate buffer solution preheated to 25 ° C and 40 μl of the sample were mixed well, and the change in absorbance of the resulting solution at 295 nm was measured by spectroscopy Measure with a photometer. The AOD activity is determined by substituting the obtained rate of change in absorbance (ΔE) per minute into the following formula 1.
【式1】 [Formula 1]
【0019】・CRH(E.C.3.5.3.3)の活性測定法 (測定試薬) A)50mMリン酸緩衝液(pH7.5)に、クレアチンを0.1m
Mとなるように溶解したものを基質溶液とした。 B)ジメチルスルホキシドに、p-ジメチルアミノベンズ
アルデヒドを0.134Mとなるように溶解したものを反応停
止液とした。 (測定方法)基質溶液0.9mlを試験管に採り、37℃で3
分間プレインキュベートし、これに試料を0.1ml添加し
て37℃で更に10分間反応させた後、反応停止液0.2mlを
加えて反応を停止させる。次いで、該溶液の435nmの吸
光度を測定する(A435)。基質溶液0.9mlに反応停止液
を0.2ml添加した後、蒸留水を0.1ml加えて435nmの吸光
度を測定し、試薬ブランクとした(Ablank)。得られ
た値を下記式2に代入して、CRH活性を求める。Method for measuring the activity of CRH (EC3.5.3.3) (Measurement reagent) A) 0.1 mM creatine in 50 mM phosphate buffer (pH 7.5)
What was dissolved so as to be M was used as a substrate solution. B) A solution obtained by dissolving p-dimethylaminobenzaldehyde in dimethyl sulfoxide to a concentration of 0.134 M was used as a reaction stop solution. (Measurement method) Take 0.9 ml of the substrate solution into a test tube and perform 3 at 37 ℃
After pre-incubating for 0.1 minutes, 0.1 ml of the sample is added thereto and reacted at 37 ° C. for 10 minutes, and then 0.2 ml of the reaction stop solution is added to stop the reaction. Then, the absorbance at 435 nm of the solution is measured (A 435 ). After adding 0.2 ml of the reaction stop solution to 0.9 ml of the substrate solution, 0.1 ml of distilled water was added and the absorbance at 435 nm was measured to give a reagent blank (A blank ). The CRH activity is calculated by substituting the obtained value into the following formula 2.
【式2】 ・CNH(E.C.3.5.2. )の活性測定法 「メソッズ オブ エンザイマティック アナリシ
ス」,第3版(1983),II巻,178〜179頁記載の方法に準じて
行った。[Formula 2] -Method for measuring CNH (EC3.5.2.) Activity This was carried out according to the method described in "Methods of Enzymatic Analysis", 3rd edition (1983), Volume II, pages 178-179.
【0020】・SAO(E.C.1.5.3.1)の活性測定法 (測定試薬) A)基質溶液 i)0.125Mのトリス-HCl緩衝液(pH8.0)に、トリトン
X-100を0.125%、サルコシンを0.2Mとなるように溶解し
た溶液。 ii)0.1%(W/V) 4-アミノアンチピリン水溶液 iii)0.1%(W/V) フェノール水溶液 iv)350u/ml POD水溶液 上記i)〜iv)をそれぞれ調製し、測定直前にi) 50m
l、ii) 10ml、iii) 20ml及びiv) 20mlを混合し、基質溶
液とした。 B)0.25% ドデシル硫酸ナトリウム水溶液を調製し、
反応停止液とした。 (測定方法)基質溶液1.0mlを試験管に採り、37℃で3
分間プレインキュベートした後、試料を0.05ml加えて反
応を開始する。37℃で更に10分間反応後、反応停止液2.
0mlを加えて反応を停止させる。次いで該溶液の500nmの
吸光度を測定する(A500)。基質溶液に代えて蒸留水
を用いる以外は上記と同様に反応させて得られた反応液
の500nmの吸光度を測定し、試薬ブランクとした(A
blank)。得られた値を下記式3に代入してSAO活性
を求める。 SAO (EC1.5.3.1) activity measurement method (measurement reagent) A) substrate solution i) 0.125 M Tris-HCl buffer (pH 8.0), triton
A solution of 0.1% X-100 and 0.2M sarcosine. ii) 0.1% (W / V) 4-aminoantipyrine aqueous solution iii) 0.1% (W / V) phenol aqueous solution iv) 350u / ml POD aqueous solution i) to iv) were prepared respectively, and i) 50m immediately before measurement.
l, ii) 10 ml, iii) 20 ml and iv) 20 ml were mixed to prepare a substrate solution. B) Prepare a 0.25% sodium dodecyl sulfate aqueous solution,
It was used as a reaction stop solution. (Measurement method) Take 1.0 ml of the substrate solution into a test tube and mix at 37 ℃ for 3
After pre-incubating for minutes, 0.05 ml of sample is added to start the reaction. After reacting at 37 ℃ for 10 minutes, stop solution 2.
Stop the reaction by adding 0 ml. Then, the absorbance at 500 nm of the solution is measured (A 500 ). The absorbance at 500 nm of the reaction solution obtained by reacting in the same manner as above except that distilled water was used instead of the substrate solution was measured and used as a reagent blank (A
blank ). The SAO activity is determined by substituting the obtained value into the following formula 3.
【式3】 [Formula 3]
【0021】・GPO(E.C.1.1.3. )の活性測定法 (測定試薬) A)基質溶液 i)0.25mM トリス-HCl緩衝液(pH8.0) ii)700u/ml POD水溶液 iii)15mM 4-アミノアンチピリン水溶液 iv)0.2%(W/V) フェノール水溶液 v)0.5M DL-α-グリセロリン酸2ナトリウム水溶液 vi)0.5%(W/V) トリトンX-100水溶液 上記i)〜vi)をそれぞれ調製し、使用直前にi)20ml、
ii)10ml、iii)10ml、iv)10ml、v)20ml、vi)10ml、及び
蒸留水20mlを混合し、基質溶液とした。 B)0.25% ラウリルベンゼンスルホン酸ナトリウム水
溶液を調製し、反応停止液とした。 (測定方法)基質溶液1.0mlを試験管に採り、37℃で3
分間プレインキュベートした後、試料を0.02ml加えて反
応を開始する。37℃で更に10分間反応後、反応停止液2.
0mlを加えて反応を停止させる。次いで該溶液の500nmの
吸光度を測定する(A500)。基質溶液に代えて蒸留水
を用いる以外は上記と同様に反応させて得られた反応液
の500nmの吸光度を測定し、試薬ブランクとした(A
blank)。得られた値を下記式4に代入してGPO活性
を求める。Method for measuring the activity of GPO (EC1.1.3.) (Measurement reagent) A) Substrate solution i) 0.25 mM Tris-HCl buffer (pH 8.0) ii) 700 u / ml POD aqueous solution iii) 15 mM 4-amino Antipyrine aqueous solution iv) 0.2% (W / V) phenol aqueous solution v) 0.5M DL-α-disodium glycerophosphate aqueous solution vi) 0.5% (W / V) Triton X-100 aqueous solution Prepare the above i) to vi) respectively. , I) 20 ml just before use,
ii) 10 ml, iii) 10 ml, iv) 10 ml, v) 20 ml, vi) 10 ml, and distilled water 20 ml were mixed to prepare a substrate solution. B) A 0.25% sodium laurylbenzenesulfonate aqueous solution was prepared and used as a reaction stop solution. (Measurement method) Take 1.0 ml of the substrate solution into a test tube and mix at 37 ℃ for 3
After pre-incubating for minutes, 0.02 ml of sample is added to start the reaction. After reacting at 37 ℃ for 10 minutes, stop solution 2.
Stop the reaction by adding 0 ml. Then, the absorbance at 500 nm of the solution is measured (A 500 ). The absorbance at 500 nm of the reaction solution obtained by reacting in the same manner as above except that distilled water was used instead of the substrate solution was measured and used as a reagent blank (A
blank ). The GPO activity is calculated by substituting the obtained value into the following formula 4.
【式4】 [Formula 4]
【0022】・URS(E.C.3.5.1.5)の活性測定法 「メソッズ オブ エンザイマティック アナリシ
ス」,第3版(1983),II巻,320〜321頁記載の方法に準じて
行った。 ・XOD(E.C.1.2.3.2)の活性測定法 「メソッズ オブ エンザイマティック アナリシ
ス」,第3版(1983),II巻,327〜328頁記載の方法に準じて
行った。 ・ LDH(E.C.1.1.1.27)の活性測定法 「メソッズ オブ エンザイマティック アナリシ
ス」,第3版(1983),II巻,232〜233頁記載の方法に準じて
行った。 ・CHE(E.C.3.1.1.13)の活性測定法 「メソッズ オブ エンザイマティック アナリシ
ス」,第3版(1983),II巻,169〜170頁記載の方法に準じて
行った。 ・COD(E.C.1.1.3.17)の活性測定法 「メソッズ オブ エンザイマティック アナリシ
ス」,第3版(1983),II巻,172〜173頁記載の方法に準じて
行った。Method for measuring URS (EC3.5.1.5) activity was carried out according to the method described in "Methods of Enzymatic Analysis", 3rd edition (1983), Volume II, pages 320-321. -Activity measuring method of XOD (EC1.2.3.2) It carried out according to the method described in "Methods of Enzymatic Analysis", 3rd edition (1983), Volume II, pages 327-328. -LDH (EC1.1.1.27) activity measuring method It carried out according to the method described in "Methods of Enzymatic Analysis", 3rd edition (1983), Volume II, pages 232-233. -CHE (EC3.1.1.13) activity measuring method It carried out according to the method described in "Methods of Enzymatic Analysis", 3rd edition (1983), Volume II, pages 169-170. -COD (EC1.1.3.17) activity measuring method It carried out according to the method described in "Methods of Enzymatic Analysis", 3rd edition (1983), Volume II, pages 172-173.
【0023】・CAT(E.C.1.11.1.6)の活性測定法 (基質溶液)240nmでの吸光度が0.500±0.050となるよ
うに過酸化水素を50mMリン酸緩衝液(pH7.0)で希釈し
た溶液。 (測定方法)基質溶液を3.0mlセルに入れ、25℃で3分
間プレインキュベートする。適当に希釈した試料を50μ
l添加し、25℃で反応を開始する。240nmでの1分間あた
りの吸光度変化率(ΔE)を下記式5に代入してCAT
活性を求める。Method for measuring the activity of CAT (EC1.11.1.6) (substrate solution) A solution prepared by diluting hydrogen peroxide with a 50 mM phosphate buffer (pH 7.0) so that the absorbance at 240 nm is 0.500 ± 0.050. . (Measurement method) The substrate solution is placed in a 3.0 ml cell and preincubated at 25 ° C for 3 minutes. 50μ of appropriately diluted sample
l Add and start the reaction at 25 ° C. Substituting the rate of change in absorbance (ΔE) per minute at 240 nm into Equation 5 below, CAT
Seek activity.
