[go: up one dir, main page]

JPH0551974B2 - - Google Patents

Info

Publication number
JPH0551974B2
JPH0551974B2 JP58166730A JP16673083A JPH0551974B2 JP H0551974 B2 JPH0551974 B2 JP H0551974B2 JP 58166730 A JP58166730 A JP 58166730A JP 16673083 A JP16673083 A JP 16673083A JP H0551974 B2 JPH0551974 B2 JP H0551974B2
Authority
JP
Japan
Prior art keywords
waveguide
optical waveguide
branched optical
open
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58166730A
Other languages
Japanese (ja)
Other versions
JPS6059547A (en
Inventor
Manabu Yamamoto
Hitoshi Kawaguchi
Hiroo Ukita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58166730A priority Critical patent/JPS6059547A/en
Publication of JPS6059547A publication Critical patent/JPS6059547A/en
Publication of JPH0551974B2 publication Critical patent/JPH0551974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/122Flying-type heads, e.g. analogous to Winchester type in magnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • G11B7/124Integrated head arrangements, e.g. with source and detectors mounted on the same substrate the integrated head arrangements including waveguides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 本発明は、光記録再生装置における光学ヘツ
ド、特に安定した記録再生ができるとともにヘツ
ドクラツシユのない信頼性の向上した光学ヘツド
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical head for an optical recording/reproducing apparatus, and more particularly to an optical head which is capable of stable recording/reproducing and is free from head crashes and has improved reliability.

従来のこの種装置は、第1図に示すように、半
導体レーザ(LD)等の光源1、カツプリングレ
ンズ2、ビームスプリツタ3、1/4波長板4、集
光レンズ5、検出器前レンズ6、光検出器7およ
びボイスコイルアクチユエータ8などより構成さ
れるのが通常であるが、記録再生時には走行記録
媒体9の面振れおよびトラツク偏心に追随するた
め、フオーカス誤差信号およびトラツク誤差信号
に従つて集光レンズ5等を駆動し、ジヤストフオ
ーカスおよびオントラツクを実現している。した
がつて、このような従来装置では、 (i) 個別の光学部品および機構部品の組合せであ
るため、光軸調整等に時間がかかる他、信頼性
に劣る、 (ii) 大型で重いため、高速アクセル化、マルチヘ
ツド化がむずかしい、 などの問題点が指摘されている。
As shown in Fig. 1, a conventional device of this type includes a light source 1 such as a semiconductor laser (LD), a coupling lens 2, a beam splitter 3, a quarter-wave plate 4, a condenser lens 5, and a detector in front of the detector. It is usually composed of a lens 6, a photodetector 7, a voice coil actuator 8, etc., but during recording and reproduction, it follows the surface runout and track eccentricity of the traveling recording medium 9, so a focus error signal and a track error are generated. The condensing lens 5 and the like are driven in accordance with the signal to achieve just focus and on-track. Therefore, such conventional devices (i) are a combination of individual optical and mechanical components, which takes time to adjust the optical axis, and are less reliable; (ii) they are large and heavy; Problems have been pointed out, such as the difficulty of achieving high-speed acceleration and multi-head operation.

