JPH06209181A - Radio wave absorber - Google Patents
Radio wave absorberInfo
- Publication number
- JPH06209181A JPH06209181A JP226693A JP226693A JPH06209181A JP H06209181 A JPH06209181 A JP H06209181A JP 226693 A JP226693 A JP 226693A JP 226693 A JP226693 A JP 226693A JP H06209181 A JPH06209181 A JP H06209181A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- wave absorber
- magnetic
- ferrite sintered
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 28
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 57
- 229920005989 resin Polymers 0.000 claims abstract description 16
- 239000011347 resin Substances 0.000 claims abstract description 16
- 229910001035 Soft ferrite Inorganic materials 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 11
- 230000004907 flux Effects 0.000 claims abstract description 6
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 6
- 239000011029 spinel Substances 0.000 claims abstract description 6
- 229910001047 Hard ferrite Inorganic materials 0.000 claims abstract description 5
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 5
- 230000035699 permeability Effects 0.000 abstract description 19
- 239000000696 magnetic material Substances 0.000 abstract description 16
- 238000000034 method Methods 0.000 abstract description 4
- 239000011701 zinc Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 229910052725 zinc Inorganic materials 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 10
- 230000002269 spontaneous effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電波吸収体、特にフェラ
イトを利用した電波吸収体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorber, and more particularly to a radio wave absorber using ferrite.
【0002】[0002]
【従来の技術】建築物による通信,放送等の電波障害を
防止するために、その壁面に電波吸収体の施工を行うこ
とにより、電波吸収壁とすることが従来より行われてい
る。この電波吸収体の材料としては、VHF〜UHFの
周波数体ではフェライト焼結体が実用化されている。2. Description of the Related Art In order to prevent radio wave interference such as communication and broadcasting due to buildings, it has been conventionally practiced to construct a radio wave absorber by constructing a radio wave absorber on the wall surface. As a material for the radio wave absorber, a ferrite sintered body has been put to practical use in the frequency body of VHF to UHF.
【0003】[0003]
【発明が解決しようとする課題】上述した従来のフェラ
イト焼結体を用いる電波吸収体においては、その電波吸
収特性は優れているものの、焼結体であるため加工・成
形性や施工性が悪いという問題点があった。The electromagnetic wave absorber using the above-mentioned conventional ferrite sintered body has excellent electromagnetic wave absorption characteristics, but is poor in workability / formability and workability because it is a sintered body. There was a problem.
【0004】[0004]
【課題を解決するための手段】本発明の電波吸収体は、
金属層の上に磁性体層を設け、さらにその層の上に誘電
体層を設けた多層構造の吸収体である。本発明の電波吸
収体は、直径が1〜10mm、アスペクト比が5以上の
針状のソフトフェライト焼結体を、針状の方向が板面に
垂直になるように配列させて、これらを樹脂で結合させ
た板を作成し、これにハードフェライト粒子粉末を樹脂
に混練して厚さ2〜30mmに成形し、着磁した永久磁
石を片側または両側に、あるいは交互に積層したもので
ある。The radio wave absorber of the present invention comprises:
The absorber has a multilayer structure in which a magnetic layer is provided on a metal layer and a dielectric layer is further provided on the magnetic layer. In the radio wave absorber of the present invention, needle-shaped soft ferrite sintered bodies having a diameter of 1 to 10 mm and an aspect ratio of 5 or more are arranged so that the needle-shaped direction is perpendicular to the plate surface, and these are made into resin. Is prepared by kneading a hard ferrite particle powder with a resin to form a plate having a thickness of 2 to 30 mm, and magnetized permanent magnets are laminated on one side or both sides or alternately.
【0005】ここで用いられる針状ソフトフェライト焼
結体としては、ニッケル亜鉛スピネルフェライト焼結
体、またはアルカリ土類金属イオンを含んだW型,Y
型,あるいはZ型の六方晶フェライト焼結体である。The needle-shaped soft ferrite sintered body used here is a nickel zinc spinel ferrite sintered body, or a W type, Y containing alkaline earth metal ions.
-Type or Z-type hexagonal ferrite sintered body.
【0006】このような針状の磁性体からなるボンド磁
性体を用いれば、従来のフェライト焼結体を用いた電波
吸収体の問題点をなくすことができる。By using the bond magnetic body made of such needle-shaped magnetic body, it is possible to eliminate the problems of the radio wave absorber using the conventional ferrite sintered body.
【0007】[0007]
【作用】図2(a)に示すように、磁性体層2(厚さd
m 、比透磁率μ=μ′−jμ″)の上に誘電体層3(厚
さde 、比誘電率ε=ε′−jε″)を設けたものを考
えると、dm 、de が波長よりも十分に短くなる周波数
帯域では図2(b)に示すような等価回路として扱うこ
とができる。As shown in FIG. 2A, the magnetic layer 2 (thickness d
m, the relative permeability μ = μ'-jμ ") dielectric layer 3 on the (thickness d e, the relative dielectric constant ε = ε'-jε") Given what was provided, d m, d e In the frequency band where is sufficiently shorter than the wavelength, it can be treated as an equivalent circuit as shown in FIG.
【0008】図1(b)において抵抗,リアクタンス,
コンダクタンス及びサセプタンスは次のように表され
る。In FIG. 1 (b), resistance, reactance,
Conductance and susceptance are expressed as follows.
