[go: up one dir, main page]

JPH05299680A - Plasma cvd method and its device - Google Patents

Plasma cvd method and its device

Info

Publication number
JPH05299680A
JPH05299680A JP4096615A JP9661592A JPH05299680A JP H05299680 A JPH05299680 A JP H05299680A JP 4096615 A JP4096615 A JP 4096615A JP 9661592 A JP9661592 A JP 9661592A JP H05299680 A JPH05299680 A JP H05299680A
Authority
JP
Japan
Prior art keywords
magnetic field
orthogonal
electric field
discharge
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4096615A
Other languages
Japanese (ja)
Inventor
Masayoshi Murata
正義 村田
Yoshiaki Takeuchi
良昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4096615A priority Critical patent/JPH05299680A/en
Priority to EP93250088A priority patent/EP0574100B1/en
Priority to DE69324849T priority patent/DE69324849T2/en
Priority to CA002092756A priority patent/CA2092756C/en
Priority to KR1019930006268A priority patent/KR930022463A/en
Priority to US08/127,377 priority patent/US5423915A/en
Publication of JPH05299680A publication Critical patent/JPH05299680A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a plasma CVD device which can form an amorphous silicon thin film of a large area at a high speed. CONSTITUTION:A reaction container 1, a means to introduce and evacuate reaction gas to and from the reaction container 1, discharge electrodes 2, 3 contained in the reaction container 1, a power supply 4 for supplying glow discharge power to the discharge electrodes 2, 3, two solenoid coils 5, 100 arranged to make magnetic field generated by each thereof cross at right angles to an electric field generated and an AC power supply 103 for supplying power for magnetic field generation to the solenoid coils 5, 100 are provided. An amorphous silicon thin film is formed on a substrate 10 supported to cross at right angles to an electric field generated by the discharge electrodes 2, 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアモルファスシリコン太
陽電池、薄膜トランジスタ、光センサ、半導体保護膜な
ど各種電子デバイスに使用される大面積薄膜の製造に適
したプラズマCVD法およびプラズマCVD装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD method and a plasma CVD apparatus suitable for the production of large area thin films used in various electronic devices such as amorphous silicon solar cells, thin film transistors, optical sensors and semiconductor protective films.

【0002】[0002]

【従来の技術】大面積のアモルファスシリコン薄膜を製
造するために、従来より用いられているプラズマCVD
装置の構成を図9を参照して説明する。この技術的手段
は例えば特願昭61−106314号などに開示されて
いるように公知である。
2. Description of the Related Art Conventionally, plasma CVD has been used to manufacture a large-area amorphous silicon thin film.
The configuration of the device will be described with reference to FIG. This technical means is known as disclosed in, for example, Japanese Patent Application No. 61-106314.

【0003】反応容器1内には、グロー放電プラズマを
発生させるための電極2、3が平行に配置されている。
これら電極2、3には、低周波電源4から例えば60H
zの商用周波数の電力が供給される。なお、電源として
は、直流電源や高周波電源を用いることもできる。反応
容器1の周囲には、これを囲むようにコイル5が巻かれ
ており、交流電源6から交流電力が供給される。反応容
器1内には、図示しないボンベから反応ガス導入管7を
通して例えばモノシランと水素との混合ガスが供給され
る。反応容器1内のガスは排気管8を通して真空ポンプ
9により排気される。基板10は、電極2、3が形成す
る放電空間の外側に、電極2、3の面と直交するように
適宜の手段で支持される。
In the reaction vessel 1, electrodes 2 and 3 for generating glow discharge plasma are arranged in parallel.
These electrodes 2 and 3 are connected to, for example, 60H from the low frequency power source 4.
Power of the commercial frequency of z is supplied. A DC power supply or a high frequency power supply can be used as the power supply. A coil 5 is wound around the reaction container 1 so as to surround the reaction container 1, and AC power is supplied from an AC power supply 6. A mixed gas of, for example, monosilane and hydrogen is supplied into the reaction container 1 from a cylinder (not shown) through a reaction gas introduction pipe 7. The gas in the reaction container 1 is exhausted by the vacuum pump 9 through the exhaust pipe 8. The substrate 10 is supported by an appropriate means outside the discharge space formed by the electrodes 2 and 3 so as to be orthogonal to the surfaces of the electrodes 2 and 3.

