JPH0564872B2 - - Google Patents
Info
- Publication number
- JPH0564872B2 JPH0564872B2 JP60116046A JP11604685A JPH0564872B2 JP H0564872 B2 JPH0564872 B2 JP H0564872B2 JP 60116046 A JP60116046 A JP 60116046A JP 11604685 A JP11604685 A JP 11604685A JP H0564872 B2 JPH0564872 B2 JP H0564872B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic shielding
- superconducting
- magnetic
- support member
- mesh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 20
- 239000000696 magnetic material Substances 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000005389 magnetism Effects 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000576 Laminated steel Inorganic materials 0.000 description 2
- 229910020012 Nb—Ti Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000002990 reinforced plastic Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、超電導磁気遮蔽装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a superconducting magnetic shielding device.
背景技術
近年、脚光を浴びている極低温の技術分野にお
いて、超電導磁石の利用に伴なつて生じる強磁場
を利用する技術の発展は特に目ざましい。その代
表例を挙げれば、エネルギー分野では核融合炉中
の超高温プラズマ閉じ込め用超電導磁石、MHD
(磁気流体)発電用超電導磁石、および超電導発
電機などがあり、運輸分野では磁場浮上列車や超
電導電気推進船用の超電導磁石、医療分野では超
電導NMR−CT(核磁気共鳴装置)など、広範囲
の強磁場応用例がある。このような強磁場利用に
伴なつて、強磁場下での問題点も露呈しつつあ
る。すなわち第11図で示されるように、超電導
磁石1による強磁場の影響で、参照符Aで示す位
置に置かれた電気機器や計測器が誤動作したり、
鋼製の磁性材との間の引力や反発力に抗するため
構造物などの補強を要したり、あるいは超電導磁
石1近くの鋼製工具や小物体を超電導磁石1を収
納する容器の内壁を強く吸引してその壁面を損傷
するなどの問題が生じている。BACKGROUND ART In the field of cryogenic technology, which has been in the spotlight in recent years, the development of technology that utilizes strong magnetic fields generated by the use of superconducting magnets is particularly remarkable. Typical examples include superconducting magnets for confining ultra-high temperature plasma in nuclear fusion reactors, and MHD in the energy field.
In the transportation field, we use superconducting magnets for magnetic levitation trains and superconducting electric propulsion ships, and in the medical field, we use superconducting NMR-CT (nuclear magnetic resonance apparatus), which are used in a wide range of powerful products. There are examples of magnetic field applications. Along with the use of such strong magnetic fields, problems under strong magnetic fields are also becoming apparent. That is, as shown in FIG. 11, due to the influence of the strong magnetic field from the superconducting magnet 1, electrical equipment and measuring instruments placed at the position indicated by reference mark A may malfunction.
It may be necessary to reinforce the structure to resist the attraction or repulsion between the magnetic material made of steel, or if steel tools or small objects near the superconducting magnet 1 are removed from the inner wall of the container housing the superconducting magnet 1. Problems have arisen, such as strong suction and damage to the wall surface.
そこで従来の磁気遮蔽装置は、第12図で示さ
れるように、強磁性材料から成る硅素積層鋼板3
によつて磁気発生源としての超電導磁石1や強磁
場中の物体を被覆するようにしている。このよう
な先行技術では、磁気遮蔽効果が小さいために硅
素鋼板3の積層数が多くなり、大型でかつ重厚な
構造物になることが避けられず、可搬型の磁気発
生源や局部的磁気遮蔽には適さないものである。
また超電導磁石1の磁力線2は、硅素積層鋼板3
内を通る磁路を形成するが、20000ガウス程度以
上の強磁場に対して鋼板内が磁気飽和されるた
め、硅素積層鋼板3による磁気遮蔽効果が著しく
減少するなどの欠点があつた。したがつて強磁場
の応用分野では、強い磁気を効果的に遮蔽するこ
とができる装置を見出すことが先決問題である。 Therefore, in the conventional magnetic shielding device, as shown in FIG.
The superconducting magnet 1 as a magnetic generation source and an object in a strong magnetic field are coated by this method. In such prior art, since the magnetic shielding effect is small, the number of laminated silicon steel plates 3 is large, which inevitably results in a large and heavy structure. It is not suitable for
In addition, the magnetic field lines 2 of the superconducting magnet 1 are connected to the silicon laminated steel plate 3.
However, since the inside of the steel plate is magnetically saturated by a strong magnetic field of about 20,000 Gauss or more, there are drawbacks such as the magnetic shielding effect of the silicon laminated steel plate 3 is significantly reduced. Therefore, in the field of strong magnetic field applications, it is a priority to find devices that can effectively shield strong magnetism.
発明が解決しようとする問題点
本発明は、簡単な構成で、強い磁気を完全に遮
蔽することができるようにした超電導磁気遮蔽装
置を提供することである。Problems to be Solved by the Invention The present invention provides a superconducting magnetic shielding device that has a simple configuration and can completely shield strong magnetism.