【式5】 [Formula 5]
【0024】・POD(E.C.1.11.1.7)の活性測定法 (基質溶液)240nmでの吸光度が0.32以下となるように
過酸化水素を蒸留水で希釈した溶液。 (測定方法)セルに0.1Mリン酸緩衝液(pH7.0)を3.05
ml、18mMのグアヤコール水溶液を50μl、適当に希釈し
た試料を50μl添加し、良く混合する。次いで基質溶液
を50μl添加し、反応を開始する。反応は25℃で行う。4
36nmでの1分間あたりの吸光度変化率(ΔE)を下記式
6に代入してPOD活性を求める。Method for measuring POD (EC1.11.1.7) activity (substrate solution) A solution prepared by diluting hydrogen peroxide with distilled water so that the absorbance at 240 nm is 0.32 or less. (Measurement method) 3.05 0.1M phosphate buffer (pH 7.0) in the cell
Add 50 μl of 18 mM guaiacol aqueous solution and 50 μl of appropriately diluted sample and mix well. Then 50 μl of substrate solution is added to start the reaction. The reaction is performed at 25 ° C. Four
The POD activity is determined by substituting the rate of change in absorbance (ΔE) per minute at 36 nm into Equation 6 below.
【式6】 [Formula 6]
【0025】実施例1. (1)デキストラン(分子量:100,000 〜200,000)1gを
0.2Mピロリン酸緩衝液(pH10)20mlに溶解した。この
溶液のpHをpHスタットを用いてpH8〜9に維持しな
がら、該溶液中に無水ピロメリト酸7gを少量ずつ加え
た。その後室温で2時間撹拌反応させた。得られた反応
溶液を透析チューブに入れ、イオン交換水に対して透析
して(3リットル×5回)、ピロメリト酸修飾デキストラン
(以下、PDと略記する。)を得た。尚、得られたPD
中のカルボキシル基量は、構成糖であるグルコース単位
あたり3.0個であった。 (2)AOD(ベーリンガー・マンハイム社製,胡瓜由
来)10mgを5mMリン酸緩衝液(pH6.0)2mlに溶解した
もの、又は、AOD10mgとCAT(シグマ社製,牛肝臓
由来)10mgとを5mMリン酸緩衝液(pH6.0)2mlに溶解
したものを、同リン酸緩衝液に対して数回透析した。こ
の溶液を上記(1)で得られたPD20mgを含む10mMリン酸
緩衝液(pH5.5)6mlに水溶性カルボジイミド(WSC)1
80mgを添加したものに撹拌下に加えた後、5℃で24時間
反応させた。得られた反応液を透析チューブに詰め、20
mMリン酸緩衝液(pH7.0)に対して透析して目的の修飾
AOD、即ちAODがPDに結合した[PD-AOD](AOD活
性回収率:60%)と、AODとCATが共にPDに結合
した[PD-AOD-CAT](AOD活性回収率:56%、CAT活性回収
率:85%)を夫々得た。尚、得られた[PD-AOD]、[PD-AO
D-CAT]を高速液体クロマトグラフィー(HPLC)で分析し
たところ、分子量は何れも約70万であった。Example 1. (1) Dextran (molecular weight: 100,000 to 200,000) 1 g
It was dissolved in 20 ml of 0.2 M pyrophosphate buffer (pH 10). While maintaining the pH of this solution at pH 8-9 using a pH stat, 7 g of pyromellitic dianhydride was added to this solution in small portions. Then, the mixture was reacted with stirring at room temperature for 2 hours. The obtained reaction solution was placed in a dialysis tube and dialyzed against ion-exchanged water (3 liters x 5 times) to obtain pyromellitic acid-modified dextran (hereinafter abbreviated as PD). The obtained PD
The amount of carboxyl groups therein was 3.0 per glucose unit as a constituent sugar. (2) AOD (Boehringer Mannheim, cucumber derived) 10 mg dissolved in 5 mM phosphate buffer (pH 6.0) 2 ml, or AOD 10 mg and CAT (Sigma, beef liver derived) 10 mg 5 mM What was dissolved in 2 ml of phosphate buffer (pH 6.0) was dialyzed several times against the same phosphate buffer. This solution was added to 6 ml of 10 mM phosphate buffer (pH 5.5) containing 20 mg of PD obtained in the above (1) and water-soluble carbodiimide (WSC) 1
After 80 mg was added to the mixture with stirring, the mixture was reacted at 5 ° C. for 24 hours. Fill the dialysis tube with the obtained reaction solution, and
The target modified AOD, that is, [PD-AOD] (AOD activity recovery rate: 60%) in which PD is bound to PD, was dialyzed against mM phosphate buffer (pH 7.0), and both AOD and CAT were PD. [PD-AOD-CAT] (AOD activity recovery rate: 56%, CAT activity recovery rate: 85%) bound to each were obtained. The obtained [PD-AOD] and [PD-AO
[D-CAT] was analyzed by high performance liquid chromatography (HPLC), and the molecular weight was about 700,000 in all cases.
【0026】実験例1.溶液中での保存安定性の検討 実施例1で得られた修飾AODについて、溶液中での保
存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のAOD
を5u/mlとなるように溶解したものを30℃又は15℃で所
定日数保存し、AOD活性の変化を測定した。尚、CA
Tを添加したものは、CAT活性が100u/mlとなるよう
に調製した。 (結果)得られた結果を表1に示す。また、比較のた
め、未修飾AOD(N-AOD)単独、AODをPDに結合
させたもの([PD-AOD])単独、及び未修飾AODと未修
飾CATを共存させたもの(N-AOD+CAT)を用いて同様
に測定した結果も表1に併せて示す。尚、表1の数値は
各AOD溶液調製直後のAOD活性値を100とした場合
の所定日数経過後の残存活性を示す。Experimental Example 1. Examination of Storage Stability in Solution The modified AOD obtained in Example 1 was examined for storage stability in solution. (Procedure) AOD of 20 mM phosphate buffer (pH 7.0)
What was melt | dissolved so that it might become 5 u / ml was preserve | saved at 30 degreeC or 15 degreeC for the predetermined days, and the change of AOD activity was measured. Incidentally, CA
The product to which T was added was prepared so that the CAT activity would be 100 u / ml. (Results) The results obtained are shown in Table 1. For comparison, unmodified AOD (N-AOD) alone, AOD bound to PD ([PD-AOD]) alone, and unmodified AOD and unmodified CAT coexisted (N-AOD + CAT). ) Is also shown in Table 1. The numerical values in Table 1 show the residual activity after a predetermined number of days when the AOD activity value immediately after the preparation of each AOD solution was 100.
【表1】 表1の結果から明らかな如く、AODとCATをPDに
結合させるか([PD-AOD-CAT])、AODをPDに結合さ
せたものに未修飾CATを共存させると([PD-AOD]+CA
T)、N-AOD単独、[PD-AOD]単独、又は未修飾AODと未
修飾CATを共存させたとき(N-AOD+CAT)よりもAO
D活性の安定性が著しく向上することがわかる。[Table 1] As is clear from the results in Table 1, when AOD and CAT were bound to PD ([PD-AOD-CAT]) or when AOD was bound to PD, unmodified CAT coexisted ([PD-AOD]). + CA
T), N-AOD alone, [PD-AOD] alone, or more AO than when unmodified AOD and unmodified CAT coexist (N-AOD + CAT)
It can be seen that the stability of D activity is significantly improved.
【0027】 実験例2 凍結乾燥形態での保存安定性の比較 実施例1で得られた修飾AODを5mMリン酸緩衝液(p
H7.0)で透析し、その透析の内容物を凍結乾燥した。
その凍結乾燥品を30℃、15℃又は4℃でインキュベート
し、所定日数後の酵素の残存活性を調べた。 (結果)得られた結果を表2に示す。また、比較のた
め、未修飾AOD(N-AOD)、AODをPDに結合させ
たもの([PD-AOD])を夫々単独で用いて同様に測定した
結果も表2に併せて示す。尚、表2の数値は調製直後の
凍結乾燥品のAOD活性値を100とした場合の所定日数
経過後の残存活性を示す。Experimental Example 2 Comparison of storage stability in lyophilized form The modified AOD obtained in Example 1 was treated with 5 mM phosphate buffer (p
H7.0) and the contents of the dialysis were lyophilized.
The freeze-dried product was incubated at 30 ° C., 15 ° C. or 4 ° C., and the residual activity of the enzyme after a predetermined number of days was examined. (Results) The obtained results are shown in Table 2. For comparison, Table 2 also shows the results of the same measurement using unmodified AOD (N-AOD) and AOD bound to PD ([PD-AOD]) alone. The numerical values in Table 2 show the residual activity after a predetermined number of days when the AOD activity value of the lyophilized product immediately after preparation was set to 100.
【表2】 表2の結果から明らかな如く、何れの温度で保存して
も、[PD-AOD]はN-AODに比較して保存安定性が増加する
が、更にCATを結合させておくことにより([PD-AOD-
CAT]とすることにより)、保存時の安定性が更に改善さ
れることが判る。[Table 2] As is clear from the results of Table 2, the storage stability of [PD-AOD] is higher than that of N-AOD when stored at any temperature, but by further binding CAT ([[ PD-AOD-
CAT]), the storage stability is further improved.
【0028】実施例2 AOD(ベーリンガー・マンハイム社製,胡瓜由来)10
mgとPOD(シグマ社製,西洋山葵由来)10mgを5mMリ
ン酸緩衝液(pH6.0)2mlに溶解したものを、同リン酸
緩衝液に対して数回透析した。この溶液を実施例1の
(1)で得られたPD20mgを含む10mMリン酸緩衝液(pH
5.5)6mlにWSC180mg を添加したものに撹拌下に加えた
後、5℃で24時間反応させた。得られた反応液を透析チ
ューブに詰め、20mMリン酸緩衝液(pH7.0)に対して透
析して目的のAODとPODとがPDに結合した[PD-AO
D-POD]を得た(AOD活性回収率:60%、POD活性回
収率63%)。尚、得られた[PD-AOD-POD]をHPLCで分析し
たところ、分子量は約70万であった。Example 2 AOD (Boehringer Mannheim, cucumber origin) 10
mg and POD (manufactured by Sigma Co., Western horseradish) 10 mg dissolved in 2 ml of 5 mM phosphate buffer (pH 6.0) were dialyzed several times against the same phosphate buffer. This solution was used in Example 1.