【0009】 抵抗 : R=Z0 (ω/c)μ″dm リアクタンス : X=Z0 (ω/c)μ′dm コンダクタンス: G=(1/Z0 )(ω/c)ε″d
e サセプタンス : B=(1/Z0 )(ω/c)ε′d
e ここで、磁性体の透磁率がμ′>μ″なる周波数帯域で
は、等価回路の抵抗Rは無視できてリアクタンスのみと
なり、誘電体のサセプタンスと磁性体のリアクタンスと
で並列共振回路が形成される。これが共振状態にあると
き、この共振回路の入力インピーダンスは無限大とな
り、開放壁と等価となるため、誘電体のコンダクタンス
によるサリスバリー型電波吸収体を構成することにな
る。共振状態でばB=1/Xであるので、磁性体として
は、μ′>μ″及び(ε′dm )(μ′de )=(c/
ω)2 の条件、すなわちμ′>μ″、及び、薄層化のた
めにμ′が大きいことが要求されるのである。Resistance: R = Z0(Ω / c) μ ″ dm Reactance: X = Z0(Ω / c) μ'dm Conductance: G = (1 / Z0) (Ω / c) ε ″ d
e Susceptance: B = (1 / Z0) (Ω / c) ε′d
e Here, in the frequency band where the magnetic permeability of the magnetic material is μ ′> μ ″
Can ignore the resistance R of the equivalent circuit and only reactance
, The susceptance of the dielectric and the reactance of the magnetic
A parallel resonant circuit is formed by. If this is in resonance
The input impedance of this resonant circuit is infinite.
Is equivalent to an open wall, so the conductance of the dielectric is
To construct a Salisbury-type electromagnetic wave absorber.
It In the resonance state, B = 1 / X, so as a magnetic substance
Is μ ′> μ ″ and (ε′dm) (Μ'de) = (C /
ω)2Conditions, that is, μ ′> μ ″, and thinning
Therefore, μ'is required to be large.
【0010】本発明者らは鋭意検討を重ねた結果、図1
(a),(b)に示すように、直径が1〜10mm、ア
スペクト比が5以上の針状のソフトフェライト焼結体
を、針状の方向が板面に垂直になるように配列させ、こ
れらを樹脂で結合させた板5を作成し、これにハードフ
ェライト粒子粉末を樹脂に混練して厚さ2〜30mmに
成形し、着磁した永久磁石4を片側または両側に、ある
いは交互に積層した構成の多層型ボンド磁性体が、上述
の条件を満足することを見出し本発明に至ったものであ
る。As a result of intensive studies by the present inventors, FIG.
As shown in (a) and (b), needle-shaped soft ferrite sintered bodies having a diameter of 1 to 10 mm and an aspect ratio of 5 or more are arranged so that the needle-shaped direction is perpendicular to the plate surface, A plate 5 in which these are bonded with a resin is prepared, and hard ferrite particle powder is kneaded with the resin to form a thickness of 2 to 30 mm, and magnetized permanent magnets 4 are laminated on one side or both sides or alternately. The present invention has been completed by finding that the multi-layer bond magnetic material having the above structure satisfies the above-mentioned conditions.
【0011】この理由については現在も検討中である
が、これまでのところ以下のように考えている。今、図
3(a)に示すように、電磁波の進行方向に板状磁性体
の板面を垂直に置いた状況を考える。磁性体の自発磁気
モーメントMS と板面の垂直方向(電磁波の入射方向)
とのなす角度をθとし、電磁波の磁場をHとすると、図
3(b)に示すように、透磁率を誘起する磁場はHco
sθで表され、θ=0の時の磁性体の透磁率をμe とす
ると、観測される透磁率μは次式で与えられる。The reason for this is still under consideration, but so far it is considered as follows. Now, consider a situation in which the plate surface of the plate-shaped magnetic body is placed vertically in the traveling direction of the electromagnetic wave as shown in FIG. Spontaneous magnetic moment M S of magnetic material and vertical direction of plate surface (incident direction of electromagnetic wave)
Assuming that the angle formed by and is θ and the magnetic field of the electromagnetic wave is H, the magnetic field that induces the magnetic permeability is Hco, as shown in FIG.
represented by S.theta, when the magnetic permeability of the magnetic body when the theta = 0 and mu e, permeability mu observed is given by the following equation.
【0012】μ=(M−MS )/H=μe Hcosθ/
H=μe cosθ 従来のフェライト焼結体、およびフェライト圧粉体にお
いては、自発磁気モーメントはランダムな方向を向いて
いるので、cosθの集団平均は、 〈cosθ〉=cosθd(cosθ)/d(cos
θ)=1/2 すなわち、θ=0の時の磁性体の透磁率μe の半分とな
ってしまっている。Μ = (M−M S ) / H = μ e Hcos θ /
H = μ e cos θ In conventional ferrite sintered bodies and ferrite green compacts, the spontaneous magnetic moments are oriented in random directions, so the collective average of cos θ is: <cos θ> = cos θ d (cos θ) / d ( cos
θ) = 1/2 That is, it is half of the magnetic permeability μ e of the magnetic substance when θ = 0.
【0013】本発明における多層型ボンド磁性体におい
ては、針状のフェライト焼結体を板面に垂直に配向させ
ることによって生ずる形状異方性と、着磁したボンド永
久磁石を積層したことによって生ずる静磁場とによっ
て、磁気モーメントが板面に垂直に配向し〈cosθ〉
=1となり、透磁率μは最大値μe となる。In the multi-layer bond magnetic material of the present invention, the shape anisotropy caused by orienting the acicular ferrite sintered body perpendicularly to the plate surface and the lamination of magnetized bond permanent magnets. By the static magnetic field, the magnetic moment is oriented perpendicular to the plate surface <cos θ>
= 1, and the magnetic permeability μ has a maximum value μ e .