問題点を解決するための手段
本発明は、磁気発生源10の全周囲を覆い、厚
み方向に貫通した多数の網目が形成され、超電導
材料から成る磁気遮蔽部材12,12a,12
b,20と、
磁気遮蔽部材12,12a,12b,20の外
周面全体に当接してその外周面全体を覆い、厚み
方向に貫通した多数のハニカム状の透孔17が形
成され、非磁性材料から成り、前記各透孔17
は、前記網目よりも大きく形成されている支持部
材18とを含み、
支持部材18は、磁気遮蔽部材12,12a,
12b,20よりも厚く形成されることを特徴と
する超電導磁気遮蔽装置。Means for Solving the Problems The present invention provides magnetic shielding members 12, 12a, 12 made of a superconducting material, in which a large number of meshes are formed that cover the entire periphery of a magnetic generation source 10 and penetrate in the thickness direction.
b, 20, and a large number of honeycomb-shaped through holes 17 that abut and cover the entire outer peripheral surfaces of the magnetic shielding members 12, 12a, 12b, 20 and penetrate in the thickness direction, and are made of non-magnetic material. each through hole 17
includes a support member 18 formed larger than the mesh, and the support member 18 includes magnetic shielding members 12, 12a,
A superconducting magnetic shielding device characterized in that it is formed thicker than 12b and 20.
また本発明は、被遮蔽体11の全周囲を覆い、
厚み方向に貫通した多数のハニカム状の透孔17
が形成され、非磁性材料から成る支持部材18
と、
支持部材18の外周面全体に当接してその外周
面全体を覆い、厚み方向に貫通した多数の網目が
形成され、超電導材料から成る磁気遮蔽部材1
2,12a,12b,20とを含み、
前記透孔17は、前記網目よりも大きく形成さ
れており、
支持部材18は、磁気遮蔽部材12,12a,
12b,20よりも厚く形成されていることを特
徴とする超電導磁気遮蔽装置である。 Further, the present invention covers the entire periphery of the shielded object 11,
A large number of honeycomb-shaped through holes 17 penetrating in the thickness direction
A support member 18 made of a non-magnetic material is formed.
and a magnetic shielding member 1 made of a superconducting material, in which a large number of meshes are formed that contact and cover the entire outer peripheral surface of the support member 18 and penetrate in the thickness direction.
2, 12a, 12b, 20, the through hole 17 is formed larger than the mesh, and the support member 18 includes the magnetic shielding members 12, 12a,
This is a superconducting magnetic shielding device characterized by being formed thicker than 12b and 20.
作 用
本発明に従えば、磁気発生源10からの磁気が
外部に漏洩することを防ぐために、磁気発生源1
0を超電導材料から成る磁気遮蔽部材12,12
a,12b,20で覆い、この磁気遮蔽部材を、
ハニカム状の透孔17が形成された支持部材18
で補強する。Effect According to the present invention, in order to prevent the magnetism from the magnetic source 10 from leaking to the outside, the magnetic source 10
Magnetic shielding members 12, 12 made of superconducting material
a, 12b, and 20, and this magnetic shielding member is
Support member 18 in which honeycomb-shaped through holes 17 are formed
Reinforce with.
また本発明に従えば、外部からの磁界が被遮蔽
体11に及ぶことを防ぐために、この被遮蔽体1
1を支持部材18で覆い、その支持部材18の外
周面全体を、超電導材料から成る磁気遮蔽部材1
2,12a,12b,20で覆う。 Further, according to the present invention, in order to prevent an external magnetic field from reaching the shielded body 11, the shielded body 11 is
1 is covered with a support member 18, and the entire outer peripheral surface of the support member 18 is covered with a magnetic shielding member 1 made of a superconducting material.
2, 12a, 12b, and 20.
実施例
第1図は本発明の基礎となる構成を示す正面図
であり、第2図はその平面図である。磁気発生源
としての超電導磁石10は、たとえば核融合炉に
おいて超高温プラズマを閉じ込めるために用いら
れる。この超電導磁石10の強磁場の影響下にお
いて、各種電気機器や計測器などの被遮蔽体11
を磁気遮蔽するために、網目状の磁気遮蔽部材1
2が用いられる。網目状の磁気遮蔽部材12は、
たとえば超電導金網12aまたは超電導多孔板1
2bによつて構成される。Embodiment FIG. 1 is a front view showing the basic structure of the present invention, and FIG. 2 is a plan view thereof. The superconducting magnet 10 as a magnetic generation source is used, for example, to confine ultra-high temperature plasma in a nuclear fusion reactor. Under the influence of the strong magnetic field of this superconducting magnet 10, shielded objects 11 such as various electrical devices and measuring instruments
In order to magnetically shield the
2 is used. The mesh-like magnetic shielding member 12 is
For example, superconducting wire mesh 12a or superconducting porous plate 1
2b.