10 mM phosphate buffer solution (pH) containing 20 mg PD obtained in (1)
5.5) To 6 ml of WSC (180 mg) was added with stirring, and the mixture was reacted at 5 ° C for 24 hours. The obtained reaction solution was packed in a dialysis tube and dialyzed against 20 mM phosphate buffer (pH 7.0) to bind the desired AOD and POD to PD [PD-AO
D-POD] was obtained (AOD activity recovery rate: 60%, POD activity recovery rate 63%). When the obtained [PD-AOD-POD] was analyzed by HPLC, the molecular weight was about 700,000.
【0029】実施例3 AOD(ベーリンガー・マンハイム社製,胡瓜由来)10
mg、CAT(シグマ社製,牛肝臓由来)及びPOD(シ
グマ社製,西洋山葵由来)各10mgを5mMリン酸緩衝液
(pH6.0)2mlに溶解したものを、同リン酸緩衝液に対
して数回透析した。この溶液を、実施例1の(1)で得ら
れたPD20mgを含む10mMリン酸緩衝液(pH5.5)6mlに
WSC180mgを添加したものに撹拌下に加えた後、5℃で24
時間反応させた。得られた反応液を透析チューブに詰
め、20mMリン酸緩衝液(pH7.0)に対して透析して、目
的のAOD、CAT及びPODがPDに結合した[PD-AO
D-CAT-POD]を得た(AOD活性回収率:60%、POD活
性回収率:63%、CAT活性回収率:78%)。尚、得ら
れた[PD-AOD-CAT-POD]をHPLCで分析したところ、分子量
は約70万であった。Example 3 AOD (Boehringer Mannheim, cucumber origin) 10
mg, CAT (manufactured by Sigma, derived from beef liver) and 10 mg of POD (manufactured by Sigma, derived from horseradish) each in 2 ml of 5 mM phosphate buffer (pH 6.0) were dissolved in the same phosphate buffer. And dialyzed several times. This solution was added to 6 ml of 10 mM phosphate buffer (pH 5.5) containing 20 mg of PD obtained in (1) of Example 1.
WSC (180mg) was added to the mixture under stirring and then at 5 ℃ for 24 hours.
Reacted for hours. The obtained reaction solution was packed in a dialysis tube and dialyzed against 20 mM phosphate buffer (pH 7.0) to bind the desired AOD, CAT and POD to PD [PD-AO
D-CAT-POD] was obtained (AOD activity recovery rate: 60%, POD activity recovery rate: 63%, CAT activity recovery rate: 78%). When the obtained [PD-AOD-CAT-POD] was analyzed by HPLC, the molecular weight was about 700,000.
【0030】実験例3.溶液中での保存安定性の検討 実施例1、実施例2及び実施例3で得られた[PD-AOD]、
[PD-AOD-CAT]、[PD-AOD-POD]及び[PD-AOD-CAT-POD]とそ
の原料となったAODについて、溶液中での保存安定性
を比較した。 (操作法)20mMリン酸緩衝液(pH7.0)にAOD及び各
種修飾AODを5u/mlとなるように溶解したものを30℃
で所定日数保存し、AOD活性の変化を測定した。尚、
CATを添加したものは、CAT活性が100u/mlとなる
ように、また、PODを添加したものは POD活性が1
0u/mlとなるように調製した。 (結果)得られた結果を表3に示す。また、比較とし
て、未修飾AOD(N-AOD)単独、AODをPDに結合
させたもの([PD-AOD])、未修飾AODと未修飾POD
を共存させたもの(N-AOD+POD)、及び未修飾AODと
未修飾CATと未修飾PODを共存させたもの(N-AOD
+CAT+POD)の夫々について同様に測定した結果も表3
に併せて示す。尚、表3の数値は各AOD溶液調製直後
のAOD活性値を100とした場合の所定日数経過後の残
存活性を示すExperimental Example 3. Examination of storage stability in solution [PD-AOD] obtained in Example 1, Example 2 and Example 3,
[PD-AOD-CAT], [PD-AOD-POD] and [PD-AOD-CAT-POD] and AOD as a raw material thereof were compared for storage stability in a solution. (Procedure) AOD and various modified AODs dissolved in 20 mM phosphate buffer (pH 7.0) at 5 u / ml were dissolved at 30 ° C.
Was stored for a predetermined number of days and the change in AOD activity was measured. still,
The one with CAT had a CAT activity of 100u / ml, and the one with POD had a POD activity of 1
It was adjusted to 0 u / ml. (Results) The results obtained are shown in Table 3. For comparison, unmodified AOD (N-AOD) alone, AOD bound to PD ([PD-AOD]), unmodified AOD and unmodified POD
Coexistence (N-AOD + POD) and coexistence of unmodified AOD, unmodified CAT and unmodified POD (N-AOD
Table 3 also shows the results of similar measurement for each of (+ CAT + POD).
Are also shown. The numerical values in Table 3 show the residual activity after the lapse of a predetermined number of days when the AOD activity value immediately after the preparation of each AOD solution was 100.
【表3】 表3の結果から明らかな如く、[PD-AOD]は、未修飾AO
D(N-AOD)よりは保存 時の安定性が向上しているが、
[PD-AOD]に未修飾POD及び/又は未修飾CATを共存
させることにより(即ち、[PD-AOD]+POD、[PD-AOD]+C
AT、[PD-AOD]+POD+CATとすることにより)、或はAO
DをCAT及び/又はPODと共にPDに結合させるこ
とにより(即ち、[PD-AOD-POD]、[PD-AOD-CAT]、[PD-AO
D-CAT-POD]とすることにより)、更に飛躍的に安定性が
向上することが判る。[Table 3] As is clear from the results in Table 3, [PD-AOD] is unmodified AO.
The storage stability is better than D (N-AOD),
By coexisting unmodified POD and / or unmodified CAT in [PD-AOD] (that is, [PD-AOD] + POD, [PD-AOD] + C
AT, [PD-AOD] + POD + CAT) or AO
By binding D to PD together with CAT and / or POD (ie [PD-AOD-POD], [PD-AOD-CAT], [PD-AO
D-CAT-POD]), the stability is dramatically improved.
【0031】実施例4 (1)実施例1の(1)で得られたPD10mgにWSC100mgを加
え、pHを6.0に調整した。その後、CAT(ベーリンガ
ー・マンハイム社製,牛肝臓由来)5mgを加え、pHを
6.5に調整し、4℃で24時間反応させた。得られた反応
液を透析チューブに詰め、20mMリン酸緩衝液(pH7.0)
に対して透析し、目的の修飾CAT、即ちCATがPD
に結合した[PD-CAT]を得た(CAT活性回収率:85
%)。この修飾CATの平均分子量をHPLCで分析し
たところ約50万であった。 (2)上記(1)のPD10mgを含む0.1M リン酸緩衝液(pH
5.5)1mlにWSC150mgを添加し、攪拌溶解した後にAO
D(イーストマン・コダック社製、カボチャ由来)10mg
を加え、4℃で24時間反応させた。得られた反応液を20
mMリン酸緩衝液(pH7.0)に対して透析し、目的の修飾
AOD、即ちAODがPDに結合した[PD-AOD]を得た
(AOD活性回収率:65.8%)。Example 4 (1) WSC 100 mg was added to PD 10 mg obtained in Example 1 (1) to adjust pH to 6.0. After that, 5 mg of CAT (Boehringer Mannheim, from beef liver) was added, and the pH was adjusted.
It was adjusted to 6.5 and reacted at 4 ° C. for 24 hours. The obtained reaction solution was packed in a dialysis tube, and 20 mM phosphate buffer solution (pH 7.0) was used.
Dialyzed against the target modified CAT, ie CAT is PD
To obtain [PD-CAT] (CAT activity recovery rate: 85
%). When the average molecular weight of this modified CAT was analyzed by HPLC, it was about 500,000. (2) 0.1M phosphate buffer containing 10 mg PD of the above (1) (pH)
5.5) Add 150 mg of WSC to 1 ml, dissolve with stirring, and then
D (Eastman Kodak Company, pumpkin derived) 10mg
Was added and reacted at 4 ° C. for 24 hours. The reaction solution obtained is 20
It was dialyzed against mM phosphate buffer (pH 7.0) to obtain the target modified AOD, that is, [PD-AOD] in which AOD was bound to PD (AOD activity recovery rate: 65.8%).
【0032】実験例4 保存安定性の検討 実施例4−(1)で得られた[PD-CAT] 200u/mlと、実施例
4−(2)で得られた[PD-AOD]又は未修飾の原料AOD
(N-AOD)を5u/ml含有する20mMリン酸緩衝液(pH7.
0)を調製し、これを30℃のインキュベーターに入れ、
各々のAOD残存活性を 一定期間ごとに調べた。尚、
比較としてN-AOD又は[PD-AOD]を単独で夫々5u/ml含有す
る20mMリン酸緩衝液についても同様の実験を行った。結
果を表4に併せて示す。Experimental Example 4 Examination of storage stability [PD-CAT] 200 u / ml obtained in Example 4- (1) and [PD-AOD] obtained in Example 4- (2) or not Modified raw material AOD
(N-AOD) 20 mM phosphate buffer containing 5 u / ml (pH 7.
0) was prepared and placed in an incubator at 30 ° C.
The residual activity of each AOD was examined at regular intervals. still,
As a comparison, the same experiment was performed with 20 mM phosphate buffer containing 5 u / ml of N-AOD or [PD-AOD] alone. The results are also shown in Table 4.
【表4】 表4の結果から明らかな如く、[PD-CAT]を共存させるこ
とによりAODの保存安定性が向上することが判る。[Table 4] As is clear from the results of Table 4, it is understood that the coexistence of [PD-CAT] improves the storage stability of AOD.
【0033】実施例5.CRH(TOYOBO社製,Actinoba
cillus由来)10mgを5mMリン酸緩衝液(pH6.0)1mlに
溶解したもの、又は、CRH10mgとCAT(シグマ社
製,牛肝臓由来)3mgとを5mMリン酸緩衝液(pH6.0)
1mlに溶解したものを、実施例1の(1)で得られたPD
10mgを含む5mMリン酸緩衝液(pH5.5)2mlにWSC100mg
を添加したものに撹拌下に加えた後、4℃で24時間反応
させた。得られた反応液を透析チューブに詰め、20mMリ
ン酸緩衝液(pH7.0)に対して透析して目的の修飾CR
H、即ちCRHがPDに結合した[PD-CRH](CRH活性回
収率:41%)と、CRHとCATが共にPDに結合した
[PD-CRH-CAT](CRH活性回収率:41%、CAT活性回収率:
65%)を夫々得た。尚、得られた[PD-CRH]、[PD-CRH-CA
T]をHPLCで分析したところ、平均分子量は何れも約
50万〜80万であった。Example 5. CRH (made by TOYOBO, Actinoba
10 mg of Cillus) dissolved in 1 ml of 5 mM phosphate buffer (pH 6.0), or 10 mg of CRH and 3 mg of CAT (manufactured by Sigma, derived from beef liver) in 5 mM phosphate buffer (pH 6.0)
The PD obtained in (1) of Example 1 was dissolved in 1 ml.