本発明は、これらの欠点を除去するため、半導
体レーザ等の光源、導波路レンズ構造とした分岐
形光導波路および光検出器を同一基盤内に一体形
成することにより光学ヘツドを構成し、あるい
は、分岐形光導波路の開放開口端にマイクロレン
ズを設置するとともに、空気浮上作用により焦点
制御を行ない、安定した記録再生ができるととも
にヘツドクラツシユのない信頼性の向上した光学
ヘツドを提供せんとするものであつて、その要旨
とするところは、少なくとも3個以上の開口端を
もつ導波路レンズ構造からなる分岐形光導波路と
半導体レーザ等の光源と光検出器を同一基盤内に
一体形成するとともに、前記導波路レンズ構造か
らなる分岐形光導波路の少なくとも1つの開口端
を開放して開放開口端とする一方、他の少なくと
も1つの開口端に前記半導体レーザ等の光源を、
少なくとも他の1つの開口端に前記光検出器をそ
れぞれ前記出射用の開放開口端と対向する前記基
盤側面上に配置したこと、さらには前記開放開口
端にマイクロレンズや1/4波長板を設けたこと、
並びに前記分岐形光導波路における光検出器側導
波路の屈折率を光源側導波路の屈折率よりも高く
したこと等を特徴とする。
In order to eliminate these drawbacks, the present invention configures an optical head by integrally forming a light source such as a semiconductor laser, a branched optical waveguide having a waveguide lens structure, and a photodetector on the same substrate, or The present invention aims to provide an optical head in which a microlens is installed at the open aperture end of a branched optical waveguide, and the focus is controlled by air levitation, allowing for stable recording and reproduction as well as improved reliability without head crash. The gist of this is that a branched optical waveguide consisting of a waveguide lens structure having at least three or more open ends, a light source such as a semiconductor laser, and a photodetector are integrally formed on the same substrate; At least one open end of the branched optical waveguide having a wave lens structure is opened to form an open open end, while at least one other open end is provided with a light source such as the semiconductor laser,
The photodetector is disposed on the side surface of the substrate facing the emission open aperture end at least at least one other aperture end, and a microlens or a quarter-wave plate is provided at the open aperture end. Was it,
Another feature is that the refractive index of the photodetector side waveguide in the branched optical waveguide is higher than the refractive index of the light source side waveguide.

以下、図面に示した実施例にもとづき、本発明
に係る光学ヘツドについて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical head according to the present invention will be described below based on embodiments shown in the drawings.

第2図aは本発明に係る光学ヘツドの一実施例
を示す概略構成図であつて、1は半導体レーザ等
の光源、7a,7bは光検出器、10は分岐形光
導波路、10aは分岐形光導波路の開口端、10
bは開放開口端、11は基盤、12a,12bは
導波路レンズである。いま、半導体レーザ等の光
源1より出射したビーム13は導波路レンズ12
aにより平行ビームとなり導波路レンズ12bに
より走行記録媒体14の面上に集束される。そし
て、記録時は高いレーザパワーを照射し、トラツ
クに沿つてデータがその反射率変化により記録さ
れる。再生信号は走行記録媒体14からの反射光
を導波路レンズ12bにより補足し、分岐形光導
波路10に設置した光検出器7bの和出力により
得ることができるとともに、トラツク信号は分岐
形光導波路10の開放開口端10bの両側にある
光検出器7aの作動出力により得ることができ
る。また、フオーカス制御は、光学ヘツド全体を
スライダ軸受15に端面に設置し、空気浮上作用
を利用して行われる。なお、スライダ軸受15の
空気浮上作用については、磁気デイスクに用いら
れる浮動ヘツドスライダ軸受と同一であるため、
ここでは説明を省略するが、走行記録媒体14か
らの浮上距離は媒体面での所要ビーム径より設定
される(なお、16は走行記録媒体14の記録層
である。) 第2図bは本実施例における光学ヘツド部の拡
大図を示すものであるが、分岐形光導波路10は
基盤11の内部に構成されており、導波路レンズ
12a,12bは円柱形をなし、かつ、第2図c
に示すように円柱の高さ方向に屈折率分布nを有
する構造となつている。このため、レーザビーム
13は円柱によるレンズ効果によりトラツク径方
向に集束されるとともに、前記屈折率分布による
レンズ効果により、トラツク周方向に集束され
る。
FIG. 2a is a schematic configuration diagram showing an embodiment of the optical head according to the present invention, in which 1 is a light source such as a semiconductor laser, 7a and 7b are photodetectors, 10 is a branched optical waveguide, and 10a is a branched optical head. Open end of shaped optical waveguide, 10
b is an open aperture end, 11 is a base, and 12a and 12b are waveguide lenses. Now, a beam 13 emitted from a light source 1 such as a semiconductor laser passes through a waveguide lens 12.
a, it becomes a parallel beam and is focused onto the surface of the traveling recording medium 14 by the waveguide lens 12b. During recording, high laser power is irradiated, and data is recorded along the track by changes in reflectance. The reproduction signal can be obtained by capturing the reflected light from the traveling recording medium 14 by the waveguide lens 12b and by the sum output of the photodetector 7b installed in the branched optical waveguide 10. can be obtained from the operating output of the photodetectors 7a on both sides of the open aperture end 10b. Focus control is performed by installing the entire optical head on the end face of a slider bearing 15 and utilizing the air floating effect. Note that the air levitation effect of the slider bearing 15 is the same as that of a floating head slider bearing used in a magnetic disk.
Although the explanation is omitted here, the flying distance from the traveling recording medium 14 is set based on the required beam diameter on the medium surface (note that 16 is the recording layer of the traveling recording medium 14). This is an enlarged view of the optical head section in the embodiment, and the branched optical waveguide 10 is constructed inside the base 11, and the waveguide lenses 12a and 12b are cylindrical, and as shown in FIG.
As shown in the figure, the structure has a refractive index distribution n in the height direction of the cylinder. Therefore, the laser beam 13 is focused in the track radial direction due to the lens effect of the cylinder, and is also focused in the track circumferential direction due to the lens effect due to the refractive index distribution.