【0004】この装置を用い、以下のようにして薄膜を
製造する。真空ポンプ9を駆動して反応容器1内を排気
する。反応ガス導入管7を通して例えばモノシランと水
素との混合ガスを供給し、反応容器1内の圧力を0.0
5〜0.5Torrに保ち、低周波電源4から電極2、
3に電圧を印加すると、グロー放電プラズマが発生す
る。コイル5に例えば10Hzの交流電圧を印加し、電
極2、3間に発生する電界Eと直交する方向に磁界Bを
発生させる。すなわち、グロー放電プラズマを発生させ
る電極間の放電電界Eと直交する方向に磁界Bを発生さ
せる。この磁界Bの強さは正弦波状に変化するため、そ
の方向が周期的に変化する。この磁界における磁束密度
は50〜100ガウス程度でよい。
Using this apparatus, a thin film is manufactured as follows. The vacuum pump 9 is driven to exhaust the inside of the reaction container 1. A mixed gas of, for example, monosilane and hydrogen is supplied through the reaction gas introducing pipe 7 so that the pressure in the reaction vessel 1 is 0.0
Keep at 5 to 0.5 Torr, from low frequency power source 4 to electrode 2,
When a voltage is applied to 3, glow discharge plasma is generated. An alternating voltage of 10 Hz, for example, is applied to the coil 5 to generate a magnetic field B in a direction orthogonal to the electric field E generated between the electrodes 2 and 3. That is, the magnetic field B is generated in the direction orthogonal to the discharge electric field E between the electrodes for generating glow discharge plasma. Since the strength of this magnetic field B changes in a sine wave shape, its direction changes periodically. The magnetic flux density in this magnetic field may be about 50 to 100 Gauss.

【0005】反応ガス導入管7から供給されたガスは電
極2、3間に生じるグロー放電プラズマによって分解さ
れる。この結果、ラジカルSiが発生し、基板10表面
に付着して薄膜を形成する。
The gas supplied from the reaction gas introducing pipe 7 is decomposed by glow discharge plasma generated between the electrodes 2 and 3. As a result, radicals Si are generated and adhere to the surface of the substrate 10 to form a thin film.

【0006】水素イオンなどの荷電粒子は、電極2、3
間で電界Eによるクーロン力F1 =qEと、ローレンツ
力F2 =q(V・B)(ここで、Vは荷電粒子の速度)
とによっていわゆるE・Bドリフト運動を起こす。荷電
粒子は、E・Bドリフトによって初速を与えられた状態
で、電極2、3と直交する方向に飛びだし、基板10に
向けて飛んでゆく。しかし、電極2、3間に生じる電界
の影響が小さい放電空間では、コイル5により生じた磁
界Bによるサイクロトロン運動により、Larmor軌
道を描いて飛んでいく。したがって、水素イオンなどの
荷電粒子が基板10を直撃することは少ない。
Charged particles such as hydrogen ions are generated by the electrodes 2, 3
Coulomb force F 1 = qE and Lorentz force F 2 = q (V · B) due to electric field E between (where V is the velocity of charged particles)
Causes a so-called EB drift motion. The charged particles jump out in a direction orthogonal to the electrodes 2 and 3 and fly toward the substrate 10 while being given an initial velocity by the E / B drift. However, in the discharge space where the influence of the electric field generated between the electrodes 2 and 3 is small, the magnetic field B generated by the coil 5 causes the cyclotron motion to fly along the Larmor trajectory. Therefore, charged particles such as hydrogen ions rarely hit the substrate 10 directly.

【0007】電気的に中性であるラジカルSiは、磁界
Bの影響を受けず、上記荷電粒子群の軌道からそれて基
板10に至り、その表面に非晶質薄膜を形成する。ラジ
カルSiはLarmor軌道を飛んでいく荷電粒子と衝
突するため、電極2、3の前方だけでなく、左または右
に広がった形で非晶質薄膜が形成される。しかも、磁界
Bを交流電源6により変動させているので、基板10の
表面に非晶質薄膜を均一に形成することが可能となる。
なお、電極2、3の長さは、反応容器1の長さの許すか
ぎり長くしても何ら問題がないので、基板10が長尺の
ものであっても、その表面に均一な非晶質薄膜を形成す
ることが可能となる。
The electrically neutral radicals Si are not affected by the magnetic field B, deviate from the orbits of the charged particle group and reach the substrate 10, and form an amorphous thin film on the surface thereof. Since the radical Si collides with charged particles flying in the Larmor orbit, an amorphous thin film is formed not only in front of the electrodes 2 and 3 but also in a left or right spread form. Moreover, since the magnetic field B is changed by the AC power source 6, it is possible to uniformly form an amorphous thin film on the surface of the substrate 10.
It should be noted that there is no problem if the lengths of the electrodes 2 and 3 are as long as the length of the reaction container 1 allows, so that even if the substrate 10 is long, a uniform amorphous surface is formed on the surface thereof. It becomes possible to form a thin film.