超電導金網12aは、複数の超電導線材13,
14から成る。超電導線材13,14は、相互に
交差するように網目状に重ね合わされ、これらの
各交点14は、半田付けによつてそれぞれ固定さ
れる。超電導線材13,14としては、たとえば
Nb−Ti、Nb3Snなどの超電導材料や、Nb−Ti
−Ta−Zrの4元号金製の超電導材料が好適に用
いられる。また超電導多孔板12bは、超電導金
網12aと同様な超電導材料から成り、その厚み
方向に多数の網目である透孔が形成される。 The superconducting wire mesh 12a includes a plurality of superconducting wires 13,
Consists of 14. The superconducting wires 13 and 14 are overlapped in a mesh pattern so as to intersect with each other, and each of these intersection points 14 is fixed by soldering. As the superconducting wires 13 and 14, for example,
Superconducting materials such as Nb-Ti, Nb 3 Sn, and Nb-Ti
A superconducting material made of quaternary gold of -Ta-Zr is preferably used. Further, the superconducting porous plate 12b is made of the same superconducting material as the superconducting wire mesh 12a, and has a large number of meshes of through holes formed in its thickness direction.
このような超電導金網12aまたは超電導多孔
板12bによつて構成される網目状の磁気遮蔽部
材12によつて、超電導磁石10の磁力線15と
垂直方向の領域が覆われる。したがつて超電導磁
石10の磁力線15が磁気遮蔽部材12に達する
と、超電導材料の特性から磁気遮蔽部材12に自
然に電流が発生し、磁気遮蔽部材12の外側すな
わち超電導磁石10とは反対側に配置される被遮
蔽体11にかかる磁場が零となる。こうして超電
導材料から成る網目状の磁気遮蔽部材12によつ
て、超電導磁石10からの強い磁気を遮蔽するこ
とができる。したがつて被遮蔽体11がたとえば
各種電気機器や計測器である場合、これらの誤動
作を防止することができる。 A region of the superconducting magnet 10 in a direction perpendicular to the lines of magnetic force 15 is covered by the mesh-like magnetic shielding member 12 constituted by the superconducting wire mesh 12a or the superconducting porous plate 12b. Therefore, when the magnetic lines of force 15 of the superconducting magnet 10 reach the magnetic shielding member 12, a current is naturally generated in the magnetic shielding member 12 due to the characteristics of the superconducting material, and an electric current is generated outside the magnetic shielding member 12, that is, on the opposite side from the superconducting magnet 10. The magnetic field applied to the placed shielded object 11 becomes zero. In this way, strong magnetism from the superconducting magnet 10 can be shielded by the mesh-like magnetic shielding member 12 made of superconducting material. Therefore, when the shielded object 11 is, for example, various electrical devices or measuring instruments, malfunctions thereof can be prevented.
第3図は、本発明の基礎となる構成を示す斜視
図である。第3図は第2図の構成に類似し、対応
する部分には同一の参照符を付す。この構成で
は、超電導磁石10を箱状の磁気遮蔽部材20内
に収納するようにしたものである。この磁気遮蔽
部材20は、前述の構成と同様、超電導金網12
aまたは超電導多孔板12bによつて構成され、
超電導磁石10の磁気の強さに応じて超電導金網
12aまたは超電導多孔板12bを2重構造また
は3重構造とするようにしてもよい。このように
超電導磁石10を箱状の磁気遮蔽部20内に収納
するようにしたことによつて、超電導磁石10の
全周囲に亘つて磁気遮蔽効果を得ることができ
る。 FIG. 3 is a perspective view showing the basic structure of the present invention. FIG. 3 is similar to the structure of FIG. 2, and corresponding parts are given the same reference numerals. In this configuration, the superconducting magnet 10 is housed within a box-shaped magnetic shielding member 20. This magnetic shielding member 20 includes a superconducting wire mesh 12 similar to the above-described structure.
a or a superconducting porous plate 12b,
Depending on the magnetic strength of the superconducting magnet 10, the superconducting wire mesh 12a or the superconducting perforated plate 12b may have a double structure or a triple structure. By accommodating the superconducting magnet 10 in the box-shaped magnetic shielding section 20 in this manner, a magnetic shielding effect can be obtained over the entire periphery of the superconducting magnet 10.