なお、半導体レーザ等の光源1への戻り光がレ
ーザ共振器内で発振光と干渉し、レーザ出力変動
を生じさせることがある。したがつて、本発明で
は、例えば第2図dに示すように分岐形光導波路
10の開放開口端10bに1/4波長板4を設置し、
戻り光の偏光方向をレーザ発振光の偏光方向
(TE偏波)と90°異なるTM偏波とし、戻り光と
発振光との干渉を防ぐなどの方法により、レーザ
出力変動を押えることができる。
Note that the return light to the light source 1, such as a semiconductor laser, may interfere with the oscillation light within the laser resonator, causing fluctuations in laser output. Therefore, in the present invention, for example, as shown in FIG. 2d, a quarter wavelength plate 4 is installed at the open end 10b of the branched optical waveguide 10,
Fluctuations in laser output can be suppressed by making the polarization direction of the returned light a TM polarization that differs by 90 degrees from the polarization direction of the laser oscillation light (TE polarization) to prevent interference between the return light and the oscillation light.

一方、第2図e,fには本実施例の製造方法が
示されるが、第2図eにおいて17は電極、18
はP−GaAs、19はP−AlGaAs、20は
GaAs、21はn−AlGaAs、22はn−GaAsで
あつてこの基盤11上に後述する光部品が一体形
成される。このような層を多層エピタキシヤル成
長により製造後、半導体レーザ等の光源1および
光検出器7a以外を例えばプロムメタノール等を
用いてエツチングにより取り去り、除去部に新た
に分岐形光導波路10、導波路レンズ12a,1
2bを多層エピキタシヤル成長により形成する。
第2図fには形成後の断面図が示されるが、導波
路レンズ12a,12bの製造は、例えば分子線
エピタキシヤル成長法あるいは、MOCVD法を
用い、層厚により屈折率が異なるAlxGa1-xAs(x
を層厚により変化)を成長させ、プロムメタノー
ル等を用いたエツチングにより左側に示す層厚方
向の屈折率分布を有する円柱レンズを形成する。
また、分岐形光導波路10の製造は例えば、第2
図fに示すようにAl0.3GaAs(屈折率3.40)23、
Al0.1GaAs(屈折率3.54)24、を多層エピタキシ
ヤル成長により三層に積層するなどの方法に依
る。なお、第2図dに示す1/4波長板4は、光学
ヘツドを一体として構成した後、光導波路10の
開放開口端10bに設置される。
On the other hand, FIGS. 2e and 2f show the manufacturing method of this embodiment. In FIG. 2e, 17 is an electrode and 18 is an electrode.
is P-GaAs, 19 is P-AlGaAs, 20 is
21 is n-AlGaAs, 22 is n-GaAs, and optical components to be described later are integrally formed on this substrate 11. After manufacturing such a layer by multilayer epitaxial growth, parts other than the light source 1 such as a semiconductor laser and the photodetector 7a are removed by etching using, for example, promethanol, and a new branched optical waveguide 10 and a waveguide are formed in the removed part. Lens 12a, 1
2b is formed by multilayer epitaxial growth.
FIG. 2f shows a cross-sectional view after formation, and the waveguide lenses 12a and 12b are manufactured using, for example, molecular beam epitaxial growth or MOCVD using Al 1-x As(x
(varies depending on the layer thickness) and is etched using promethanol or the like to form a cylindrical lens having a refractive index distribution in the layer thickness direction shown on the left.
In addition, the manufacturing of the branched optical waveguide 10 can be carried out using, for example, the second
As shown in Figure f, Al 0.3 GaAs (refractive index 3.40)23,
It depends on a method such as stacking Al 0.1 GaAs (refractive index 3.54) into three layers by multilayer epitaxial growth. The quarter-wave plate 4 shown in FIG. 2d is installed at the open end 10b of the optical waveguide 10 after the optical head is integrated.