【0014】また、磁性体の自然共鳴の共鳴周波数ωr
は、 ωr =(gμB /h)H′=(gμB /h)[Ha +
(NX −NZ )MS ] で与えられる。ここで、gはランデ因子、μB はボーア
磁子、hはプランク定数、H′は異方性磁場、Ha は結
晶磁気異方性磁場、NX ,NZ は電磁波の進行方向に垂
直,平行な方向の反磁場係数である。従来のフェライト
焼結体およびフェライト圧粉体においては、その用いら
れる形状が板状であることからNZ >NXであるので、
自然共鳴の共鳴周波数は低くなる傾向がある。本発明に
おける多層型ボンド磁性体においては、針状のフェライ
ト焼結体を板面に垂直に配向させることでNZ >NX と
なり、自然共鳴の共鳴周波数が高周波数側に移行し得る
のである。The resonance frequency ω r of the natural resonance of the magnetic substance
Is ω r = (gμ B / h) H '= (gμ B / h) [H a +
(N X −N Z ) M S ]. Where g is a Lande factor, μ B is a Bohr magneton, h is a Planck's constant, H ′ is an anisotropic magnetic field, H a is a crystalline magnetic anisotropic magnetic field, and N X and N Z are perpendicular to the traveling direction of the electromagnetic wave. , The demagnetizing factor in the parallel direction. In conventional ferrite sintered bodies and ferrite green compacts, since the shape used is plate-like, N Z > N X.
The resonance frequency of natural resonance tends to be low. In the multilayer bonded magnetic body of the present invention, by orienting the acicular ferrite sintered body perpendicular to the plate surface, N Z > N X , and the resonance frequency of natural resonance can shift to the high frequency side. .
【0015】本発明者らは、透磁率の周波数特性につい
ての検討を重ねた結果、直径が1〜10mm、アスペク
ト比が5以上の針状のソフトフェライト焼結体を、針状
の方向が板面に垂直になるように配列させ、これらを樹
脂で結合させたシートを作成し、これにハードフェライ
ト粒子粉末を樹脂に混練して厚さ2〜30mmに成形
し、着磁した永久磁石を片側または両側に、あるいは交
互に積層した構成の多層型ボンド磁性体において、針状
フェライトを配向させることによる形状異方性と永久磁
石からの静磁場によって、自発磁気モーメントが板面に
垂直方向にそろったため透磁率が大きくなり、かつ、異
方性磁場が大きくなったため共鳴周波数も高くなり、そ
れによって、MHz帯域のような高周波数帯域でも、従
来のフェライト焼結体、フェライト圧粉体よりμ′が大
きく、μ″が小さい材料を実現できたのである。As a result of repeated studies on the frequency characteristics of magnetic permeability, the present inventors have made a needle-shaped soft ferrite sintered body having a diameter of 1 to 10 mm and an aspect ratio of 5 or more into a plate having a needle-shaped direction. A sheet is prepared by arranging them so that they are perpendicular to the plane and binding them with resin, and kneading hard ferrite particle powder into the resin to form a sheet with a thickness of 2 to 30 mm, and magnetizing the permanent magnet on one side. Alternatively, in a multilayer bond magnetic material that is laminated on both sides or alternately, the spontaneous magnetic moment is aligned in the direction perpendicular to the plate surface due to the shape anisotropy by orienting the acicular ferrite and the static magnetic field from the permanent magnet. Therefore, the magnetic permeability is increased and the anisotropic magnetic field is increased, so that the resonance frequency is also increased, which allows the conventional ferrite sintering even in a high frequency band such as the MHz band. A large mu 'than ferrite powder compact, it was able to realize the material mu "is small.
【0016】針状ソフトフェライト焼結体においては、
電気抵抗が高く、自発磁気モーメントも大きく、空気中
で焼成可能であるニッケル亜鉛スピネルフェライト針状
焼結体を用いることで50〜300MHzの周波数帯域
において、所望のμが得られる。また、針状ソフトフェ
ライト焼結体においては、自発磁気モーメントが大き
く、かつ、異方性磁場の大きいアルカリ土類金属イオン
を含んだW型,Y型,あるいはZ型の六方晶フェライト
焼結体を用いることで50〜800MHzの周波数帯域
において、所望のμが得られる。特に、六方晶フェライ
ト焼結体を用いた構成のものにおいては、さらに高周波
数帯域においても上述の所望のμが得られることが期待
される。In the acicular soft ferrite sintered body,
A desired μ can be obtained in the frequency band of 50 to 300 MHz by using a nickel-zinc spinel ferrite needle-shaped sintered body that has a high electric resistance, a large spontaneous magnetic moment, and can be fired in air. The acicular soft ferrite sintered body is a W-type, Y-type, or Z-type hexagonal ferrite sintered body containing alkaline earth metal ions having a large spontaneous magnetic moment and a large anisotropic magnetic field. By using, the desired μ can be obtained in the frequency band of 50 to 800 MHz. In particular, in the structure using the hexagonal ferrite sintered body, it is expected that the above-mentioned desired μ can be obtained even in a higher frequency band.
【0017】[0017]
【実施例】次に本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.