WSC 100 mg in 2 ml of 5 mM phosphate buffer (pH 5.5) containing 10 mg
Was added to the mixture added with stirring and the mixture was reacted at 4 ° C. for 24 hours. The resulting reaction solution was packed in a dialysis tube and dialyzed against 20 mM phosphate buffer (pH 7.0) to obtain the desired modified CR.
H, that is, CRH bound to PD [PD-CRH] (CRH activity recovery rate: 41%), and both CRH and CAT bound to PD
[PD-CRH-CAT] (CRH activity recovery rate: 41%, CAT activity recovery rate:
65%) respectively. The obtained [PD-CRH], [PD-CRH-CA
When T] was analyzed by HPLC, the average molecular weights were about
It was 500,000 to 800,000.
【0034】実験例5.溶液中での保存安定性の検討 実施例5で得られた修飾CRHについて,溶液中での保
存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のCRH
を4.5u/mlとなるように溶解したものを、30℃又は15℃
で所定日数保存し、CRH活性の変化を測定した。尚、
CATを添加したものは、CAT活性が100u/mlとなる
ように調製した。 (結果)得られた結果を表5に示す。また、比較のた
め、未修飾CRH(N-CRH)単独、CRHをPDに結合
したもの([PD-CRH])単独、及び未修飾CRHと未修飾
CATを共存させたもの(N-CRH+CAT)を用いて同様に
測定した結果も表5に併せて示す。尚、表5の数値は各
CRH溶液調製直後のCRH活性値を100とした場合の
所定日数経過後の残存活性を示す。Experimental Example 5. Examination of Storage Stability in Solution The modified CRH obtained in Example 5 was examined for storage stability in a solution. (Procedure) Predetermined CRH in 20 mM phosphate buffer (pH 7.0)
Dissolved at 4.5u / ml at 30 ℃ or 15 ℃
Was stored for a predetermined number of days and the change in CRH activity was measured. still,
The product to which CAT was added was prepared so that the CAT activity would be 100 u / ml. (Results) The obtained results are shown in Table 5. For comparison, unmodified CRH (N-CRH) alone, CRH bound to PD ([PD-CRH]) alone, and unmodified CRH and unmodified CAT coexist (N-CRH + CAT) Table 5 also shows the results of the same measurement using. The numerical values in Table 5 show the residual activity after a lapse of a predetermined number of days when the CRH activity value immediately after the preparation of each CRH solution was 100.
【表5】 表5の結果から明らかな如く、CRHとCATをPDに
結合させるか([PD-CRH-CAT])、CRHをPDに結合さ
せたものに未修飾CATを共存させると([PD-CRH]+CA
T)、N-CRH単独、[PD-CRH]単独、又は未修飾CRHと未
修飾CATを共存させたとき(N-CRH+CAT)よりもCR
H活性の安定性が著しく向上することがわかる。[Table 5] As is clear from the results in Table 5, when CRH and CAT were bound to PD ([PD-CRH-CAT]) or when CRH was bound to PD and unmodified CAT coexisted ([PD-CRH]). + CA
T), N-CRH alone, [PD-CRH] alone, or CR when unmodified CRH and unmodified CAT coexist (N-CRH + CAT)
It can be seen that the stability of H activity is significantly improved.
【0035】実施例6.CNH(旭化成社製,Pseudomo
nas属由来)10mgを5mMリン酸緩衝液(pH6.0)1mlに
溶解したもの、又は、CNH10mgとPOD(シグマ社
製,西洋山葵由来)10mgとを5mMリン酸緩衝液(pH6.
0)1mlに溶解したものを、実施例1の(1)で得られた
PD10mgを含む5mMリン酸緩衝液(pH5.5)2mlにWSC1
00mgを添加したものに撹拌下に加えた後、4℃で24時間
反応させた。得られた反応液を透析チューブに詰め、20
mMリン酸緩衝液(pH7.0)に対して透析して目的の修飾
CNH、即ちCNHがPDに結合した[PD-CNH](CNH活
性回収率:14%)と、CNHとPODが共にPDに結合
した[PD-CNH-POD](CNH活性回収率:17%、POD活性回収
率:63%)を夫々得た。尚、得られた[PD-CNH]、[PD-CN
H-POD]をHPLCで分析したところ、平均分子量は何れ
も約60万〜100万であった。Example 6. CNH (Asahi Kasei Co., Pseudomo
10 mg of nas genus) dissolved in 1 ml of 5 mM phosphate buffer (pH 6.0), or 10 mg of CNH and 10 mg of POD (manufactured by Sigma, derived from Western radish) in 5 mM phosphate buffer (pH 6.
0) WSC1 dissolved in 1 ml was added to 2 ml of 5 mM phosphate buffer (pH 5.5) containing 10 mg of PD obtained in (1) of Example 1.
After adding 00 mg with stirring, the mixture was reacted at 4 ° C. for 24 hours. Fill the dialysis tube with the obtained reaction solution, and
The target modified CNH, that is, CNH bound to PD [PD-CNH] (CNH activity recovery rate: 14%), was dialyzed against mM phosphate buffer (pH 7.0), and both CNH and POD were PD. [PD-CNH-POD] (CNH activity recovery rate: 17%, POD activity recovery rate: 63%) bound to were obtained respectively. The obtained [PD-CNH], [PD-CN
[H-POD] was analyzed by HPLC, and the average molecular weight was about 600,000 to 1,000,000 in all cases.
【0036】実験例6.溶液中での保存安定性の検討 実施例6で得られた修飾CNHについて、溶液中での保
存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のCNH
を5u/mlとなるように溶解したものを、所定の温度で所
定日数保存し、CNH活性の変化を測定した。尚、PO
Dを添加したものは、POD活性が10u/mlとなるように
調製した。 (結果)得られた結果を表6に示す。また、比較のた
め、未修飾CNH(N-CNH)単独、CNHをPDに結合
したもの([PD-CNH])単独、及び未修飾CNHと未修飾
PODを共存させたもの(N-CNH+POD)を用いて同様に
測定した結果も表6に併せて示す。尚、表6の数値は各
CNH溶液調製直後のCNH活性値を100とした場合の
所定日数経過後の残存活性を示す。Experimental Example 6. Examination of Storage Stability in Solution The modified CNH obtained in Example 6 was examined for storage stability in a solution. (Procedure) 20 mM phosphate buffer (pH 7.0) with the specified CNH
What was melt | dissolved so that it might become 5 u / ml was preserve | saved at the predetermined temperature for the predetermined days, and the change of CNH activity was measured. In addition, PO
The product to which D was added was prepared such that the POD activity was 10 u / ml. (Results) Table 6 shows the obtained results. For comparison, unmodified CNH (N-CNH) alone, CNH bound to PD ([PD-CNH]) alone, and unmodified CNH and unmodified POD coexist (N-CNH + POD) Table 6 also shows the results of the same measurement using. The numerical values in Table 6 show the residual activity after a predetermined number of days when the CNH activity value immediately after the preparation of each CNH solution was 100.
【表6】 表6の結果から明らかな如く、CNHとPODをPDに
結合させるか([PD-CNH-POD])、CNHをPDに結合さ
せたものに未修飾PODを共存させると([PD-CNH]+PO
D)、N-CNH単独、PD-CNH単独、又は未修飾CNHと未修
飾PODを共存させたとき(N-CNH+POD)よりもCNH
活性の安定性が向上することがわかる。[Table 6] As is clear from the results in Table 6, when CNH and POD were bound to PD ([PD-CNH-POD]) or CNH was bound to PD, unmodified POD coexisted ([PD-CNH]). + PO
D), N-CNH alone, PD-CNH alone, or CNH more than when unmodified CNH and unmodified POD coexist (N-CNH + POD)
It can be seen that the stability of activity is improved.
【0037】実施例7.SAO(盛進製薬(株)製)10mg
を5mMリン酸緩衝液(pH6.0)1mlに溶解したもの、又
は、SAO10mgとCAT(シグマ社製,牛肝臓由来)3
mgとを5mMリン酸緩衝液(pH6.0)1mlに溶解したもの
を、実施例1の(1)で得られたPD10mgを含む5mMリン
酸緩衝液(pH5.5)2mlにWSC100mgを添加したものに撹
拌下に加えた後、4℃で24時間反応させた。得られた反
応液を透析チューブに詰め、20mMリン酸緩衝液(pH7.
0)に対して透析して目的の修飾SAO、即ちSAOが
PDに結合した[PD-SAO](SAO活性回収率:18%)と、
SAOとCATが共にPDに結合した[PD-SAO-CAT](SA
O活性回収率:18%、CAT活性回収率:61%)を夫々得
た。尚、得られた[PD-SAO]、[PD-SAO-CAT]をHPLCで
分析したところ、平均分子量は何れも約60万〜100万で
あった。Example 7. SAO (Made by Seishin Pharmaceutical Co., Ltd.) 10mg
Dissolved in 1 ml of 5 mM phosphate buffer (pH 6.0), or 10 mg of SAO and CAT (manufactured by Sigma, derived from beef liver) 3
What was dissolved in 1 ml of 5 mM phosphate buffer (pH 6.0) was added with 100 mg of WSC to 2 ml of 5 mM phosphate buffer (pH 5.5) containing 10 mg of PD obtained in (1) of Example 1. After adding to the mixture under stirring, the mixture was reacted at 4 ° C. for 24 hours. The obtained reaction solution was packed in a dialysis tube, and 20 mM phosphate buffer solution (pH 7.
The desired modified SAO, that is, [PD-SAO] (SAO activity recovery rate: 18%) in which SAO is bound to PD, is dialyzed against
[PD-SAO-CAT] (SA in which both SAO and CAT are bound to PD
O activity recovery rate: 18%, CAT activity recovery rate: 61%) were obtained respectively. In addition, when the obtained [PD-SAO] and [PD-SAO-CAT] were analyzed by HPLC, the average molecular weights were all about 600,000 to 1,000,000.