第4図は本発明の第1実施例の平面図であり、
第5図は第4図のセクシヨンVの拡大正面図であ
り、第6図はその斜視図である。第4図は第3図
の構成に類似し、対応する部分には同一の参照符
を付す。本実施例では、第3図の構成の箱状の磁
気遮蔽部材20の外周面全体に当接してその外周
面全体を、厚み方向に貫通したハニカム状の透孔
17が多数形成された支持部材18によつて覆う
ようにしたものである。磁気遮蔽部材20は、第
1図〜第3図の構成と同様、超電導金網12aま
たは超電導多孔板12bによつて構成される。ま
た支持部材18の材料としては、たとえばFRP
などの強化プラスチツク材や銅、アルミニウム合
金材などの非磁性材料が用いられる。超電導磁石
10の全周囲を磁気遮蔽部材20によつて覆つた
場合、磁気遮蔽部材20には、フレミング左手の
法則により矢符Fで示す外向きの力、すなわち超
電導磁石10に対して反発する電磁力が作用す
る。このため磁気遮蔽部材20は、超電導磁石1
0から強い反発力を受けることになる。したがつ
て磁気遮蔽部材20を補強するための支持部材1
8が必要となる。支持部材18は、磁気遮蔽部材
20を覆うことができる箱状に形成され、その厚
み方向にハニカム状の透孔17が多数形成されて
いる。このため超電導磁石10の電磁力が作用す
る方向Fに対して強度を有する。これらによつて
磁気遮蔽部材20に超電導磁石10からの反発力
が作用した場合であつても、その力によつて磁気
遮蔽部材20が変形したり、損壊したりすること
が確実に防がれる。この第1実施例において、第
5図および第6図から明らかなように、支持部材
18の各透孔17は、磁気遮蔽部材12aの網目
よりも大きく形成されており、換言すると網目は
密に小さく形成され、これによつて磁気漏洩を確
実に防ぐことが可能である。磁気遮蔽部材12a
は、上述のように多数の網目が形成されているの
で、その磁気遮蔽部材12aを構成する超電導材
料が少なくてすむ。 FIG. 4 is a plan view of the first embodiment of the present invention,
FIG. 5 is an enlarged front view of section V in FIG. 4, and FIG. 6 is a perspective view thereof. FIG. 4 is similar to the structure of FIG. 3, and corresponding parts are given the same reference numerals. In this embodiment, a support member is provided with a large number of honeycomb-shaped through holes 17 that abut the entire outer peripheral surface of the box-shaped magnetic shielding member 20 having the configuration shown in FIG. 3 and penetrate through the entire outer peripheral surface in the thickness direction. 18. The magnetic shielding member 20 is composed of a superconducting wire mesh 12a or a superconducting porous plate 12b, similar to the configurations shown in FIGS. 1 to 3. Further, as the material of the support member 18, for example, FRP
Non-magnetic materials such as reinforced plastic materials such as copper and aluminum alloy materials are used. When the entire periphery of the superconducting magnet 10 is covered by the magnetic shielding member 20, the magnetic shielding member 20 is subjected to an outward force indicated by an arrow F according to Fleming's left-hand rule, that is, an electromagnetic force repelling the superconducting magnet 10. Force acts. For this reason, the magnetic shielding member 20 is attached to the superconducting magnet 1
It will receive a strong repulsive force from 0. Therefore, the support member 1 for reinforcing the magnetic shielding member 20
8 is required. The support member 18 is formed into a box shape capable of covering the magnetic shielding member 20, and has a large number of honeycomb-shaped through holes 17 formed in its thickness direction. Therefore, it has strength in the direction F in which the electromagnetic force of the superconducting magnet 10 acts. With these, even if a repulsive force from the superconducting magnet 10 acts on the magnetic shielding member 20, the magnetic shielding member 20 is reliably prevented from being deformed or damaged by the force. . In this first embodiment, as is clear from FIGS. 5 and 6, each through hole 17 of the support member 18 is formed larger than the mesh of the magnetic shielding member 12a, in other words, the mesh is dense. It is formed small, thereby making it possible to reliably prevent magnetic leakage. Magnetic shielding member 12a
Since a large number of meshes are formed as described above, the amount of superconducting material constituting the magnetic shielding member 12a can be reduced.
また第4図および第6図から明らかなように、
支持部材18は、磁気遮蔽部材12aよりも厚く
形成されており、したがつて支持部材18によつ
て、磁気遮蔽部材12aに作用する電磁力を確実
に受けて、その磁気遮蔽部材12aが電磁力で変
形してしまうことを確実に防ぐことができる。支
持部材18の各透孔17は、前記網目よりも大き
く形成されており、したがつて支持部材18の軽
量化を図ることができる。 Also, as is clear from Figures 4 and 6,
The support member 18 is formed thicker than the magnetic shielding member 12a, so that the support member 18 reliably receives the electromagnetic force acting on the magnetic shielding member 12a, and the magnetic shielding member 12a receives the electromagnetic force. This can reliably prevent deformation. Each through hole 17 of the support member 18 is formed larger than the mesh, so that the weight of the support member 18 can be reduced.
第7図は、本発明の基礎となるさらに他の構成
を示す斜視図である。前述の磁気遮蔽部材12,
20は、超電導磁石10をそれぞれ覆う構成であ
つたけれども、第7図の構成では、被遮蔽体11
のまわりに、第1図および第2図の構成と同様な
超電導金網12aを巻回して円筒状とし、この超
電導金網12aの端部を半田付け等によつて固定
するようにしたものである。たとえば医療用
NMR−CTや強磁場内での作業などにおいて、
局部的に磁気遮蔽や露出が必要なときには、人体
の外周曲線に沿つた形状の超電導金網12aを人
体に部分的に覆つたり、また逆に部分的に人体を
露出させたりすることによつて、強磁場下におけ
る局部的な磁気遮蔽効果を得ることが可能とな
る。 FIG. 7 is a perspective view showing still another configuration on which the present invention is based. The aforementioned magnetic shielding member 12,
20 was configured to cover each of the superconducting magnets 10, but in the configuration shown in FIG.