【0018】実施例1として、直径が2mm、アスペク
ト比が8の針状の(Ni,Zn)−フェライト焼結体
(Ni0.3 Zn0.7 Fe2 O4 )を、針状の方向が板面
に垂直になるように配列させ、これらをエポキシ樹脂で
結合させ測定用として外径38.5mm、内径17.0
mm、厚み9.5mmのリング状の(Ni,Zn)−フ
ェライトボンド磁性体を作成した。As Example 1, a needle-shaped (Ni, Zn) -ferrite sintered body (Ni 0.3 Zn 0.7 Fe 2 O 4 ) having a diameter of 2 mm and an aspect ratio of 8 was used, and the needle-shaped direction was on the plate surface. They are arranged vertically, and these are bonded with an epoxy resin, and for measurement, the outer diameter is 38.5 mm and the inner diameter is 17.0.
A ring-shaped (Ni, Zn) -ferrite bond magnetic body having a thickness of 9.5 mm and a thickness of 9.5 mm was prepared.
【0019】べつに、EVA樹脂24gと、Ba−フェ
ライト(BaFe12O19)粒子粉末242gを、60〜
65℃の温度において、ニーダーにて十分に混練した。
これを、ロール成形した後、磁場10KOeにおいて着
磁し、外径38.5mm、内径17.0mm、厚み3m
mのリング状に打ち抜き、Ba−フェライトボンド永久
磁石(表面磁束密度〜180G)を作成した。First, 24 g of EVA resin and 242 g of Ba-ferrite (BaFe 12 O 19 ) particle powder are added in an amount of 60 to 60%.
The kneader was sufficiently kneaded at a temperature of 65 ° C.
After roll-molding this, it was magnetized in a magnetic field of 10 KOe and had an outer diameter of 38.5 mm, an inner diameter of 17.0 mm and a thickness of 3 m.
It was punched into a ring shape of m to prepare a Ba-ferrite bond permanent magnet (surface magnetic flux density ~ 180G).
【0020】前述の(Ni,Zn)−フェライトボンド
磁性体を、図1(b)に示したように、Ba−フェライ
トのボンド永久磁石2枚で、N極とS極が向かい合うよ
うにしてサンドウィッチした。そしてこのサンドウィッ
チ構造を有した多層型ボンド磁性体の周波数帯域50〜
800MHzにおける入力インピーダンスを、ネットワ
ークアナライザーを用いて測定し、透磁率を算出した。
その結果を表1に示す。As shown in FIG. 1 (b), the above-mentioned (Ni, Zn) -ferrite bond magnetic material is sandwiched between two pieces of Ba-ferrite bond permanent magnets so that the N pole and the S pole face each other. did. The frequency band of the multi-layer bond magnetic body having this sandwich structure is 50-
The input impedance at 800 MHz was measured using a network analyzer, and the magnetic permeability was calculated.
The results are shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】実施例2として、直径が2mm、アスペク
ト比が8の針状の(Ni,Zn)−フェライト焼結体
(Ni0.3 Zn0.7 Fe2 O4 )を、針状の方向が板面
に垂直になるように配列させ、これらをエポキシ樹脂で
結合させて、外径38.5mm、内径17.0mm、厚
み9.5mmのリング状の(Ni,Zn)−フェライト
ボンド磁性体を作成した。As Example 2, a needle-shaped (Ni, Zn) -ferrite sintered body (Ni 0.3 Zn 0.7 Fe 2 O 4 ) having a diameter of 2 mm and an aspect ratio of 8 was placed in the plate surface with the needle-shaped direction. They were arranged so as to be vertical, and they were bonded with an epoxy resin to prepare a ring-shaped (Ni, Zn) -ferrite bond magnetic body having an outer diameter of 38.5 mm, an inner diameter of 17.0 mm and a thickness of 9.5 mm.
【0023】べつに、EVA樹脂24gと、Ba−フェ
ライト(BaFe12O19)粒子粉末242gを、60〜
65℃の温度において、ニーダーにて十分に混練した。
これを、ロール成形した後、磁場10KOeにおいて着
磁し、外径38.5mm、内径17.0mm、厚み6m
mのリング状に打ち抜き、Ba−フェライトボンド永久
磁石(表面磁束密度〜180G)を作成した。そして図
1(a)に示したように、前述の(Ni,Zn)−フェ
ライトボンド磁性体1枚と、このBa−フェライトのボ
ンド永久磁石1枚を重ね合わせたものについて、周波数
帯域50〜800MHzにおける透過率を、同様の方法
で算出した。結果を表2に示す。Specifically, 24 g of EVA resin and 242 g of Ba-ferrite (BaFe 12 O 19 ) particle powder are added in an amount of 60 to 60%.
The kneader was sufficiently kneaded at a temperature of 65 ° C.
After roll-molding this, it was magnetized in a magnetic field of 10 KOe and had an outer diameter of 38.5 mm, an inner diameter of 17.0 mm and a thickness of 6 m.
It was punched into a ring shape of m to prepare a Ba-ferrite bond permanent magnet (surface magnetic flux density ~ 180G). Then, as shown in FIG. 1A, a frequency band of 50 to 800 MHz was obtained for one of the above-mentioned (Ni, Zn) -ferrite bond magnetic body and one of the Ba-ferrite bond permanent magnets superposed on each other. The transmittance in the above was calculated by the same method. The results are shown in Table 2.
【0024】[0024]
【表2】 [Table 2]
【0025】実施例3として、直径が2mm、アスペク
ト比が8の針状の(Ni,Zn)−フェライト焼結体
(Ni0.3 Zn0.7 Fe2 O4 )を、針状の方向が板面
に垂直になるように配列させ、これらをエポキシ樹脂で
結合させて、外径38.5mm、内径17.0mm、厚
み5.5mmのリング状の(Ni,Zn)−フェライト
ボンド磁性体を作成した。As Example 3, a needle-shaped (Ni, Zn) -ferrite sintered body (Ni 0.3 Zn 0.7 Fe 2 O 4 ) having a diameter of 2 mm and an aspect ratio of 8 was used, and the needle-shaped direction was the plate surface. They were arranged so as to be vertical, and they were bonded with an epoxy resin to prepare a ring-shaped (Ni, Zn) -ferrite bond magnetic body having an outer diameter of 38.5 mm, an inner diameter of 17.0 mm and a thickness of 5.5 mm.