【0038】実験例7.溶液中での保存安定性の検討 実施例7で得られた修飾SAOについて、溶液中での保
存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のSAO
を2u/mlとなるように溶解したものを、30℃又は15℃で
所定日数保存し、SAO活性の変化を測定した。尚、C
ATを添加したものは、CAT活性が100u/mlとなるよ
うに調製した。 (結果)得られた結果を表7に示す。また、比較のた
め、未修飾SAO(N-SAO)単独、SAOをPDに結合
したもの([PD-SAO])単独、及び未修飾SAOと未修飾
CATを共存させたもの(N-SAO+CAT)を用いて同様に
測定した結果も表7に併せて示す。尚、表7の数値は各
SAO溶液調製直後のSAO活性値を100とした場合の
所定日数経過後の残存活性を示す。Experimental Example 7. Examination of Storage Stability in Solution The modified SAO obtained in Example 7 was examined for storage stability in a solution. (Procedure) 20 mM phosphate buffer (pH 7.0) with the specified SAO
What was melt | dissolved so that it might become 2 u / ml was preserve | saved at 30 degreeC or 15 degreeC for the predetermined days, and the change of SAO activity was measured. Incidentally, C
The product to which AT was added was prepared so that the CAT activity was 100 u / ml. (Results) The obtained results are shown in Table 7. For comparison, unmodified SAO (N-SAO) alone, SAO bound to PD ([PD-SAO]) alone, and unmodified SAO and unmodified CAT coexist (N-SAO + CAT) Table 7 also shows the results of the same measurement using. The numerical values in Table 7 show the residual activity after a predetermined number of days when the SAO activity value immediately after the preparation of each SAO solution was 100.
【表7】 表7の結果から明らかな如く、SAOとCATをPDに
結合させるか([PD-SAO-CAT])、SAOをPDに結合さ
せたものに未修飾CATを共存させると([PD-SAO]+CA
T)、N-SAO単独、[PD-SAO]単独、又は未修飾SAOと未
修飾CATを共存させたとき(N-SAO+CAT)よりもSA
O活性の安定性が向上することがわかる。[Table 7] As is clear from the results in Table 7, when SAO and CAT were bound to PD ([PD-SAO-CAT]), or when SAO was bound to PD, unmodified CAT coexisted ([PD-SAO]. + CA
T), N-SAO alone, [PD-SAO] alone, or SA when compared with unmodified SAO and unmodified CAT (N-SAO + CAT)
It can be seen that the stability of O activity is improved.
【0039】実施例8.GPO(旭化成工業(株)製,Ae
rococcus属由来)10mgを5mMリン酸緩衝液(pH6.0)1
mlに溶解したもの、又は、GPO10mgとCAT(シグマ
社製,牛肝臓由来)3mgとを5mMリン酸緩衝液(pH6.
0)1mlに溶解したものを、実施例1の(1)で得られた
PD10mgを含む5mMリン酸緩衝液(pH5.5)2mlにWSC1
00mgを添加したものに撹拌下に加えた後、4℃で24時間
反応させた。得られた反応液を透析チューブに詰め、20
mMリン酸緩衝液(pH7.0)に対して透析して目的の修飾
GPO、即ちGPOがPDに結合した[PD-GPO](GPO活
性回収率:19%)と、GPOとCATが共にPDに結合
した[PD-GPO-CAT](GPO活性回収率:21%、CAT活性回収
率:68%)を夫々得た。尚、得られた[PD-CRH]、[PD-CR
H-CAT]をHPLCで分析したところ、平均分子量は何れ
も約50万〜80万であった。Example 8. GPO (Ae Chemicals Co., Ltd., Ae
Rococcus genus) 10mg to 5mM phosphate buffer (pH 6.0) 1
Dissolved in 10 ml of GPO, or 10 mg of GPO and 3 mg of CAT (manufactured by Sigma, derived from beef liver) in 5 mM phosphate buffer (pH 6.
0) WSC1 dissolved in 1 ml was added to 2 ml of 5 mM phosphate buffer (pH 5.5) containing 10 mg of PD obtained in (1) of Example 1.
After adding 00 mg with stirring, the mixture was reacted at 4 ° C. for 24 hours. Fill the dialysis tube with the obtained reaction solution, and
The target modified GPO was dialyzed against mM phosphate buffer (pH 7.0), that is, [PD-GPO] (GPO activity recovery rate: 19%) in which GPO was bound to PD, and both GPO and CAT were PD. [PD-GPO-CAT] (GPO activity recovery rate: 21%, CAT activity recovery rate: 68%) bound to were obtained respectively. In addition, the obtained [PD-CRH], [PD-CR
[H-CAT] was analyzed by HPLC, and the average molecular weight was about 500,000 to 800,000.
【0040】実験例8.溶液中での保存安定性の検討 実施例8で得られた修飾GPOについて、溶液中での保
存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のGPO
を10u/mlとなるように溶解したものを、所定の温度で所
定日数保存し、GPO活性の変化を測定した。尚、CA
Tを添加したものは、CAT活性が100u/mlとなるよう
に調製した。 (結果)得られた結果を表8に示す。また、比較のた
め、未修飾GPO(N-GPO)単独、GPOをPDに結合
したもの([PD-GPO])単独、及び未修飾GPOと未修飾
CATを共存させたもの(N-GPO+CAT)を用いて同様に
測定した結果も表8に併せて示す。尚、表8の数値は各
GPO溶液調製直後のGPO活性値を100とした場合の
所定日数経過後の残存活性を示す。Experimental Example 8. Examination of Storage Stability in Solution The modified GPO obtained in Example 8 was examined for storage stability in a solution. (Procedure) 20 mM phosphate buffer (pH 7.0) with the specified GPO
What was melt | dissolved so that it might become 10 u / ml was preserve | saved at the predetermined temperature for the predetermined days, and the change of GPO activity was measured. Incidentally, CA
The product to which T was added was prepared so that the CAT activity would be 100 u / ml. (Results) The obtained results are shown in Table 8. For comparison, unmodified GPO (N-GPO) alone, GPO bound to PD ([PD-GPO]) alone, and unmodified GPO and unmodified CAT coexisted (N-GPO + CAT) Table 8 also shows the results of the same measurement using. The numerical values in Table 8 show the residual activity after a predetermined number of days when the GPO activity value immediately after the preparation of each GPO solution was 100.
【表8】 表8の結果から明らかな如く、GPOとCATをPDに
結合させるか([PD-GPO-CAT])、GPOをPDに結合さ
せたものに未修飾CATを共存させると([PD-GPO]+CA
T)、N-GPO単独、[PD-GPO]単独、又は未修飾GPOと未
修飾CATを共存させたとき(N-GPO+CAT)よりもGP
O活性の安定性が向上することがわかる。[Table 8] As is clear from the results of Table 8, when GPO and CAT are bound to PD ([PD-GPO-CAT]) or when GPO is bound to PD and unmodified CAT is allowed to coexist ([PD-GPO]). + CA
T), N-GPO alone, [PD-GPO] alone, or GP when unmodified GPO and unmodified CAT coexist (N-GPO + CAT)
It can be seen that the stability of O activity is improved.
【0041】実施例9.URS(東洋紡績(株)製,ナタ
まめ由来)10mgを5mMリン酸緩衝液(pH6.0)1mlに溶
解したもの、又は、URS10mgとPOD(シグマ社製,
西洋山葵由来)10mgとを5mMリン酸緩衝液(pH6.0)1
mlに溶解したものを、実施例1の(1)で得られたPD10
mgを含む5mMリン酸緩衝液(pH5.5)2mlにWSC100mgを
添加したものに撹拌下に加えた後、4℃で24時間反応さ
せた。得られた反応液を透析チューブに詰め、20mMリン
酸緩衝液(pH7.0)に対して透析して目的の修飾UR
S、即ちURSがPDに結合した[PD-URS](URS活性回
収率:26%)と、URSとPODが共にPDに結合した
[PD-URS-POD](URS活性回収率:26%、POD活性回収率:
61%)を夫々得た。尚、得られた[PD-URS]、[PD-URS-PO
D]をHPLCで分析したところ、平均分子量は何れも約
100万以上であった。Example 9. URS (manufactured by Toyobo Co., Ltd., derived from nata bean) 10 mg dissolved in 1 ml of 5 mM phosphate buffer (pH 6.0), or URS 10 mg and POD (manufactured by Sigma)
10 mg from Western horseradish) and 5 mM phosphate buffer (pH 6.0) 1
What was dissolved in ml was PD10 obtained in (1) of Example 1.
To 2 ml of 5 mM phosphate buffer (pH 5.5) containing 100 mg of WSC was added with stirring, and then the mixture was reacted at 4 ° C. for 24 hours. The resulting reaction solution was packed in a dialysis tube and dialyzed against 20 mM phosphate buffer (pH 7.0) to obtain the desired modified UR.
When S, that is, URS bound to PD [PD-URS] (URS activity recovery rate: 26%), both URS and POD bound to PD.
[PD-URS-POD] (URS activity recovery rate: 26%, POD activity recovery rate:
61%) respectively. The obtained [PD-URS], [PD-URS-PO
When D] was analyzed by HPLC, the average molecular weights were about
It was over a million.
【0042】実験例9.溶液中での保存安定性の検討 実施例9で得られた修飾URSについて、溶液中での保
存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のURS
を1.5u/mlとなるように溶解したものを、所定の温度で
所定日数保存し、URS活性の変化を測定した。尚、P
ODを添加したものは、POD活性が10u/mlとなるよう
に調製した。 (結果)得られた結果を表9に示す。また、比較のた
め、未修飾URS(N-URS)単独、URSをPDに結合
したもの([PD-URS])単独、及び未修飾URSと未修飾
PODを共存させたもの(N-URS+POD)を用いて同様に
測定した結果も表9に併せて示す。尚、表9の数値は各
URS溶液調製直後のURS活性値を100とした場合の
所定日数経過後の残存活性を示す。Experimental Example 9. Examination of Storage Stability in Solution The modified URS obtained in Example 9 was examined for storage stability in a solution. (Procedure) Prescribed URS in 20 mM phosphate buffer (pH 7.0)
What was melt | dissolved so that it might become 1.5 u / ml was preserve | saved at the predetermined temperature for the predetermined days, and the change of the URS activity was measured. Incidentally, P
The product to which OD was added was prepared so that the POD activity was 10 u / ml. (Results) The obtained results are shown in Table 9. For comparison, unmodified URS (N-URS) alone, URS bound to PD ([PD-URS]) alone, and unmodified URS and unmodified POD coexisted (N-URS + POD) Table 9 also shows the results of the same measurement using. The numerical values in Table 9 show the residual activity after a predetermined number of days when the URS activity value immediately after the preparation of each URS solution was 100.
【表9】 表9の結果から明らかな如く、URSとPODをPDに
結合させるか([PD-URS-POD])、URSをPDに結合さ
せたものに未修飾PODを共存させると([PD-URS]+PO
D)、N-URS単独、[PD-URS]単独、又は未修飾URSと未
修飾PODを共存させたとき(N-URS+POD)よりもUR
S活性の安定性が向上することがわかる。[Table 9] As is clear from the results in Table 9, when URS and POD were bound to PD ([PD-URS-POD]) or when URS was bound to PD, unmodified POD coexisted ([PD-URS]). + PO
D), N-URS alone, [PD-URS] alone, or UR more than when unmodified URS and unmodified POD coexist (N-URS + POD)
It can be seen that the stability of S activity is improved.