第3図は本発明に係る光学ヘツドの他の実施例
を示したものであるが、本実施例は分岐形光導波
路10の開放開口端10bから出射するレーザビ
ーム13を1次元的に集束させる構造例である。
分岐形光導波路10から出射するレーザビーム1
3は、第3図b,cに示すように導波路断面1
0′が矩形である場合には開放開口端10bから
の距離ともに広がるが、本実施例では第3図d,
eに示すように導波路断面10″を半円形とし、
一次元的にビーム集束効果を持たせる構造とす
る。このような導波路レンズ構造の製造法として
は、例えば多層エピタキシヤル成長によりAl0.3
GaAs(屈折率3.40)にAl0.1GaAs(屈折率3.54)を
積層した後、Al0.1GaAsをイオンミリング等によ
り半円形型に加工する。さらにAl0.3GaAsを多層
エピタキシヤル成長により積層するなどの方法が
ある。なお、本実施例の他、第2図の実施例に示
した円柱形レンズあるいは屈折率分布を有する光
導波路によつても一次元的にビームを集束させる
ことが可能である。また、分岐形光導波路10の
長さは、導波路レンズの集光特性を考慮して決め
られる。
FIG. 3 shows another embodiment of the optical head according to the present invention, and this embodiment focuses one-dimensionally the laser beam 13 emitted from the open aperture end 10b of the branched optical waveguide 10. This is a structural example.
Laser beam 1 emitted from branched optical waveguide 10
3 is the waveguide cross section 1 as shown in FIGS. 3b and 3c.
If 0' is a rectangle, the distance from the open end 10b increases, but in this embodiment, the distance from the open end 10b increases.
As shown in e, the waveguide cross section 10'' is semicircular,
The structure has a one-dimensional beam focusing effect. As a manufacturing method for such a waveguide lens structure, for example, Al 0.3
After laminating Al 0.1 GaAs (refractive index 3.54) on GaAs (refractive index 3.40), Al 0.1 GaAs is processed into a semicircular shape by ion milling or the like. Furthermore, there is a method of stacking Al 0.3 GaAs by multilayer epitaxial growth. In addition to this embodiment, it is also possible to one-dimensionally focus the beam using the cylindrical lens shown in the embodiment of FIG. 2 or the optical waveguide having a refractive index distribution. Further, the length of the branched optical waveguide 10 is determined in consideration of the light focusing characteristics of the waveguide lens.

第4図aは本発明に係る光学ヘツドの他の実施
例を示すものであるが、本実施例は、分岐形光導
波路10の開放開口端10bにマイクロレンズ2
5を設けたものである。本実施例では光検出器7
b側の導波路10の屈折率n1をLD側の屈折率n2
より大きくし、LDへの戻り光を減少させている。
25は分岐形光導波路10の開放開口端10bを
イオンミリング加工により製造したマイクロレン
ズであり、分岐形光導波路10と一体形成され
る。LDからの発振光は分岐形光導波路10を通
過後、マイクロレンズ25により走行記録媒体面
14に集束される。
FIG. 4a shows another embodiment of the optical head according to the present invention. In this embodiment, a microlens 2 is provided at the open end 10b of the branched optical waveguide 10.
5. In this embodiment, the photodetector 7
The refractive index n 1 of the waveguide 10 on the b side is the refractive index n 2 of the LD side.
It is made larger to reduce the amount of light returning to the LD.
A microlens 25 is manufactured by ion milling the open end 10b of the branched optical waveguide 10, and is integrally formed with the branched optical waveguide 10. After passing through the branched optical waveguide 10, the oscillated light from the LD is focused onto the traveling recording medium surface 14 by the microlens 25.