【0026】べつに、EVA樹脂24gと、Ba−フェ
ライト(BaFe12O19)粒子粉末242gを、60〜
65℃の温度において、ニーダーにて十分に混練した。
これを、ロール成形した後、磁場10KOeにおいて着
磁し、外径38.5mm、内径17.0mm、厚み3m
mのリング状に打ち抜き、Ba−フェライトボンド永久
磁石(表面磁束密度〜180G)を作成した。In particular, 24 g of EVA resin and 242 g of Ba-ferrite (BaFe 12 O 19 ) particle powder are added in an amount of 60 to 60%.
The kneader was sufficiently kneaded at a temperature of 65 ° C.
After roll-molding this, it was magnetized in a magnetic field of 10 KOe and had an outer diameter of 38.5 mm, an inner diameter of 17.0 mm and a thickness of 3 m.
It was punched into a ring shape of m to prepare a Ba-ferrite bond permanent magnet (surface magnetic flux density ~ 180G).
【0027】前述の(Ni,Zn)−フェライトボンド
磁性体2枚と、Ba−フェライトのボンド永久磁石3枚
を、交互に重ね合わせたものについて、周波数帯域50
〜800MHzにおける透磁率を、同様の方法で算出し
た。結果を表3に示す。A frequency band of 50 is obtained by alternately stacking the above-mentioned two (Ni, Zn) -ferrite bond magnetic bodies and three Ba-ferrite bond permanent magnets.
Magnetic permeability at ˜800 MHz was calculated by the same method. The results are shown in Table 3.
【0028】[0028]
【表3】 [Table 3]
【0029】実施例4として、直径が2mm、アスペク
ト比が8の針状のCo0.6 Zn1.4Z−六方晶フェライ
ト焼結体(Ba3 Co0.6 Zn1.4 Fe24O41)を、針
状の方向が板面に垂直になるように配列させ、これらを
エポキシ樹脂で結合させて、外径38.5mm、内径1
7.0mm、厚み9.5mmのリング状の試料を作成し
た。As Example 4, a needle-shaped Co 0.6 Zn 1.4 Z-hexagonal ferrite sintered body (Ba 3 Co 0.6 Zn 1.4 Fe 24 O 41 ) having a diameter of 2 mm and an aspect ratio of 8 was formed in the needle-shaped direction. Are arranged so that they are perpendicular to the plate surface, and these are bonded with an epoxy resin to form an outer diameter of 38.5 mm and an inner diameter of 1
A ring-shaped sample having a thickness of 7.0 mm and a thickness of 9.5 mm was prepared.
【0030】べつに、EVA樹脂24gと、Ba−フェ
ライト(BaFe12O19)粒子粉末242gを、60〜
65℃の温度において、ニーダーにて十分に混練した。
これを、ロール成形した後、磁場10KOeにおいて着
磁し、外径38.5mm、内径17.0mm、厚み3m
mのリング状に打ち抜き、Ba−フェライトボンド永久
磁石(表面磁束密度〜180G)を作成した。In particular, 60 g of EVA resin 24 g and Ba-ferrite (BaFe 12 O 19 ) particle powder 242 g
The kneader was sufficiently kneaded at a temperature of 65 ° C.
After roll-molding this, it was magnetized in a magnetic field of 10 KOe and had an outer diameter of 38.5 mm, an inner diameter of 17.0 mm and a thickness of 3 m.
It was punched into a ring shape of m to prepare a Ba-ferrite bond permanent magnet (surface magnetic flux density ~ 180G).
【0031】前述の(Co,Zn)−Z−六方晶フェラ
イトボンド磁性体を、このBa−フェライトのボンド永
久磁石2枚で、N極とS極が向かい合うようにしてサン
ドウィッチした。そしてこのサンドウィッチ構造を有し
た多層型ボンド磁性体の周波数帯域50〜800MHz
における透磁率を、同様の方法で算出した。結果を表4
に示す。The above-mentioned (Co, Zn) -Z-hexagonal ferrite bonded magnetic material was sandwiched between two pieces of this Ba-ferrite bonded permanent magnet so that the N pole and the S pole faced each other. The frequency band of the multi-layer bond magnetic body having this sandwich structure is 50 to 800 MHz.
The magnetic permeability in was calculated by the same method. The results are shown in Table 4.
Shown in.
【0032】[0032]
【表4】 [Table 4]
【0033】次に比較例1として、実施例1と同一の組
成の(Ni,Zn)−フェライト粉末(平均粒度1.2
mm)をEVA樹脂と混練した後、金型を用いて、外径
38.5mm、内径17.0mm、厚み9.5mmのリ
ング状の試料を作成した。そして上記の構造を有したボ
ンド磁性体の周波数帯域50〜800MHzにおける入
力インピーダンスを、ネットワークアナライザーを用い
て測定し、透磁率を算出した。結果を表5に示す。Next, as Comparative Example 1, (Ni, Zn) -ferrite powder having the same composition as in Example 1 (average particle size 1.2)
(mm) was kneaded with EVA resin, and then a ring-shaped sample having an outer diameter of 38.5 mm, an inner diameter of 17.0 mm and a thickness of 9.5 mm was prepared using a mold. Then, the input impedance in the frequency band of 50 to 800 MHz of the bond magnetic body having the above structure was measured using a network analyzer, and the magnetic permeability was calculated. The results are shown in Table 5.