A superconducting wire mesh 12a similar to the structure shown in FIGS. 1 and 2 is wound around the superconducting wire mesh 12a to form a cylindrical shape, and the ends of the superconducting wire mesh 12a are fixed by soldering or the like. For example, medical
When working in NMR-CT or strong magnetic fields, etc.
When local magnetic shielding or exposure is required, it can be done by partially covering the human body with a superconducting wire mesh 12a shaped to follow the outer circumferential curve of the human body, or by partially exposing the human body. , it becomes possible to obtain a local magnetic shielding effect under a strong magnetic field.
第8図は、本発明の第2実施例の簡略化した断
面図である。第8図の構成は第7図の構成に類似
し、対応する部分には同一の参照符を付す。本実
施例では、被遮蔽体11を第4図〜第6図のハニ
カム状の支持部材18と、支持部材18の外周面
全体を覆う円筒状の超電導金網12aとによつて
覆うようにしたものである。この超電導金網12
aには、超電導磁石10に対する反発力が矢符F
で示す方向、すなわち超電導金網12aの半径方
向内方に向かつて作用するが、超電導金網12a
は支持部材18によつて半径方向内方に変形した
りすることが防がれる。このように被遮蔽体11
を円筒状の超電導金網12aおよび支持部材18
によつて覆う構成は、超電導磁石10が大きく、
それを全面的に磁気遮蔽するのが経済的に引合わ
ない場合や、被遮蔽体11のみの磁気遮蔽でよい
場合などにおいて有利に実施されることができ
る。 FIG. 8 is a simplified cross-sectional view of a second embodiment of the invention. The configuration in FIG. 8 is similar to the configuration in FIG. 7, and corresponding parts are given the same reference numerals. In this embodiment, the shielded object 11 is covered by a honeycomb-shaped support member 18 shown in FIGS. 4 to 6 and a cylindrical superconducting wire mesh 12a that covers the entire outer peripheral surface of the support member 18. It is. This superconducting wire mesh 12
In a, the repulsive force against the superconducting magnet 10 is indicated by the arrow F.
The superconducting wire mesh 12a acts in the direction shown by , that is, inward in the radial direction of the superconducting wire mesh 12a.
is prevented from deforming radially inward by the support member 18. In this way, the shielded object 11
The cylindrical superconducting wire mesh 12a and the support member 18
In the structure covered by, the superconducting magnet 10 is large,
This can be advantageously carried out in cases where it is not economically viable to magnetically shield the entire surface, or where it is sufficient to magnetically shield only the shielded body 11.
支持部材18は、全体の形状が円筒状であり、
FRPなどの強化プラスチツク材や銅、アルミニ
ウム合金材などの非磁性材料から成り、超電導金
網12aの内周側に配置され、この支持部材18
によつて超電導金網12aを補強し、かつ超電導
磁石10の磁気遮蔽を行うことができる。その他
の構成は、前述の第4図〜第6図に示されている
実施例と同様であるので、説明を省く。 The support member 18 has a cylindrical overall shape,
The supporting member 18 is made of reinforced plastic material such as FRP, non-magnetic material such as copper or aluminum alloy material, and is arranged on the inner peripheral side of the superconducting wire mesh 12a.
This makes it possible to reinforce the superconducting wire mesh 12a and to magnetically shield the superconducting magnet 10. The rest of the configuration is the same as the embodiment shown in FIGS. 4 to 6 described above, so a description thereof will be omitted.
第9図および第10図を参照しながら、本発明
の基礎となる前述の第1図および第2図の構成の
実験結果を説明する。まず、Nb−Ti−Ta−Zr
の4元合金製の直径約30μmの超電導線材13,
14を、約61本綴りで直径約0.35mmに仕上げる。
この超電導線材13,14を縦、横の間隔が約4
mm程度になるように網目を形成し、その後各線材
13,14に約1Kgの張力をかけて各線材13,
14の撓みを防ぎつて、縦横の各交点14を半田
付けによつて超電導金網12aを作成する。次に
第9図に示されるように上記超電導材料から成る
網目状の超電導金網12aのほぼ中心部に被遮蔽
体11を配置した状態で、液体ヘリウム貯留槽4
0内の液体ヘリウム41に浸漬する。液体ヘリウ
ム貯留槽40内には、強磁場発生用超電導磁石1
0が設けられており、矢符B方向の強磁場が発生
している。このときの被遮蔽体11に関する磁気
遮蔽特性は、第10図に示されている。第10図
の横軸は超電導磁石10による磁場の強さBを表
わし、またその縦軸は超電導金網12aを通過し
た磁場の強さB1を示す。この磁気遮蔽特性試験
では、磁場Bの上昇速度は毎秒3000ガウスであ
り、ラインl1は超電導金網12aを使用しない
場合における磁気遮蔽特性を示しており、またラ
インl2は超電導金網12aを使用した場合、磁
気遮蔽特性をそれぞれ示している。この実験結果
から明らかなように、本発明の磁気遮蔽装置を実
施したときの磁気遮蔽効果が極めて優れているこ
とが理解される。 With reference to FIGS. 9 and 10, experimental results for the configurations shown in FIGS. 1 and 2 described above, which are the basis of the present invention, will be explained. First, Nb−Ti−Ta−Zr
A superconducting wire 13 made of a quaternary alloy with a diameter of about 30 μm,
14, with about 61 lines and a diameter of about 0.35mm.