【0008】[0008]

【発明が解決しようとする課題】上記の従来の装置で
は、グロー放電プラズマを発生させる電極間の放電電界
Eと直交する方向に磁界Bを発生させることにより、大
面積の成膜を容易に可能としている。しかし、次のよう
な問題がある。
In the above-mentioned conventional apparatus, a large-area film can be easily formed by generating a magnetic field B in a direction orthogonal to a discharge electric field E between electrodes for generating glow discharge plasma. I am trying. However, there are the following problems.

【0009】(1)大面積の成膜を行う場合、電極とし
て長尺のものを用いる必要がある。長尺の電極を用いて
安定したプラズマを発生させるには、その電源の周波数
は可能なかぎり低い方が容易であるため、数10Hz〜
数100Hzの電源が用いられている。しかし、周波数
が低くなり、半周期の間のイオン移動距離が電極間隔を
越えるような条件の下では、直流放電の場合と同様に、
プラズマを維持するために、イオン衝突によって陰極よ
り放出された二次電子が本質的な役割を担うことにな
る。そのため電極に膜が付着して絶縁されると、その部
分では放電が起こらないようになる。この場合、電極表
面を常にクリーンに保つ必要がある。そのため、電極を
頻繁に交換したり頻繁に清掃するなどの煩雑な作業が必
要となり、コスト高の要因の一つとなっている。
(1) When forming a large-area film, it is necessary to use long electrodes. In order to generate stable plasma using a long electrode, the frequency of the power source is preferably as low as possible.
A power source of several 100 Hz is used. However, under the condition that the frequency becomes low and the ion migration distance during the half cycle exceeds the electrode interval, as in the case of DC discharge,
Secondary electrons emitted from the cathode due to ion collision play an essential role in maintaining the plasma. Therefore, if a film is attached to the electrodes and insulated, no electric discharge will occur at that portion. In this case, it is necessary to keep the electrode surface clean at all times. Therefore, complicated work such as frequent replacement of electrodes or frequent cleaning is required, which is one of the factors of high cost.

【0010】(2)上記(1)の欠点を補うために、プ
ラズマ発生源に例えば13.56MHzの高周波電源を
用いると、放電維持に対する電極放出二次電子は本質的
なものでなくなり、電極上に膜などの絶縁物が存在して
いても、電極間にはグロー放電が形成される。しかしな
がら、長尺の電極を用いる場合には、高周波による表皮
効果により電流の大部分が表面(約0.01mm)を流
れるため、電気抵抗が増加する。例えば、電極の長さが
約1m以上になると、電極上に電位分布が現れて一様な
プラズマが発生しなくなる。これを分布定数回路で考え
ると、図10に示すようになる。図10において、xは
電極の長さ方向の距離を示している。すなわち、電極の
単位長さ当りの抵抗Rが放電部分のインピーダンス
1 、Z2 、…、Zn に比べて無視できないほど大きく
なってくると、電極内に電位分布が現れる。したがっ
て、高周波電源を用いる場合には、大面積の成膜を行う
ことは非常に困難であり、実際上これまでは実現できな
かった。
(2) If a high frequency power source of 13.56 MHz is used for the plasma generation source in order to make up for the drawback of (1), the secondary electrons emitted from the electrode for sustaining the discharge are not essential, and the secondary electrons on the electrode are eliminated. Even if an insulator such as a film is present in the electrode, glow discharge is formed between the electrodes. However, when a long electrode is used, most of the current flows on the surface (about 0.01 mm) due to the skin effect due to the high frequency, so that the electric resistance increases. For example, when the length of the electrode is about 1 m or more, a potential distribution appears on the electrode and uniform plasma is not generated. Considering this with a distributed constant circuit, it becomes as shown in FIG. In FIG. 10, x indicates the distance in the length direction of the electrode. That is, when the resistance R per unit length of the electrode becomes so large that it cannot be ignored as compared with the impedances Z 1 , Z 2 , ..., Z n of the discharge part, a potential distribution appears in the electrode. Therefore, when a high frequency power supply is used, it is very difficult to form a large area film, which has not been practically achieved so far.