また、第4図bには組合せ光部品による本発明
に係る光学ヘツドの実施例が示されるが、本実施
例は分岐形光導波路を分岐形光フアイバで構成し
たものであつて、フアイバ10の開放開口端10
aにはマイクロレンズ25、フアイバ10内には
光アイソレータ26を設置し、レーザビームを集
束させるものである。このマイクロレンズ25と
しては、サフアイア製の半球レンズやフアイバ融
着時に形成される先球を利用できる。また、光利
用効率を高めるために、半導体レーザ等の光源1
と分岐形フアイバー10の接続に各種レンズを使
用してもよい。
Further, FIG. 4b shows an embodiment of an optical head according to the present invention using a combination of optical components. In this embodiment, the branched optical waveguide is constructed of a branched optical fiber. Open opening end 10
A microlens 25 and an optical isolator 26 are installed in the fiber 10 to focus the laser beam. As the microlens 25, a hemispherical lens made of sapphire or a tip formed during fiber fusion can be used. In addition, in order to increase the light utilization efficiency, a light source such as a semiconductor laser 1
Various lenses may be used to connect the branched fiber 10 and the branched fiber 10.

以上、図面に示した実施例にもとずいて詳細に
説明したように、本発明では分岐形光導波路を導
波路レンズ構造とて、あるいは分岐形光導波路開
放開口端にマイクロレンズを設置するため、分岐
形光導波路開放開口端から射出するレーザビーム
の広がりを抑制することができる。したがつて、
従来装置に比べ、浮上距離の拡大が可能となり、
ヘツドクラツシユのない信頼性の高い光学ヘツド
を実現できる。また、浮上距離の変動によるビー
ム径の変化量を低減できるため、安定しない記録
再生が可能となる。
As described above in detail based on the embodiments shown in the drawings, in the present invention, the branched optical waveguide has a waveguide lens structure, or the microlens is installed at the open end of the branched optical waveguide. , it is possible to suppress the spread of the laser beam emitted from the open end of the branched optical waveguide. Therefore,
Compared to conventional equipment, it is possible to expand the levitation distance,
A highly reliable optical head without head crushing can be realized. Furthermore, since the amount of change in beam diameter due to fluctuations in flying distance can be reduced, unstable recording and reproduction is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の概略構成図、第2図aは本
発明に係る光学ヘツドの一実施例を示す概略構成
図、同図bは光学ヘツド部の拡大図、同図cは導
波路レンズの構成図、同図dは本発明における1/
4波長板設置例の構成図、同図e,fは、本発明
の製造方法の説明図、第3図aは本発明の他の実
施例の概略構成図、同図b,cは従来のレーザビ
ームの射出状態説明図、同図d,eは、本発明の
レーザビーム射出状態説明図、第4図a,bは本
発明の他の実施例を示す概略構成図である。 図面中、1は光源、2はカツプリングレンズ、
3はビームスプリツタ、4は1//4波長板、5は集
光レンズ、6は検出器前レンズ、7,7a,7b
は光検出器、8はボイスコイルアクチユエータ、
9は走行記録媒体、10は分岐形光導波路、10
aは開口端、10bは開放開口端、10′,1
0″は導波路断面、11は基盤、12a,12b
は導波路レンズ、13はビーム、14は溝付走行
記録媒体、15はスライダ軸受、16は記録層、
17は電極、18はP−GaAs、19はP−
AlGaAs、20はGaAs、21はn−AlGaAs、
22はn−GaAs、23はAl0.3GaAs、24は
Al0.1GaAs、25はマイクロレンズ、26は光ア
イソレータである。
Figure 1 is a schematic configuration diagram of a conventional device, Figure 2a is a schematic diagram showing an embodiment of the optical head according to the present invention, Figure 2b is an enlarged view of the optical head section, and Figure 2c is a waveguide lens. The configuration diagram of 1/d in the present invention is shown in FIG.
Figure 3e and f are diagrams for explaining the manufacturing method of the present invention, Figure 3a is a schematic diagram of another embodiment of the present invention, and Figures b and c are diagrams of conventional FIGS. 4D and 4E are diagrams illustrating the laser beam emission state of the present invention, and FIGS. 4A and 4B are schematic configuration diagrams showing other embodiments of the present invention. In the drawing, 1 is a light source, 2 is a coupling lens,
3 is a beam splitter, 4 is a 1//4 wavelength plate, 5 is a condenser lens, 6 is a front detector lens, 7, 7a, 7b
is a photodetector, 8 is a voice coil actuator,
9 is a running recording medium, 10 is a branched optical waveguide, 10
a is an open end, 10b is an open end, 10', 1
0″ is the waveguide cross section, 11 is the base, 12a, 12b
13 is a waveguide lens, 13 is a beam, 14 is a grooved running recording medium, 15 is a slider bearing, 16 is a recording layer,
17 is an electrode, 18 is P-GaAs, 19 is P-
AlGaAs, 20 is GaAs, 21 is n-AlGaAs,
22 is n-GaAs, 23 is Al 0.3 GaAs, 24 is
Al 0.1 GaAs, 25 is a microlens, and 26 is an optical isolator.