These superconducting wires 13 and 14 are separated vertically and horizontally by approximately 4
A mesh is formed so that the mesh size is approximately 1.5 mm, and then a tension of approximately 1 kg is applied to each wire 13, 14.
A superconducting wire mesh 12a is created by soldering each vertical and horizontal intersection point 14 while preventing the wire mesh 14 from bending. Next, as shown in FIG. 9, the liquid helium storage tank 4 is placed in a state in which the shielded body 11 is placed approximately in the center of the mesh-like superconducting wire mesh 12a made of the above-mentioned superconducting material.
Immerse in liquid helium 41 in 0. Inside the liquid helium storage tank 40, there is a superconducting magnet 1 for generating a strong magnetic field.
0 is provided, and a strong magnetic field in the direction of arrow B is generated. The magnetic shielding characteristics of the shielded object 11 at this time are shown in FIG. The horizontal axis in FIG. 10 represents the strength B of the magnetic field generated by the superconducting magnet 10, and the vertical axis represents the strength B1 of the magnetic field passing through the superconducting wire mesh 12a. In this magnetic shielding property test, the rising speed of the magnetic field B was 3000 Gauss per second, line l1 shows the magnetic shielding property when the superconducting wire mesh 12a is not used, and line l2 shows the magnetic shielding property when the superconducting wire mesh 12a is used. Each shows magnetic shielding characteristics. As is clear from this experimental result, it is understood that the magnetic shielding effect when the magnetic shielding device of the present invention is implemented is extremely excellent.
一般に超電導現象は、極低温の液体ヘリウム温
度約−269℃で生じるため、各実施例における磁
気遮蔽部材12,20は、液体ヘリウム貯留槽4
0に設置して使用される。しかし今後、超電導現
象が室温近傍で得られるようになれば液体ヘリウ
ム貯留槽40は不要となり、さらに軽量で可搬性
のある磁気遮蔽部材12,20を構成することが
可能となる。 Generally, the superconducting phenomenon occurs at an extremely low liquid helium temperature of about -269°C, so the magnetic shielding members 12 and 20 in each embodiment are
It is used by setting it to 0. However, in the future, if the superconducting phenomenon can be obtained near room temperature, the liquid helium storage tank 40 will become unnecessary, and it will be possible to construct the magnetic shielding members 12 and 20 that are even lighter and more portable.
前記実施例では、超電導金網12aを半田付け
によつて円筒状に固定したけれども、たとえば自
動スポツト熔接を用いて加工性を良くするように
してもよい。 In the embodiment described above, the superconducting wire mesh 12a was fixed in a cylindrical shape by soldering, but the workability may be improved by using automatic spot welding, for example.
本発明に従う磁気遮蔽装置は、核融合炉や発電
機などに限定されず、その他の広範囲の技術分野
に亘つて実施されることができる。 The magnetic shielding device according to the present invention is not limited to nuclear fusion reactors, power generators, etc., and can be implemented in a wide range of other technical fields.
効 果
以上のように本発明によれば、磁気発生源10
の全周囲を超電導材料から成る磁気遮蔽部材1
2,12a,12b,20によつて覆い、これに
よつて外部に磁気が漏洩することを確実に防ぐこ
とができるようになるとともに、また磁気遮蔽体
11を超電導材料から成る磁気遮蔽部材12,1
2a,12b,20によつて覆うようにしたの
で、被遮蔽体11は、外部磁界から遮蔽されるこ
とが確実になる。Effects As described above, according to the present invention, the magnetic generation source 10
Magnetic shielding member 1 made of superconducting material around the entire periphery of
2, 12a, 12b, and 20, thereby making it possible to reliably prevent magnetic leakage to the outside. 1
2a, 12b, and 20, it is ensured that the shielded object 11 is shielded from external magnetic fields.
特に本発明によれば、磁気遮蔽部材12,12
a,12b,20は、厚み方向に貫通した多数の
網目が形成されており、したがつて超電導材料が
わずかの量ですみ、軽量化が図られる。 In particular, according to the invention, the magnetic shielding members 12, 12
A, 12b, and 20 are formed with a large number of meshes penetrating in the thickness direction, so that only a small amount of superconducting material is required, and the weight can be reduced.
また本発明によれば、磁気遮蔽部材12,12
a,12b,20を、多数のハニカム状の透孔1
7が形成された支持部材18によつて補強するよ
うにしたので、磁気遮蔽部材12,12a,12
b,20を薄くすることができ、このことによつ
てもまた超電導材料が少なくてすむ。 Further, according to the present invention, the magnetic shielding members 12, 12
a, 12b, 20, a large number of honeycomb-shaped through holes 1
Since the magnetic shielding members 12, 12a, 12 are reinforced by the supporting member 18 formed with
b, 20 can be made thinner, which again requires less superconducting material.