【0011】(3)上記(1)、(2)の方法では、図
11に示すように、磁界の強さが正弦波状に変化する変
調磁界が、プラズマに印加される。この場合、磁界の強
さが一定である場合に比べ、磁界によりプラズマ密度を
増大させ、それに基づいて成膜速度を向上させる効果は
それほど大きくない。例えば、アモルファスシリコンを
成膜する場合には、成膜速度を1〜2オングストローム
/sec以上に保つことは困難であった。
(3) In the above methods (1) and (2), as shown in FIG. 11, a modulating magnetic field whose magnetic field strength changes sinusoidally is applied to plasma. In this case, as compared with the case where the strength of the magnetic field is constant, the effect of increasing the plasma density by the magnetic field and improving the film formation rate based on it is not so great. For example, when depositing amorphous silicon, it was difficult to maintain the deposition rate at 1 to 2 angstrom / sec or more.

【0012】[0012]

【課題を解決するための手段】本発明のプラズマCVD
法は、グロー放電プラズマを用いて非晶質薄膜を形成す
る方法において、放電時に印加される電界と直交する平
面内を一定の角速度で回転する磁界を印加することを特
徴とするものである。
Means for Solving the Problems Plasma CVD of the present invention
The method is a method of forming an amorphous thin film using glow discharge plasma, which is characterized by applying a magnetic field rotating at a constant angular velocity in a plane orthogonal to an electric field applied during discharge.

【0013】本発明において、磁界を一定の角速度で回
転させるためには、例えば2個のソレノイドコイルを、
それぞれの発生する磁界が放電用電極が発生する電界と
直交しかつ互いに直交するように配置するという手段が
用いられる。
In the present invention, in order to rotate the magnetic field at a constant angular velocity, for example, two solenoid coils are
A means of arranging each of the generated magnetic fields so as to be orthogonal to the electric field generated by the discharge electrode and orthogonal to each other is used.

【0014】本発明のプラズマCVD装置は、反応容器
と、この反応容器に反応ガスを導入し、排気する手段
と、上記反応容器内に収容された放電用電極と、放電用
電極にグロー放電用電力を供給する電源と、それぞれの
発生する磁界が放電用電極が発生する電界と直交しかつ
互いに直交するように配置された2個のソレノイドコイ
ルと、これらのソレノイドコイルに磁界発生用の電力を
供給する交流電源とを有し、上記放電用電極が発生する
電界と直交するように支持された基板上に非晶質薄膜を
形成することを特徴とするものである。本発明におい
て、2個のソレノイドコイルにはそれぞれ、例えば位相
可変2出力発振器から出力される、位相が制御された正
弦波電流が供給される。
The plasma CVD apparatus of the present invention includes a reaction vessel, a means for introducing and exhausting a reaction gas into the reaction vessel, a discharge electrode housed in the reaction vessel, and a discharge electrode for glow discharge. A power supply for supplying electric power, two solenoid coils arranged so that the respective magnetic fields generated are orthogonal to the electric field generated by the discharge electrodes, and the electric power for generating the magnetic field is supplied to these solenoid coils. An amorphous thin film is formed on a substrate having an alternating current power supply for supplying and being orthogonal to an electric field generated by the discharge electrode. In the present invention, each of the two solenoid coils is supplied with a phase-controlled sinusoidal current output from, for example, a phase variable two-output oscillator.

【0015】[0015]

【作用】本発明においては、2個のソレノイドコイルに
よる合成磁界Bが、プラズマ発生用放電電極の電界Eに
対し直交方向に印加される。位相可変2出力発振器から
2個のソレノイドコイルに供給される正弦波電流の位相
を適当に制御すれば、この合成磁界Bは一定の角速度ω
で回転し、その強さは時間に依存せず一定値である。こ
の結果、電極間のプラズマは、角速度ωで回転する力F
(E・Bドリフト)を受ける。すなわち、プラズマは放
電電界Eに直交する平面内で全方向に揺り動かされる。
したがって、プラズマ密度は時間的、空間的に平均化さ
れ、成膜面積を大幅に増大できる。また、磁界によるプ
ラズマ封じ込め効果により、成膜速度を向上できる。
In the present invention, the synthetic magnetic field B by the two solenoid coils is applied in the direction orthogonal to the electric field E of the plasma generating discharge electrode. If the phase of the sinusoidal current supplied from the phase variable dual output oscillator to the two solenoid coils is properly controlled, this composite magnetic field B will have a constant angular velocity ω.
It rotates at, and its strength is a constant value independent of time. As a result, the plasma between the electrodes has a force F that rotates at an angular velocity ω.
Receive (EB drift). That is, the plasma is swung in all directions in the plane orthogonal to the discharge electric field E.
Therefore, the plasma density is averaged temporally and spatially, and the film formation area can be greatly increased. Further, the film formation rate can be improved by the plasma confinement effect by the magnetic field.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の一実施例のプラズマCVD装置の
構成を示す断面図である。なお、従来例の図9と同一部
材には、同一番号を付している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the structure of a plasma CVD apparatus according to an embodiment of the present invention. The same members as those in FIG. 9 of the conventional example are designated by the same reference numerals.