Claims (1)

【特許請求の範囲】 1 少なくとも3個以上の開口端をもつ導波路レ
ンズ構造からなる分岐形光導波路と半導体レーザ
等の光源と光検出器とを同一基盤内に一体形成す
るとともに、前記導波路レンズ構造からなる分岐
形光導波路の少なくとも1つの開口端を開放して
出射用の開放開口端とする一方、他の少なくとも
1つの開口端に前記半導体レーザ等の光源を、少
なくとも他の1つの開口端に前記光検出器をそれ
ぞれ前記出射用の開放開口端と対向する基盤側面
上に配置したことを特徴とする光学ヘツド。 2 前記導波路レンズ構造からなる分岐形光導波
路が、その断面中心ほど屈折率が高くなるように
屈折率分布をもたせたものであることを特徴とす
る特許請求の範囲第1項記載の光学ヘツド。 3 前記導波路レンズ構造からなる分岐形光導波
路が、この分岐形光導波路中に、円柱形をなし、
かつ、前記分岐形光導波路中心から各円柱の軸方
向にずれるにしたがつて屈折率が低下する導波路
レンズを設けたものであることを特徴とする特許
請求の範囲第1項記載の光学ヘツド。 4 前記導波路レンズ構造からなる分岐形光導波
路が、断面半円形であることを特徴とする特許請
求の範囲第1項記載の光学ヘツド。 5 前記導波路レンズ構造からなる分岐形光導波
路の開放開口端に1/4波長板を設けることを特徴
とする特許請求の範囲第1項記載の光学ヘツド。 6 前記導波路レンズ構造からなる分岐形光導波
路における光検出器側導波路の屈折率を光源側導
波路の屈折率よりも大きくすることを特徴とする
特許請求の範囲第1項記載の光学ヘツド。 7 少なくとも3個以上の開口端をもつ分岐形光
導波路と半導体レーザ等の光源と光検出器とを同
一基盤内に一体形成するとともに、前記分岐形光
導波路の少なくとも1つの開口端を開放して出射
用の開放開口端とする一方、他の少なくとも1つ
の開口端に前記半導体レーザ等の光源を、少なく
とも他の1つの開口端に前記光検出器をそれぞれ
前記出射用の開放開口端と対向する基盤側面上に
配置し、更に前記開放開口端にマイクロレンズを
形成してマイクロレンズ付き開放開口端としたこ
とを特徴とする光学ヘツド。
[Scope of Claims] 1. A branched optical waveguide having a waveguide lens structure having at least three or more open ends, a light source such as a semiconductor laser, and a photodetector are integrally formed on the same substrate, and the waveguide At least one opening end of the branched optical waveguide having a lens structure is opened to serve as an open opening end for emission, and at least one other opening end is provided with a light source such as the semiconductor laser. An optical head characterized in that the photodetectors are disposed at each end on a side surface of the substrate facing the open aperture end for emission. 2. The optical head according to claim 1, wherein the branched optical waveguide having the waveguide lens structure has a refractive index distribution such that the refractive index becomes higher toward the center of the cross section. . 3. A branched optical waveguide having the waveguide lens structure has a cylindrical shape in the branched optical waveguide,
The optical head according to claim 1, further comprising a waveguide lens whose refractive index decreases as it deviates from the center of the branched optical waveguide in the axial direction of each cylinder. . 4. The optical head according to claim 1, wherein the branched optical waveguide having the waveguide lens structure has a semicircular cross section. 5. The optical head according to claim 1, wherein a quarter wavelength plate is provided at the open end of the branched optical waveguide having the waveguide lens structure. 6. The optical head according to claim 1, wherein in the branched optical waveguide having the waveguide lens structure, the refractive index of the photodetector side waveguide is made larger than the refractive index of the light source side waveguide. . 7 A branched optical waveguide having at least three or more open ends, a light source such as a semiconductor laser, and a photodetector are integrally formed in the same substrate, and at least one open end of the branched optical waveguide is open. An open aperture end for emission, while at least one other aperture end is provided with a light source such as the semiconductor laser, and at least one other aperture end is provided with the photodetector, each facing the open aperture end for emission. What is claimed is: 1. An optical head which is disposed on a side surface of a substrate and further includes a microlens formed at the open aperture end to form an open aperture end with a microlens.
JP58166730A 1983-09-12 1983-09-12 Optical head Granted JPS6059547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166730A JPS6059547A (en) 1983-09-12 1983-09-12 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166730A JPS6059547A (en) 1983-09-12 1983-09-12 Optical head