また本発明によれば、支持部材18のハニカム
状の各透孔17は、磁気遮蔽部材12,12a,
12b,20の網目よりも大きく形成されてお
り、換言すると、磁気遮蔽部材12,12a,1
2b,20の網目は小さく形成されており、これ
によつて磁気遮蔽部材12,12a,12b,2
0による磁気遮蔽を確実にすることができる。 Further, according to the present invention, each of the honeycomb-shaped through holes 17 of the support member 18 includes the magnetic shielding members 12, 12a,
12b, 20, in other words, the magnetic shielding members 12, 12a, 1
The meshes of the magnetic shielding members 12, 12a, 12b, 2 are formed small.
Magnetic shielding by 0 can be ensured.
さらに本発明によれば、上述のように支持部材
18の各透孔17は、前記網目よりも大きく形成
されており、したがつて支持部材18の軽量化を
図ることができる。しかもこの支持部材18は、
磁気遮蔽部材12,12a,12b,20よりも
厚く形成されているので、磁気遮蔽部材12,1
2a,12b,20に作用する磁力を、大きな強
度で支持することができ、したがつて磁気遮蔽部
材12,12a,12b,20の変形を防ぐこと
ができる。 Further, according to the present invention, as described above, each through hole 17 of the support member 18 is formed larger than the mesh, so that the weight of the support member 18 can be reduced. Moreover, this support member 18 is
Since it is formed thicker than the magnetic shielding members 12, 12a, 12b, 20, the magnetic shielding members 12, 1
The magnetic force acting on the magnetic shielding members 2a, 12b, 20 can be supported with great strength, and deformation of the magnetic shielding members 12, 12a, 12b, 20 can therefore be prevented.
また支持部材18は非磁性材料から成り、した
がつてこの支持部材18のどの部分にも磁力が作
用することはなく、したがつて支持部材18は、
磁気遮蔽部材12,12a,12b,20による
厚み方向の力を支持することができるように構成
すればよく、したがつてその構成を簡略化し、組
立を容易にすることができるという優れた効果も
また、達成される。 Further, the support member 18 is made of a non-magnetic material, so that no magnetic force acts on any part of the support member 18.
It is sufficient to configure the magnetic shielding members 12, 12a, 12b, and 20 so that they can support the force in the thickness direction, which has the advantage of simplifying the configuration and facilitating assembly. Also achieved.
第1図は本発明の基礎となる構成を示す正面
図、第2図は第1図に示される構成の平面図、第
3図は本発明の基礎となる他の構成を示す斜視
図、第4図は本発明の第1実施例の平面図、第5
図は第4図のセクシヨンVの拡大平面図、第6図
は第4図および第5図の実施例の斜視図、第7図
は本発明の基礎となる構成を示す斜視図、第8図
は本発明の第2実施例を説明するための断面図、
第9図および第10図は本発明の基礎となる構成
の実験、およびその結果を説明するための図、第
11図および第12図は先行技術を説明するため
の図である。
10……超電導磁石、12……被遮蔽体、1
2,20……磁気遮蔽部材、12a……超電導金
網、12b……超電導多孔板、13,14……超
電導線材、18……支持部材。
FIG. 1 is a front view showing the configuration that is the basis of the present invention, FIG. 2 is a plan view of the configuration shown in FIG. 1, and FIG. 3 is a perspective view showing another configuration that is the basis of the present invention. 4 is a plan view of the first embodiment of the present invention;
The figure is an enlarged plan view of section V in FIG. 4, FIG. 6 is a perspective view of the embodiment shown in FIGS. 4 and 5, FIG. 7 is a perspective view showing the basic structure of the present invention, and FIG. is a sectional view for explaining the second embodiment of the present invention,
FIG. 9 and FIG. 10 are diagrams for explaining an experiment on the basic configuration of the present invention and its results, and FIGS. 11 and 12 are diagrams for explaining the prior art. 10... Superconducting magnet, 12... Shielded object, 1
2, 20... Magnetic shielding member, 12a... Superconducting wire mesh, 12b... Superconducting porous plate, 13, 14... Superconducting wire, 18... Supporting member.
Claims (1)
貫通した多数の網目が形成され、超電導材料から
成る磁気遮蔽部材12,12a,12b,20
と、 磁気遮蔽部材12,12a,12b,20の外
周面全体に当接してその外周面全体を覆い、厚み
方向に貫通した多数のハニカム状の透孔17が形
成され、非磁性材料から成り、前記各透孔17
は、前記網目よりも大きく形成されている支持部
材18とを含み、 支持部材18は、磁気遮蔽部材12,12a,
12b,20よりも厚く形成されることを特徴と
する超電導磁気遮蔽装置。 2 被遮蔽体11の全周囲を覆い、厚み方向に貫
通した多数のハニカム状の透孔17が形成され、
非磁性材料から成る支持部材18と、 支持部材18の外周面全体に当接してその外周
面全体を覆い、厚み方向に貫通した多数の網目が
形成され、超電導材料から成る磁気遮蔽部材1
2,12a,12b,20とを含み、 前記透孔17は、前記網目よりも大きく形成さ
れており、 支持部材18は、磁気遮蔽部材12,12a,
12b,20よりも厚く形成されていることを特
徴とする超電導磁気遮蔽装置。[Claims] 1. Magnetic shielding members 12, 12a, 12b, 20 made of a superconducting material and formed with a large number of meshes that cover the entire periphery of the magnetic generation source 10 and penetrate in the thickness direction.