【0034】[0034]
【表5】 [Table 5]
【0035】比較例2として、実施例4と同一の組成の
Co0.6 Zn1.4 Z−六方晶フェライト粉末(平均粒度
1.2mm)をEVA樹脂と混練した後、金型を用い
て、外径38.5mm、内径17.0mm、厚み9.5
mmのリング状の試料を作成した。そして上記の構造を
有したボンド磁性体の周波数帯域50〜800MHzに
おける入力インピーダンスを、ネットワークアナライザ
ーを用いて測定し、透磁率を算出した。結果を表6に示
す。As Comparative Example 2, Co 0.6 Zn 1.4 Z-hexagonal ferrite powder (average particle size 1.2 mm) having the same composition as in Example 4 was kneaded with EVA resin, and then a die was used to give an outer diameter of 38. 0.5 mm, inner diameter 17.0 mm, thickness 9.5
A ring-shaped sample of mm was prepared. Then, the input impedance in the frequency band of 50 to 800 MHz of the bond magnetic body having the above structure was measured using a network analyzer, and the magnetic permeability was calculated. The results are shown in Table 6.
【0036】[0036]
【表6】 [Table 6]
【0037】従来のニッケル亜鉛スピネルフェライトボ
ンド磁性体では、比較例1に示すような透過率特性を有
し、μ′=μ″となる周波数が約140MHzと推定さ
れることから、その140MHz以下の周波数帯域にお
いてのみμ′>μ″となり、これを用い誘電体と積層し
たサリスバリー型の電波吸収体は140MHz以下の周
波数体でのみ機能するものである。これに対して、ニッ
ケル亜鉛スピネルフェライト針状焼結体を板面に垂直に
配向させたボンド磁性体を、着磁したBa−フェライト
ボンド永久磁石でサンドウィッチした多層型ボンド磁性
体は、その透磁率特性を実施例1に示すように、μ′=
μ″となる周波数が約600MHzと推定されるように
大幅に高くなり、その600MHz以下の周波数帯域に
おいてμ′>μ″となる。即ち、この多層型ボンド磁性
体を用い誘電体と積層したサリスバリー型の電磁吸収体
の機能する周波数帯域は600MHzまで拡大可能とな
る。同様に、実施例2の多層型ボンド磁性体では約60
0MHz、実施例3の多層型ボンド磁性体では約600
MHzの周波数帯域までμ′>μ″が成立し、前述のサ
リスバリー型の電波吸収体の機能する周波数帯域が大幅
に高周波数側へ拡大可能となる。The conventional nickel-zinc spinel ferrite-bonded magnetic material has the transmittance characteristics as shown in Comparative Example 1, and the frequency at which μ ′ = μ ″ is estimated to be about 140 MHz. Μ ′> μ ″ only in the frequency band, and a Salisbury-type radio wave absorber laminated with a dielectric using this function only in a frequency body of 140 MHz or less. On the other hand, a multilayered bonded magnetic material obtained by sandwiching a bonded magnetic material in which a nickel zinc spinel ferrite needle-shaped sintered body is oriented perpendicular to the plate surface with a magnetized Ba-ferrite bond permanent magnet has a magnetic permeability of As shown in the characteristics of Example 1, μ ′ =
The frequency of μ ″ is significantly increased so that it is estimated to be about 600 MHz, and μ ′> μ ″ in the frequency band of 600 MHz or less. That is, the frequency band in which the Salisbury-type electromagnetic absorber, which is laminated with the dielectric using this multilayer-type bonded magnetic substance, functions can be expanded to 600 MHz. Similarly, in the multilayer bond magnetic material of Example 2, about 60
0 MHz, about 600 for the multilayer bond magnetic material of Example 3
Since μ ′> μ ″ is established up to the frequency band of MHz, the frequency band in which the above-mentioned Salisbury type electromagnetic wave absorber functions can be greatly expanded to the high frequency side.
【0038】また、従来のアルカリ土類金属イオンを含
んだW型,Y型,及びZ型の六方晶フェライトボンド磁
性体は、比較例2に示すような透磁率特性を有し、μ′
=μ″となる周波数は800MHz以上であり、μ′の
絶対値は周波数800MHzにおいて3.8である。こ
れを用い誘電体と積層したサリスバリー型の電波吸収体
は800MHz以下の周波数帯域で十分に機能するもの
であるが、μ′の絶対値が小さいためにボンド磁性体が
かなり厚いものとなってしまう。これに対して、アルカ
リ土類金属イオンを含んだW型,Y型,及びZ型の六方
晶フェライト針状焼結体をその針状方向を板面に垂直に
配向させたボンド磁性体を、着磁したBa−フェライト
ボンド永久磁石でサンドウィッチした多層型ボンド磁性
体は、その透磁率特性を実施例4に示すように、μ′=
μ″となる周波数が800MHz以上であり、μ′の絶
対値は周波数800MHzにおいて5.2である。即
ち、この多層型ボンド磁性体を用い誘電体と積層したサ
リスバリー型の電波吸収体は、800MHz以下の周波
数帯域で使用可能で、μ′の絶対値が大きいため磁性体
層の薄層化が可能となる。Further, the conventional W-type, Y-type, and Z-type hexagonal ferrite bond magnetic bodies containing alkaline earth metal ions have magnetic permeability characteristics as shown in Comparative Example 2, and μ ′
= Μ ″ is a frequency of 800 MHz or more, and the absolute value of μ ′ is 3.8 at a frequency of 800 MHz. Using this, a Salisbury type electromagnetic wave absorber laminated with a dielectric is sufficient in the frequency band of 800 MHz or less. Although it functions, the bond magnetic substance becomes considerably thick due to the small absolute value of μ '. On the other hand, W type, Y type, and Z type containing alkaline earth metal ions The hexagonal ferrite needle-shaped sintered body of No. 1 was sandwiched with a magnetized Ba-ferrite bond permanent magnet to laminate a bond magnetic body whose needle-like direction was perpendicular to the plate surface, and As shown in the characteristics of Example 4, μ ′ =
The frequency of μ ″ is 800 MHz or more, and the absolute value of μ ′ is 5.2 at a frequency of 800 MHz. That is, a salisbury type electromagnetic wave absorber laminated with a dielectric using this multilayer bond magnetic material has a frequency of 800 MHz. It can be used in the following frequency bands, and since the absolute value of μ'is large, the magnetic layer can be thinned.