【0043】実施例10.XOD(ベーリンガー社製,
牛乳由来)10mgを5mMリン酸緩衝液(pH6.0)1mlに溶
解したもの、又は、XOD10mgとCAT(シグマ社製,
牛肝臓由来)3mgとを5mMリン酸緩衝液(pH6.0)1ml
に溶解したものを、実施例1の(1)で得られたPD10mg
を含む5mMリン酸緩衝液(pH5.5)2mlにWSC100mgを添
加したものに撹拌下に加えた後、4℃で24時間反応させ
た。得られた反応液を透析チューブに詰め、20mMリン酸
緩衝液(pH7.0)に対して透析して目的の修飾XOD、
即ちXODがPDに結合した[PD-XOD](XOD活性回収
率:40%)と、XODとCATが共にPDに結合した[P
D-XOD-CAT](XOD活性回収率:40%、CAT活性回収率:65
%)を夫々得た。尚、得られた[PD-XOD]、[PD-XOD-CAT]
をHPLCで分析したところ、平均分子量は何れも約80
万〜100万であった。Example 10. XOD (Boehringer,
10 mg (from milk) dissolved in 1 ml of 5 mM phosphate buffer (pH 6.0), or XOD 10 mg and CAT (manufactured by Sigma,
3 mg of bovine liver) and 1 ml of 5 mM phosphate buffer (pH 6.0)
10 mg of the PD obtained in (1) of Example 1 was dissolved in
100 ml of WSC was added to 2 ml of 5 mM phosphate buffer solution (pH 5.5) containing the mixture under stirring and then reacted at 4 ° C. for 24 hours. The resulting reaction solution was packed in a dialysis tube and dialyzed against 20 mM phosphate buffer (pH 7.0) to obtain the desired modified XOD,
That is, XOD bound to PD [PD-XOD] (XOD activity recovery rate: 40%), and XOD and CAT bound to PD [P-XOD].
D-XOD-CAT] (XOD activity recovery rate: 40%, CAT activity recovery rate: 65
%) Respectively. The obtained [PD-XOD] and [PD-XOD-CAT]
Was analyzed by HPLC, the average molecular weight was about 80
It was one million to one million.
【0044】実験例10.溶液中での保存安定性の検討 実施例10で得られた修飾XODについて、溶液中での
保存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のXOD
を0.1u/mlとなるように溶解したものを、所定の温度で
所定日数保存し、XOD活性の変化を測定した。尚、C
ATを添加したものは、CAT活性が100u/mlとなるよ
うに調製した。 (結果)得られた結果を表10に示す。また、比較のた
め、未修飾XOD(N-XOD)単独、XODをPDに結合
したもの([PD-XOD])単独、及び未修飾XODと未修飾
CATを共存させたもの(N-XOD+CAT)を用いて同様に
測定した結果も表10に併せて示す。尚、表10の数値
は各XOD溶液調製直後のXOD活性値を100とした場
合の所定日数経過後の残存活性を示す。Experimental Example 10. Examination of Storage Stability in Solution The modified XOD obtained in Example 10 was examined for storage stability in a solution. (Procedure) XOD in 20 mM phosphate buffer (pH 7.0)
What was melt | dissolved so that it might become 0.1 u / ml was preserve | saved at the predetermined temperature for the predetermined days, and the change of XOD activity was measured. Incidentally, C
The product to which AT was added was prepared so that the CAT activity was 100 u / ml. (Results) Table 10 shows the obtained results. For comparison, unmodified XOD (N-XOD) alone, XOD bound to PD ([PD-XOD]) alone, and unmodified XOD and unmodified CAT coexist (N-XOD + CAT) Table 10 also shows the results of the same measurement using. The numerical values in Table 10 show the residual activity after a predetermined number of days when the XOD activity value immediately after the preparation of each XOD solution was 100.
【表10】 表10の結果から明らかな如く、XODとCATをPD
に結合させるか([PD-XOD-CAT])、XODをPDに結合
させたものに未修飾CATを共存させると([PD-XOD]+
CAT)、N-XOD単独、[PD-XOD]単独、又は未修飾XODと
未修飾CATを共存させたとき(N-XOD+CAT)よりもX
OD活性の安定性が向上することがわかる。[Table 10] As is clear from the results in Table 10, XOD and CAT were PD
([PD-XOD-CAT]) or unbound CAT coexisting with XOD bound to PD ([PD-XOD] +
CAT), N-XOD alone, [PD-XOD] alone, or X when compared with unmodified XOD and unmodified CAT (N-XOD + CAT)
It can be seen that the stability of OD activity is improved.
【0045】実施例11.LDH(TOYOBO社製,微生物
由来)10mgを5mMリン酸緩衝液(pH6.0)1mlに溶解し
たもの、又は、LDH10mgとCAT(シグマ社製,牛肝
臓由来)3mgとを5mMリン酸緩衝液(pH6.0)1mlに溶
解したものを、実施例1の(1)で得られたPD10mgを含
む5mMリン酸緩衝液(pH5.5)2mlにWSC100mgを添加し
たものに撹拌下に加えた後、4℃で24時間反応させた。
得られた反応液を透析チューブに詰め、20mMリン酸緩衝
液(pH7.0)に対して透析して目的の修飾LDH、即ち
LDHがPDに結合した[PD-LDH](LDH活性回収率:39
%)と、LDHとCATが共にPDに結合した[PD-LDH-
CAT](LDH活性回収率:40%、CAT活性回収率:65%)を
夫々得た。尚、得られた[PD-LDH]、[PD-LDH-CAT]をHP
LCで分析したところ、平均分子量は何れも約60万〜10
0万であった。Example 11. LDH (manufactured by TOYOBO, derived from microorganism) dissolved in 1 ml of 5 mM phosphate buffer (pH 6.0), or 10 mg LDH and 3 mg of CAT (manufactured by Sigma, derived from beef liver) in 5 mM phosphate buffer ( What was dissolved in 1 ml of pH 6.0) was added to 2 ml of 5 mM phosphate buffer (pH 5.5) containing 10 mg of PD obtained in (1) of Example 1 with 100 mg of WSC under stirring, The reaction was carried out at 4 ° C for 24 hours.
The obtained reaction solution was packed in a dialysis tube and dialyzed against 20 mM phosphate buffer (pH 7.0) to obtain the desired modified LDH, that is, LDH bound to PD [PD-LDH] (LDH activity recovery rate: 39
%), And LDH and CAT were both bound to PD [PD-LDH-
CAT] (LDH activity recovery rate: 40%, CAT activity recovery rate: 65%) were obtained respectively. The obtained [PD-LDH] and [PD-LDH-CAT] are
When analyzed by LC, the average molecular weights were all about 600,000-10
It was 0,000.
【0046】実験例11.溶液中での保存安定性の検討 実施例11で得られた修飾LDHについて、溶液中での
保存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に所定のLDH
を5u/mlとなるように溶解したものを、所定の温度で所
定日数保存し、LDH活性の変化を測定した。尚、CA
Tを添加したものは、CAT活性が100u/mlとなるよう
に調製した。 (結果)得られた結果を表11に示す。また、比較のた
め、未修飾LDH(N-LDH)単独、LDHをPDに結合
したもの([PD-LDH])単独、及び未修飾LDHと未修飾
CATを共存させたもの(N-LDH+CAT)を用いて同様に
測定した結果も表11に併せて示す。尚、表11の数値
は各LDH溶液調製直後のLDH活性値を100とした場
合の所定日数経過後の残存活性を示す。Experimental Example 11. Examination of Storage Stability in Solution The modified LDH obtained in Example 11 was examined for storage stability in a solution. (Procedure) LDM in 20 mM phosphate buffer (pH 7.0)
What was melt | dissolved so that it might become 5 u / ml was preserve | saved at the predetermined temperature for the predetermined days, and the change of LDH activity was measured. Incidentally, CA
The product to which T was added was prepared so that the CAT activity would be 100 u / ml. (Results) The results obtained are shown in Table 11. Further, for comparison, unmodified LDH (N-LDH) alone, LDH bound to PD ([PD-LDH]) alone, and unmodified LDH and unmodified CAT coexist (N-LDH + CAT) Table 11 also shows the results of the same measurement using the. The numerical values in Table 11 show the residual activity after a predetermined number of days when the LDH activity value immediately after the preparation of each LDH solution was 100.
【表11】 表11の結果から明らかな如く、LDHとCATをPD
に結合させるか([PD-LDH-CAT])、LDHをPDに結合
させたものに未修飾CATを共存させると([PD-LDH]+
CAT)、N-LDH単独、[PD-LDH]単独、又は未修飾LDHと
未修飾CATを共存させたとき(N-LDH+CAT)よりもL
DH活性の安定性が向上することがわかる。[Table 11] As is clear from the results in Table 11, PDH was used for LDH and CAT.
([PD-LDH-CAT]), or LDH bound to PD with unmodified CAT ([PD-LDH] +
CAT), N-LDH alone, [PD-LDH] alone, or L when compared with unmodified LDH and unmodified CAT (N-LDH + CAT)
It can be seen that the stability of DH activity is improved.
【0047】実施例12.CHE(天野製薬(株)製,Ps
eudomonas属由来)10mgを5mMリン酸緩衝液(pH6.0)
1mlに溶解したもの、又は、CHE10mgとCAT(シグ
マ社製,牛肝臓由来)3mgとを5mMリン酸緩衝液(pH
6.0)1mlに溶解したものを、実施例1の(1)で得られ
たPD10mgを含む5mMリン酸緩衝液(pH5.5)2mlにWS
C100mgを添加したものに撹拌下に加えた後、4℃で24時
間反応させた。得られた反応液を透析チューブに詰め、
20mMリン酸緩衝液(pH7.0)に対して透析して目的の修
飾CHE、即ちCHEがPDに結合した[PD-CHE](CHE
活性回収率:38%)と、CHEとCATが共にPDに結
合した[PD-CHE-CAT](CHE活性回収率:40%、CAT活性回
収率:65%)を夫々得た。尚、得られた[PD-CHE]、[PD-
CHE-CAT]をHPLCで分析したところ、平均分子量は何
れも約60万〜100万であった。Example 12 CHE (Amano Pharmaceutical Co., Ltd., Ps
10 mg from the genus eudomonas) 5 mM phosphate buffer (pH 6.0)
What was dissolved in 1 ml, or 10 mg of CHE and 3 mg of CAT (manufactured by Sigma, derived from beef liver) were added to 5 mM phosphate buffer (pH).