Publications (2)

Publication Number Publication Date
JPS6059547A JPS6059547A (en) 1985-04-05
JPH0551974B2 true JPH0551974B2 (en) 1993-08-04

Family

ID=15836680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166730A Granted JPS6059547A (en) 1983-09-12 1983-09-12 Optical head

Country Status (1)

Country Link
JP (1) JPS6059547A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609221B2 (en) * 1985-04-22 1997-05-14 ソニー株式会社 Semiconductor laser device
JPS62173645A (en) * 1986-01-28 1987-07-30 Omron Tateisi Electronics Co Pickup head in optical information processor
JPS62124626U (en) * 1986-01-28 1987-08-07
JPS62173646A (en) * 1986-01-28 1987-07-30 Omron Tateisi Electronics Co Pickup head in optical information processor
JPS62124625U (en) * 1986-01-28 1987-08-07
JPS62275332A (en) * 1986-05-23 1987-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS6331033A (en) * 1986-07-25 1988-02-09 Asahi Glass Co Ltd Optical pick-up
JP2572050B2 (en) * 1986-11-05 1997-01-16 シャープ株式会社 Waveguide type optical head
JPS6398508U (en) * 1986-12-16 1988-06-25
JP2005292382A (en) 2004-03-31 2005-10-20 Kazuyuki Hirao OPTICAL ELEMENT, MANUFACTURING METHOD THEREOF, AND OPTICAL DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888951A (en) * 1972-02-23 1973-11-21
JPS5037402A (en) * 1973-08-03 1975-04-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888951A (en) * 1972-02-23 1973-11-21
JPS5037402A (en) * 1973-08-03 1975-04-08

Also Published As

Publication number Publication date
JPS6059547A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
US5831960A (en) Integrated vertical cavity surface emitting laser pair for high density data storage and method of fabrication
KR100418970B1 (en) Optical semiconductor laser device and method for manufacturing thereof
US5917848A (en) Vertical cavity surface emitting laser with phase shift mask
US6757311B2 (en) Laser diode, semiconductor light-emitting device, and method of production thereof
US6185237B1 (en) Semiconductor laser
US6661824B2 (en) Semiconductor laser device and method for fabricating the same
JPH0551974B2 (en)
US6373874B1 (en) Semiconductor laser and optical disk device using the laser
US6781944B1 (en) Optical information processor with monolithically integrated light emitting device, light receiving devices and optics
JP2001244570A (en) Semiconductor laser, laser coupler data regenerating device, data recording device and method of manufacturing semiconductor laser
KR100339249B1 (en) Optical device
JPH0520817B2 (en)
JP2663545B2 (en) Optical card recording / reproducing device
JP3533273B2 (en) Optical device
US6480222B1 (en) Semiconductor laser and flying optical pickup for recording/reproducing using the same
JP2002232077A (en) Semiconductor light emitting device and its manufacturing method
JP4376578B2 (en) Optical head for optical recording / reproducing apparatus
JPH02152292A (en) Semiconductor laser device
JP3154726B2 (en) Semiconductor laser and disk device
JPH07153111A (en) Optical head
JP3348717B2 (en) Semiconductor laser
JPH07193334A (en) Optical element having semiconductor laser
JPH0547023A (en) Optical pickup device
JPH03203035A (en) Focus error detecting method
JPH02122584A (en) Semiconductor laser array and optical disk device