【0039】μ′>μ″である周波数帯域が広く、その
周波数帯域においてμ′が大きいという磁性体の透磁率
特性は、誘電体層と磁性体層との積層体を金属層上に設
けたサリスバリー型の電波吸収体に用いる磁性体層に基
本的に要求される特性である。上述のように、本発明に
よって、μ′>μ″である周波数帯域が高周波数側へ広
く、かつ、それらの周波数帯域においてμ′が大きな透
磁率特性を有したボンド磁性体シートが得られる。The magnetic permeability characteristics of the magnetic material having a wide frequency band of μ ′> μ ″ and a large μ ′ in the frequency band are obtained by providing a laminated body of a dielectric layer and a magnetic layer on a metal layer. This is a characteristic basically required for the magnetic layer used for the salisbury type electromagnetic wave absorber.As described above, according to the present invention, the frequency band in which μ ′> μ ″ is wide toward the high frequency side and In this frequency band, a bonded magnetic material sheet having a magnetic permeability characteristic with a large μ'is obtained.
【0040】[0040]
【発明の効果】以上説明したように、本発明における多
層型ボンド磁性体においては、μ′>μ″である周波数
帯域が高周波数側へ広く、かつ、それらの周波数帯域に
おいてμ′が大きな透磁率特性を有しているので、これ
を用いて、誘電体との積層によってサリスバリー型の電
波吸収体を構成することにより、フェライト焼結体に比
べて、加工性、成形性を大幅に改善して建築物の壁面そ
の他に容易に適用できる電波吸収体を得ることができる
という効果を有する。As described above, in the multilayer bonded magnetic body of the present invention, the frequency band of μ '> μ "is widened to the high frequency side, and the large μ'is transparent in those frequency bands. Since it has magnetic susceptibility characteristics, by using it to construct a Salisbury-type electromagnetic wave absorber by laminating it with a dielectric, the workability and formability are greatly improved compared to a ferrite sintered body. Thus, it is possible to obtain an electromagnetic wave absorber that can be easily applied to the wall surface of a building or the like.
【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】電波吸収体の基本的構成を示す図及び等価回路
図。FIG. 2 is a diagram showing a basic configuration of an electromagnetic wave absorber and an equivalent circuit diagram.
【図3】本発明の作用を説明するための電波吸収体の構
成図及び磁気モーメントを示す図。FIG. 3 is a diagram showing a configuration of a radio wave absorber and a magnetic moment for explaining the operation of the present invention.
1 金属層 2 磁性体層 3 誘電体層 4 永久磁石 5 ソフトフェライト板 1 Metal Layer 2 Magnetic Layer 3 Dielectric Layer 4 Permanent Magnet 5 Soft Ferrite Plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 惠己 東京都港区三田一丁目4番28号日本電気環 境エンジニアリング株式会社内 (72)発明者 山本 惠久 広島県広島市西区横川新町7−1戸田工業 株式会社内 (72)発明者 中村 龍哉 広島県広島市西区横川新町7−1戸田工業 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiki Shimizu 1-4-2, Mita, Minato-ku, Tokyo NEC Electric Engineering Co., Ltd. (72) Inokue Yamamoto 7 Shinagawa Yokokawa, Nishi-ku, Hiroshima City, Hiroshima -1 Toda Kogyo Co., Ltd. (72) Inventor Tatsuya Nakamura 7-1 Yokogawa Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Toda Kogyo Co., Ltd.
Claims (4)
方向が板面に垂直になるように配列させてこれらを樹脂
で結合させたフェライト板を作成し、このフェライト板
にハードフェライト粒子粉末と樹脂からなる永久磁石を
片側または両側に重ね合わせるか、あるいはフェライト
板と永久磁石を交互に積層させたことを特徴とする電波
吸収体。1. A ferrite plate is prepared by arranging needle-shaped soft ferrite sintered bodies so that the needle-shaped direction is perpendicular to the plate surface, and bonding them with a resin to prepare hard ferrite particles. A radio wave absorber characterized in that permanent magnets made of powder and resin are superposed on one side or both sides, or ferrite plates and permanent magnets are alternately laminated.
スピネルフェライトである請求項1記載の電波吸収体。2. The radio wave absorber according to claim 1, wherein the soft ferrite sintered body is nickel zinc spinel ferrite.
金属イオンを含んだW型,Y型,あるいはZ型の六方晶
フェライトである請求項1記載の電波吸収体。3. The electromagnetic wave absorber according to claim 1, wherein the soft ferrite sintered body is W-type, Y-type, or Z-type hexagonal ferrite containing alkaline earth metal ions.