A large number of honeycomb-shaped through holes 17 are formed that abut and cover the entire outer peripheral surfaces of the magnetic shielding members 12, 12a, 12b, and 20 and penetrate in the thickness direction, and are made of a non-magnetic material. Each of the through holes 17
includes a support member 18 formed larger than the mesh, and the support member 18 includes magnetic shielding members 12, 12a,
A superconducting magnetic shielding device characterized in that it is formed thicker than 12b and 20. 2. A large number of honeycomb-shaped through holes 17 are formed that cover the entire periphery of the shielded object 11 and penetrate in the thickness direction,
A supporting member 18 made of a non-magnetic material; and a magnetic shielding member 1 made of a superconducting material, in which a large number of meshes penetrating in the thickness direction are formed, contacting and covering the entire outer circumferential surface of the supporting member 18, and made of a superconducting material.
2, 12a, 12b, 20, the through hole 17 is formed larger than the mesh, and the support member 18 includes the magnetic shielding members 12, 12a,
A superconducting magnetic shielding device characterized in that it is formed thicker than 12b and 20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60116046A JPS61274376A (en) | 1985-05-29 | 1985-05-29 | Superconductor magnetic shielding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60116046A JPS61274376A (en) | 1985-05-29 | 1985-05-29 | Superconductor magnetic shielding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61274376A JPS61274376A (en) | 1986-12-04 |
JPH0564872B2 true JPH0564872B2 (en) | 1993-09-16 |
Family
ID=14677367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60116046A Granted JPS61274376A (en) | 1985-05-29 | 1985-05-29 | Superconductor magnetic shielding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61274376A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63234569A (en) * | 1987-03-24 | 1988-09-29 | Asahi Chem Ind Co Ltd | Magnetic shielding material |
JPS6426898U (en) * | 1987-08-07 | 1989-02-15 | ||
JPS6482697A (en) * | 1987-09-25 | 1989-03-28 | Nippon Sheet Glass Co Ltd | Fiber material |
JPS6490598A (en) * | 1987-09-30 | 1989-04-07 | Nippon Sheet Glass Co Ltd | Transparent plate for electromagnetic shielding |
JPH01150398A (en) * | 1987-12-08 | 1989-06-13 | Ohbayashi Corp | Magnetic shielding room |
JPH01245598A (en) * | 1988-03-28 | 1989-09-29 | Japan Atom Energy Res Inst | High temperature superconductor zero magnetic field standard device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57123607A (en) * | 1980-12-10 | 1982-08-02 | Hewlett Packard Yokogawa | Shielded wire |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57101422U (en) * | 1980-12-15 | 1982-06-22 |
-
1985
- 1985-05-29 JP JP60116046A patent/JPS61274376A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57123607A (en) * | 1980-12-10 | 1982-08-02 | Hewlett Packard Yokogawa | Shielded wire |
Also Published As
Publication number | Publication date |
---|---|
JPS61274376A (en) | 1986-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4740758A (en) | Apparatus for generating a magnetic field in a volume having bodies influencing the field pattern | |
JP3654463B2 (en) | Magnetic resonance imaging system | |
JPH06132119A (en) | Superconductive magnet | |
CA1331481C (en) | Periodic permanent magnet structure for use in electronic devices | |
US4263096A (en) | Toroidal magnet system | |
JPH0564872B2 (en) | ||
GB2356056A (en) | NMR gradient coil arrangement with reduced mechanical vibration | |
JPS6130012A (en) | magnetic structure | |
JP3824412B2 (en) | Superconducting magnet device for crystal pulling device | |
JPS625161A (en) | Magnet for mri | |
CN111863373A (en) | Superconducting magnet with electromagnetic protection component | |
JPH0417308B2 (en) | ||
JP4852053B2 (en) | Magnetic resonance imaging system | |
JP2017147412A (en) | Low leakage shaking open type magnetic shield structure | |
JP3139925B2 (en) | Superconducting magnet device | |
JP4228110B2 (en) | Open magnet system | |
JPH0373598A (en) | Magnetic shielding device | |
JPH0945519A (en) | Superconducting energy storage device | |
JP3263764B2 (en) | Superconducting magnet device | |
JPH0252287A (en) | Superconducting magnetic shield body | |
JP2025036694A (en) | Magnetic resonance imaging equipment | |
JPH01260394A (en) | Nuclear fusion apparatus | |
JPH0233842A (en) | superconducting electron lens | |
JPS6119093B2 (en) | ||
JPS5873850A (en) | Method and apparatus for generating magnetic field |