6.0) Dissolved in 1 ml of WS was added to 2 ml of 5 mM phosphate buffer (pH 5.5) containing 10 mg of PD obtained in (1) of Example 1.
C100 mg was added to the mixture with stirring, and the mixture was reacted at 4 ° C. for 24 hours. Pack the resulting reaction solution in a dialysis tube,
It was dialyzed against 20 mM phosphate buffer (pH 7.0) and the target modified CHE, that is, CHE bound to PD [PD-CHE] (CHE
Activity recovery rate: 38%) and [PD-CHE-CAT] (CHE activity recovery rate: 40%, CAT activity recovery rate: 65%) in which both CHE and CAT bound to PD were obtained. The obtained [PD-CHE], [PD-
CHE-CAT] was analyzed by HPLC, and the average molecular weight was about 600,000 to 1,000,000 in all cases.
【0048】実験例12.溶液中での保存安定性の検討 実施例12で得られた修飾CHEについて、溶液中での
保存安定性を調べた。 (操作法)20mMリン酸緩衝液(pH7.0)に修飾CHEを
1u/mlとなるように溶解したものを、所定の温度で所定
日数保存し、CHE活性の変化を測定した。尚、CAT
を添加したものは、CAT活性が100u/mlとなるように
調製した。 (結果)得られた結果を表12に示す。また、比較のた
め、未修飾CHE(N-CHE)単独、CHEをPDに結合
したもの([PD-CHE])、及び未修飾CHEと未修飾CA
Tを共存させたもの(N-CHE+CAT)を用いて同様に測定
した結果も表12に併せて示す。尚、表12の数値は各
CHE溶液調製直後のCHE活性値を100とした場合の
所定日数経過後の残存活性を示す。Experimental Example 12. Examination of Storage Stability in Solution The modified CHE obtained in Example 12 was examined for storage stability in a solution. (Procedure) A modified CHE dissolved in 20 mM phosphate buffer (pH 7.0) at a concentration of 1 u / ml was stored at a predetermined temperature for a predetermined number of days, and changes in CHE activity were measured. Incidentally, CAT
Was added so that the CAT activity was 100 u / ml. (Results) The obtained results are shown in Table 12. For comparison, unmodified CHE (N-CHE) alone, CHE bound to PD ([PD-CHE]), unmodified CHE and unmodified CA.
Table 12 also shows the results of the same measurement using the one in which T coexists (N-CHE + CAT). The numerical values in Table 12 show the residual activity after a predetermined number of days when the CHE activity value immediately after the preparation of each CHE solution was 100.
【表12】 表12の結果から明らかな如く、CHEとCATをPD
に結合させるか([PD-CHE-CAT])、CHEをPDに結合
させたものに未修飾CATを共存させると([PD-CHE]+
CAT)、N-CHE単独、[PD-CHE]単独、又は未修飾CHEと
未修飾CATを共存させたとき(N-CHE+CAT)よりもC
HE活性の安定性が著しく向上することがわかる。[Table 12] As is clear from the results in Table 12, CHE and CAT are PD
([PD-CHE-CAT]) or CHE bound to PD with unmodified CAT ([PD-CHE] +
CAT), N-CHE alone, [PD-CHE] alone, or C when unmodified CHE and unmodified CAT coexist (N-CHE + CAT).
It can be seen that the stability of HE activity is significantly improved.
【0049】実施例13.COD(TOYOJOZO,アスロバ
クター属由来)10mgを5mMリン酸緩衝液(pH6.0)1ml
に溶解したもの、又は、COD10mgとPOD(シグマ社
製,西洋山葵由来)10mgとを5mMリン酸緩衝液(pH6.
0)1mlに溶解したものを、実施例1の(1)で得られた
PD10mgを含む5mMリン酸緩衝液(pH5.5)2mlにWSC1
00mgを添加したものに撹拌下に加えた後、4℃で24時間
反応させた。得られた反応液を透析チューブに詰め、20
mMリン酸緩衝液(pH7.0)に対して透析して目的の修飾
COD、即ちCODがPDに結合した[PD-COD](COD活
性回収率:52%)と、CODとPODが共にPDに結合
した[PD-COD-POD](COD活性回収率:52%、POD活性回収
率:62%)を夫々得た。尚、得られたPD-COD、PD-COD-P
ODをHPLCで分析したところ、平均分子量は何れも約
50万〜80万であった。Example 13. 10 mg of COD (TOYOJOZO, derived from Aslovobacter sp.) 1 mM of 5 mM phosphate buffer (pH 6.0)
Or 10 mg of COD and 10 mg of POD (manufactured by Sigma, derived from Western radish) in 5 mM phosphate buffer (pH 6.
0) WSC1 dissolved in 1 ml was added to 2 ml of 5 mM phosphate buffer (pH 5.5) containing 10 mg of PD obtained in (1) of Example 1.
After adding 00 mg with stirring, the mixture was reacted at 4 ° C. for 24 hours. Fill the dialysis tube with the obtained reaction solution, and
The target modified COD was dialyzed against mM phosphate buffer (pH 7.0), that is, [PD-COD] (COD activity recovery rate: 52%) in which COD was bound to PD, and both COD and POD were PD. [PD-COD-POD] bound to (COD activity recovery rate: 52%, POD activity recovery rate: 62%) were obtained respectively. The obtained PD-COD, PD-COD-P
When OD was analyzed by HPLC, the average molecular weights were all about
It was 500,000 to 800,000.
【0050】実験例13.溶液中での保存安定性の検討 実施例13で得られた修飾CODについて、溶液中での
保存安定性を調べた。 (操作法)50mM MOPS(3-モルホリノプロパンスルホン
酸)緩衝液(pH7.7)に修飾CODを0.5u/mlとなるよ
うに溶解したものを、30℃又は15℃で所定日数保存し、
COD活性の変化を測定した。尚、PODを添加したも
のは、POD活性が10u/mlとなるように調製した。 (結果)得られた結果を表13に示す。また、比較のた
め、未修飾COD(N-COD)単独、CODをPDに結合
したもの([PD-COD])単独、及び未修飾CODと未修飾
PODを共存させたもの(N-COD+POD)を用いて同様に測
定した結果も表13に併せて示す。尚、表13の数値は
各COD溶液調製直後のCOD活性値を100とした場合
の所定日数経過後の残存活性を示す。Experimental Example 13. Examination of Storage Stability in Solution The modified COD obtained in Example 13 was examined for storage stability in a solution. (Procedure) A modified COD dissolved in 50 mM MOPS (3-morpholinopropanesulfonic acid) buffer (pH 7.7) at 0.5 u / ml was stored at 30 ° C or 15 ° C for a predetermined number of days,
The change in COD activity was measured. In addition, what added POD was prepared so that POD activity might be set to 10 u / ml. (Results) The obtained results are shown in Table 13. Also, for comparison, unmodified COD (N-COD) alone, COD bound to PD ([PD-COD]) alone, and unmodified COD and unmodified POD coexist (N-COD + POD) Table 13 also shows the results of the same measurement using the. The numerical values in Table 13 show the residual activity after a predetermined number of days when the COD activity value immediately after the preparation of each COD solution was 100.
【表13】 表13の結果から明らかな如く、CODとPODをPD
に結合させるか([PD-COD-POD])、CODをPDに結合
させたものに未修飾PODを共存させると([PD-COD]+
POD)、N-COD単独、[PD-COD]単独、又は未修飾CODと
未修飾PODを共存させたとき(N-COD+POD)よりもC
OD活性の安定性が向上することがわかる。[Table 13] As is clear from the results in Table 13, COD and POD are PD
Or (PD-COD-POD), or when the unmodified POD coexists with the COD bound to PD ([PD-COD] +
P)), N-COD alone, [PD-COD] alone, or C when unmodified COD and unmodified POD coexist (N-COD + POD)
It can be seen that the stability of OD activity is improved.
【0051】[0051]
【発明の効果】以上述べた如く、本発明は、過酸化水素
感受性酵素の安定性を向上させる方法を提供するもので
ある。本発明によれば、酵素のKm値、至適pH範囲等
の酵素反応に際しての基本的性質を変化させることな
く、過酸化水素感受性酵素の保存安定性、特に水溶液中
での保存安定性を従来法に比較して著しく向上させるこ
とができるので、本発明を利用して臨床検査試液の調製
を行えば、得られる臨床検査試液は溶液状態で長期間使
用可能となるばかりでなく、酵素活性が殆ど変化しない
ため、最初の酵素仕込み量も少なくすることができると
いう効果を奏する。また、本発明によって調製された臨
床検査試液は、凍結乾燥品としての保存性も従来のもの
より良好であり、更には再溶解時の溶解性やその後の経
時安定性も良好であるので、斯業に貢献するところ極め
て大なる発明である。As described above, the present invention provides a method for improving the stability of hydrogen peroxide-sensitive enzyme. According to the present invention, the storage stability of a hydrogen peroxide-sensitive enzyme, particularly the storage stability in an aqueous solution, can be improved without changing the basic properties in the enzymatic reaction such as the Km value of the enzyme and the optimum pH range. Since it can be remarkably improved as compared with the method, if the clinical test reagent is prepared by utilizing the present invention, the obtained clinical test reagent can be used in a solution state for a long period of time and also has an enzyme activity. Since there is almost no change, it is possible to reduce the initial amount of enzyme charged. Further, the clinical test reagent prepared according to the present invention has better storability as a freeze-dried product than conventional ones, and further has good solubility at the time of re-dissolution and good stability over time. It is a great invention that contributes to the industry.
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12N 9/80 Z 9359−4B Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C12N 9/80 Z 9359-4B
Claims (15)
下、過酸化水素感受性酵素と略記する。)をカタラーゼ
又は/及びパーオキシダーゼと共に、脱水縮合剤を用い
て、多数個のカルボキシル基を有する多糖類又は多数個
のカルボキシル基を有するポリアミノ酸に結合させるこ
とを特徴とする、過酸化水素感受性酵素の安定化方法。1. An enzyme that is easily deactivated in the presence of hydrogen peroxide (hereinafter abbreviated as hydrogen peroxide-sensitive enzyme) together with catalase and / or peroxidase using a dehydration condensation agent to give a large number of carboxyl groups. A method for stabilizing a hydrogen peroxide-sensitive enzyme, which comprises binding to a polysaccharide having a group or a polyamino acid having a large number of carboxyl groups.