0Gである請求項1記載の電波吸収体。4. The surface magnetic flux density of the permanent magnet is at least 10.
The electromagnetic wave absorber according to claim 1, which is 0G.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP226693A JP2885594B2 (en) | 1993-01-11 | 1993-01-11 | Radio wave absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP226693A JP2885594B2 (en) | 1993-01-11 | 1993-01-11 | Radio wave absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06209181A true JPH06209181A (en) | 1994-07-26 |
JP2885594B2 JP2885594B2 (en) | 1999-04-26 |
Family
ID=11524576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP226693A Expired - Lifetime JP2885594B2 (en) | 1993-01-11 | 1993-01-11 | Radio wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2885594B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006310440A (en) * | 2005-04-27 | 2006-11-09 | Nippon Steel Corp | High permeability sheet and manufacturing method thereof |
JP2007180469A (en) * | 2005-12-02 | 2007-07-12 | Dowa Holdings Co Ltd | Magnetic powder for radio wave absorber, method for producing the same, and radio wave absorber |
JP2011066430A (en) * | 2005-12-02 | 2011-03-31 | Dowa Holdings Co Ltd | Magnetic powder for radiowave absorber |
KR20160033953A (en) * | 2014-09-19 | 2016-03-29 | 삼성전기주식회사 | Magnetic Sheet for High Frequency Application and Method of Fabricating the Same |
CN107394414A (en) * | 2017-07-18 | 2017-11-24 | 东南大学 | Wave absorbing device based on double-layer magnetic media implementation low-frequency range broadened bandwidth |
CN109574650A (en) * | 2019-01-31 | 2019-04-05 | 武汉工程大学 | A kind of preparation method of the porous zinc aluminate ceramics of high wave |
-
1993
- 1993-01-11 JP JP226693A patent/JP2885594B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006310440A (en) * | 2005-04-27 | 2006-11-09 | Nippon Steel Corp | High permeability sheet and manufacturing method thereof |
JP4568160B2 (en) * | 2005-04-27 | 2010-10-27 | 新日本製鐵株式会社 | Manufacturing method of high permeability sheet |
JP2007180469A (en) * | 2005-12-02 | 2007-07-12 | Dowa Holdings Co Ltd | Magnetic powder for radio wave absorber, method for producing the same, and radio wave absorber |
JP4639384B2 (en) * | 2005-12-02 | 2011-02-23 | Dowaエレクトロニクス株式会社 | Method for producing magnetic powder for radio wave absorber and radio wave absorber |
JP2011066430A (en) * | 2005-12-02 | 2011-03-31 | Dowa Holdings Co Ltd | Magnetic powder for radiowave absorber |
KR20160033953A (en) * | 2014-09-19 | 2016-03-29 | 삼성전기주식회사 | Magnetic Sheet for High Frequency Application and Method of Fabricating the Same |
CN107394414A (en) * | 2017-07-18 | 2017-11-24 | 东南大学 | Wave absorbing device based on double-layer magnetic media implementation low-frequency range broadened bandwidth |
CN107394414B (en) * | 2017-07-18 | 2020-07-31 | 东南大学 | Wave absorber based on double-layer magnetic medium to realize low-frequency bandwidth broadening |
CN109574650A (en) * | 2019-01-31 | 2019-04-05 | 武汉工程大学 | A kind of preparation method of the porous zinc aluminate ceramics of high wave |
CN109574650B (en) * | 2019-01-31 | 2021-09-03 | 武汉工程大学 | Preparation method of high-wave-permeability porous zinc aluminate ceramic |
Also Published As
Publication number | Publication date |
---|---|
JP2885594B2 (en) | 1999-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nakamura et al. | Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite | |
KR100311924B1 (en) | Core, transformer and inductor for inductive element | |
CN101304960B (en) | Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same | |
EP0873839B1 (en) | Method of manufacturing composite magnetic sheet | |
US10431865B2 (en) | Shaped magnetic bias circulator | |
CN107646157A (en) | Screen unit for wireless charging and the wireless power transmission module including it | |
KR20200032991A (en) | Magnetic Shielding Sheet, Manufacturing Method thereof, Antenna Module and Portable Terminal Using the Same | |
CN108597793B (en) | High-performance high-frequency-responsivity composite magnetic material with laminated structure | |
EP3387701A1 (en) | Magnetic isolator, method of making the same, and device containing the same | |
JPH05206676A (en) | Radio wave absorber | |
JPH06209181A (en) | Radio wave absorber | |
JPH088111A (en) | Anisotropic permanent magnet and its manufacturing method | |
JP2000507400A (en) | Electromagnetic wave absorbing panel and its material | |
US10854376B2 (en) | Coil component and LC composite component | |
JP2752846B2 (en) | Radio wave absorber | |
CN105938748A (en) | Composite magnetic sheet and magneto-dielectric antenna using thereof | |
US10205247B2 (en) | Antenna modules having ferrite substrates | |
JPH05299870A (en) | Radio wave absorbing material | |
Sharma et al. | Low Loss Soft Ferrites Nanoparticles for Applications Up to S-band | |
Haspers | Ferrites: Their properties and applications | |
JP2001284118A (en) | Ferrite powder and manufacturing method for the same | |
JPH05291785A (en) | Electric wave absorber | |
CN109053180A (en) | A kind of low-temperature sintering low-loss LiZn Ferrite Material and preparation method | |
KR102323137B1 (en) | Shilding sheet | |
JP3035479B2 (en) | Multilayer inductance element |