て多数個のカルボキシル基を有する多糖類又は多数個の
カルボキシル基を有するポリアミノ酸を結合させたもの
と、カタラーゼ又は/及びパーオキシダーゼに脱水縮合
剤を用いて多数個のカルボキシル基を有する多糖類又は
多数個のカルボキシル基を有するポリアミノ酸を結合さ
せたものとを共存させることを特徴とする、過酸化水素
感受性酵素の安定化方法。2. A catalyst comprising a hydrogen peroxide-sensitive enzyme bound to a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups using a dehydration condensing agent, and catalase or / and peroxidase. A method for stabilizing a hydrogen peroxide-sensitive enzyme, which comprises coexisting with a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups bound together using a dehydration condensing agent.
て多数個のカルボキシル基を有する多糖類又は多数個の
カルボキシル基を有するポリアミノ酸を結合させたもの
と、カタラーゼ又は/及びパーオキシダーゼとを共存さ
せることを特徴とする、過酸化水素感受性酵素の安定化
方法。3. A combination of a hydrogen peroxide-sensitive enzyme with a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups using a dehydration condensing agent, catalase or / and peroxidase. A method for stabilizing a hydrogen peroxide-sensitive enzyme, characterized in that:
脱水縮合剤を用いて多数個のカルボキシル基を有する多
糖類又は多数個のカルボキシル基を有するポリアミノ酸
を結合させたものと、過酸化水素感受性酵素とを共存さ
せることを特徴とする、過酸化水素感受性酵素の安定化
方法。4. A catalase or / and peroxidase bound to a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups using a dehydration condensing agent, and a hydrogen peroxide-sensitive enzyme. A method for stabilizing a hydrogen peroxide-sensitive enzyme, characterized in that:
る、請求項1〜4の何れかに記載の安定化方法。5. The stabilizing method according to claim 1, wherein the dehydration condensing agent is a carbodiimide derivative.
が、多糖類に酸無水物を作用させて得られたものであ
る、請求項1〜5の何れかに記載の安定化方法。6. The stabilization method according to claim 1, wherein the polysaccharide having a large number of carboxyl groups is obtained by allowing an acid anhydride to act on the polysaccharide.
が、ブロムシアン法、エピクロルヒドリン法、1-シアノ
-4-ジメチルアミノピリジニウム塩法、2,4,6-トリクロ
ロ-1,3,5-トリアジン法又は過ヨウ素酸酸化法により活
性化された多糖類にアミノ酸を反応させて得られたもの
である、請求項1〜5の何れかに記載の安定化方法。7. A polysaccharide having a large number of carboxyl groups is a bromocyan method, an epichlorohydrin method, 1-cyano.
It is obtained by reacting an amino acid with a polysaccharide activated by the 4-dimethylaminopyridinium salt method, the 2,4,6-trichloro-1,3,5-triazine method or the periodate oxidation method. The stabilization method according to any one of claims 1 to 5.
ノ酸が、ポリグルタミン酸、ポリアスパラギン酸又は、
多数個のグルタミン酸残基又は/及び多数個のアスパラ
ギン酸残基を含むポリアミノ酸である、請求項1〜5の
何れかに記載の安定化方法。8. A polyamino acid having a large number of carboxyl groups is polyglutamic acid, polyaspartic acid, or
The stabilization method according to any one of claims 1 to 5, which is a polyamino acid containing a large number of glutamic acid residues and / or a large number of aspartic acid residues.
オキシダーゼ、クレアチナーゼ、クレアチニナーゼ、サ
ルコシンオキシダーゼ、L-α-グリセロフォスフェイト
オキシダーゼ、ウレアーゼ、キサンチンオキシダーゼ、
乳酸脱水素酵素、コレステロールエステラーゼ又はコリ
ンオキシダーゼである、請求項1〜8の何れかに記載の
安定化方法。9. A hydrogen peroxide-sensitive enzyme is ascorbate oxidase, creatinase, creatininase, sarcosine oxidase, L-α-glycerophosphate oxidase, urease, xanthine oxidase,
The stabilization method according to claim 1, which is lactate dehydrogenase, cholesterol esterase or choline oxidase.
/及びパーオキシダーゼと共に、脱水縮合剤を用いて、
多数個のカルボキシル基を有する多糖類又は多数個のカ
ルボキシル基を有するポリアミノ酸に結合させてなる、
修飾過酸化水素感受性酵素。10. A dehydration condensation agent is used together with a hydrogen peroxide-sensitive enzyme together with catalase or / and peroxidase,
It is bound to a polysaccharide having a large number of carboxyl groups or a polyamino acid having a large number of carboxyl groups,
Modified hydrogen peroxide sensitive enzyme.
る、請求項10に記載の修飾過酸化水素感受性酵素。11. The modified hydrogen peroxide-sensitive enzyme according to claim 10, wherein the dehydration condensing agent is a carbodiimide derivative.
が、多糖類に酸無水物を作用させて得られたものであ
る、請求項10又は11に記載の修飾過酸化水素感受性
酵素。12. The modified hydrogen peroxide-sensitive enzyme according to claim 10 or 11, wherein the polysaccharide having a large number of carboxyl groups is obtained by reacting a polysaccharide with an acid anhydride.
が、ブロムシアン法、エピクロルヒドリン法、1-シアノ
-4-ジメチルアミノピリジニウム塩法、2,4,6-トリクロ
ロ-1,3,5-トリアジン法又は過ヨウ素酸酸化法により活
性化された多糖類にアミノ酸を反応させて得られたもの
である、請求項10又は11に記載の修飾過酸化水素感
受性酵素。13. A polysaccharide having a large number of carboxyl groups is prepared by the bromocyan method, epichlorohydrin method, 1-cyano.
It is obtained by reacting an amino acid with a polysaccharide activated by the 4-dimethylaminopyridinium salt method, the 2,4,6-trichloro-1,3,5-triazine method or the periodate oxidation method. The modified hydrogen peroxide-sensitive enzyme according to claim 10 or 11.
ミノ酸が、ポリグルタミン酸、ポリアスパラギン酸又
は、多数個のグルタミン酸残基又は/及び多数個のアス
パラギン酸残基を含むポリアミノ酸である、請求項10
又は11に記載の修飾過酸化水素感受性酵素。14. The polyamino acid having multiple carboxyl groups is polyglutamic acid, polyaspartic acid, or a polyamino acid containing multiple glutamic acid residues or / and multiple aspartic acid residues.
Alternatively, the modified hydrogen peroxide-sensitive enzyme according to item 11.
酸オキシダーゼ、クレアチナーゼ、クレアチニナーゼ、
サルコシンオキシダーゼ、L-α-グリセロフォスフェイ
トオキシダーゼ、ウレアーゼ、キサンチンオキシダー
ゼ、乳酸脱水素酵素、コレステロールエステラーゼ又は
コリンオキシダーゼである、請求項10〜14に記載の
修飾過酸化水素感受性酵素。15. A hydrogen peroxide-sensitive enzyme is ascorbate oxidase, creatinase, creatininase,
The modified hydrogen peroxide-sensitive enzyme according to claim 10, which is sarcosine oxidase, L-α-glycerophosphate oxidase, urease, xanthine oxidase, lactate dehydrogenase, cholesterol esterase or choline oxidase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5352166A JPH06245764A (en) | 1992-12-29 | 1993-12-28 | Method for stabilizing hydrogen peroxide-sensitive enzyme |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-361446 | 1992-12-29 | ||
JP36144692 | 1992-12-29 | ||
JP5352166A JPH06245764A (en) | 1992-12-29 | 1993-12-28 | Method for stabilizing hydrogen peroxide-sensitive enzyme |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06245764A true JPH06245764A (en) | 1994-09-06 |
Family
ID=26579573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5352166A Withdrawn JPH06245764A (en) | 1992-12-29 | 1993-12-28 | Method for stabilizing hydrogen peroxide-sensitive enzyme |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06245764A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016510725A (en) * | 2013-02-26 | 2016-04-11 | アヴェント インコーポレイテッド | Preparation of stabilized catalase enzyme with surfactant |
JP2016054665A (en) * | 2014-09-08 | 2016-04-21 | 東洋紡株式会社 | Sarcosine oxidase stabilization method |
-
1993
- 1993-12-28 JP JP5352166A patent/JPH06245764A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016510725A (en) * | 2013-02-26 | 2016-04-11 | アヴェント インコーポレイテッド | Preparation of stabilized catalase enzyme with surfactant |
JP2016054665A (en) * | 2014-09-08 | 2016-04-21 | 東洋紡株式会社 | Sarcosine oxidase stabilization method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU665982B2 (en) | A method to maintain the activity in polyethylene glycol-modified proteolytic enzymes | |
Hong et al. | Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker | |
EP0523130B1 (en) | Enzyme stabilisation | |
Ryan et al. | Thermostabilized chemical derivatives of horseradish peroxidase | |
JP3125428B2 (en) | Modification enzyme | |
EP0542914A1 (en) | Improved diagnostic and therapeutic compositions | |
US5258501A (en) | Stabilization of glycoproteins | |
JPH0236228B2 (en) | ||
Yodoya et al. | Immobilization of bromelain onto porous copoly (γ-methyl-L-glutamate/L-leucine) beads | |
JPH0335920B2 (en) | ||
Liburdi et al. | Lysozyme immobilized on micro-sized magnetic particles: kinetic parameters at wine pH | |
JPH06245764A (en) | Method for stabilizing hydrogen peroxide-sensitive enzyme | |
Soler et al. | Reactivation strategies by unfolding/refolding of chymotrypsin derivatives after inactivation by organic solvents | |
Emi et al. | Protease immobilization onto copoly (ethylene/acrylic acid) fiber | |
Irazoqui et al. | Hydrophilization of immobilized model enzymes suggests a widely applicable method for enhancing protein stability in polar organic co-solvents | |
Naka et al. | Chitin-graft-poly (2-methyl-2-oxazoline) enhanced solubility and activity of catalase in organic solvent | |
Kojima et al. | Polymer conjugation to Cu, Zn-SOD and suppression of hydroxyl radical generation on exposure to H2O2: Improved stability of SOD in vitro and in vivo | |
Colak et al. | Immobilization of paraoxonase onto chitosan and its characterization | |
JP3696267B2 (en) | Method for stabilizing bioactive protein | |
Baskaran et al. | Purification and active site modification studies on glyoxalase I from monkey intestinal mucosa | |
Fernández et al. | Stabilization of α‐chymotrypsin by modification with β‐cyclodextrin derivatives | |
Sakai et al. | Protopectin solubilizing enzyme that does not catalyze the degradation of polygalacturonic acid | |
Karakuş et al. | Immobilization of apricot pectinesterase (Prunus armeniaca L.) on porous glass beads and its characterization | |
Li et al. | Chitosaneous hydrogel beads for immobilizing neutral protease for application in the preparation of low molecular weight chitosan and chito‐oligomers | |
Valentova et al. | Pepsin immobilized by covalent fixation to hydroxyalkyl methacrylate gels: preparation and characterization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010306 |