【0017】反応容器1内には、グロー放電プラズマを
発生させるための電極2、3が平行に配置されている。
電極2には、高周波電源4から例えば13.56MHz
の周波数の電力がインピーダンスマッチング回路104
及び電力導入端子105を介して供給される。電極3
は、反応容器1及び高周波ケーブル106を介してアー
ス107に接続されている。また、上記インピーダンス
マッチング回路104の接地側端子は高周波ケーブル1
08により、反応容器1に接続されている。これらの電
極2、3と平行に、すなわち電極2、3により発生する
電界に直交するように、図示しない基板ホルダにより基
板10が設置される。反応容器1内には、図示しないボ
ンベから反応ガス導入管7を通して例えばモノシランが
供給される。反応容器1内のガスは排気管8を通して真
空ポンプ(図示せず)により排気される。反応容器1内
の圧力は圧力計109で測定される。
In the reaction vessel 1, electrodes 2 and 3 for generating glow discharge plasma are arranged in parallel.
For the electrode 2, from the high frequency power source 4, for example, 13.56 MHz
Power of the frequency of the impedance matching circuit 104
And the power supply terminal 105. Electrode 3
Is connected to the ground 107 via the reaction vessel 1 and the high-frequency cable 106. The ground side terminal of the impedance matching circuit 104 is the high frequency cable 1
08, it is connected to the reaction container 1. The substrate 10 is set by a substrate holder (not shown) so as to be parallel to the electrodes 2 and 3, that is, orthogonal to the electric field generated by the electrodes 2 and 3. Monosilane, for example, is supplied into the reaction vessel 1 from a cylinder (not shown) through the reaction gas introduction pipe 7. The gas in the reaction vessel 1 is exhausted by a vacuum pump (not shown) through the exhaust pipe 8. The pressure inside the reaction container 1 is measured by a pressure gauge 109.

【0018】また、反応容器1の周囲には、第1のソレ
ノイドコイル5及び第2のソレノイドコイル100が配
置されている。図2に示すように、第1のソレノイドコ
イル5及び第2のソレノイドコイル100は、それぞれ
が発生する磁界B1 及びB2が電極2、3により発生す
る電界に直交しかつ互いに直交するように配置されてい
る。反応容器1と第1のソレノイドコイル5及び第2の
ソレノイドコイル100との位置は、図3に示すような
関係に設定されている。第1のソレノイドコイル5及び
第2のソレノイドコイル100には、それぞれ位相可変
2出力発振器103から、第1の電力増幅器101及び
第2の電力増幅器102を介して正弦波形の電力が供給
される。上記位相可変2出力発振器103は、2つの正
弦波信号を、それぞれの相対位相を任意に設定して出力
できる。その信号は図示しないオシロスコープで観測さ
れる。
Further, the first solenoid coil 5 and the second solenoid coil 100 are arranged around the reaction vessel 1. As shown in FIG. 2, the first solenoid coil 5 and the second solenoid coil 100 are arranged so that the magnetic fields B 1 and B 2 respectively generated by the first solenoid coil 5 and the second solenoid coil 100 are orthogonal to the electric fields generated by the electrodes 2 and 3 and are also orthogonal to each other. It is arranged. The positions of the reaction container 1, the first solenoid coil 5 and the second solenoid coil 100 are set in the relationship as shown in FIG. The first solenoid coil 5 and the second solenoid coil 100 are supplied with sinusoidal waveform power from the phase variable two-output oscillator 103 via the first power amplifier 101 and the second power amplifier 102, respectively. The phase variable dual output oscillator 103 can output two sine wave signals with their relative phases arbitrarily set. The signal is observed with an oscilloscope (not shown).

【0019】上記装置を用い、以下のようにして例えば
アモルファスシリコン薄膜を製造する。真空ポンプを駆
動して反応容器1内を排気する。反応ガス導入管7を通
して例えばモノシランを50〜100cc/min程度
の流量で供給し、反応容器1内の圧力を0.05〜0.
5Torrに保つ。高周波電源4からインピーダンスマ
ッチング回路104、電力導入端子105などを介し
て、電極2、3に電圧を印加すると、電極間にグロー放
電プラズマが発生する。
Using the above apparatus, for example, an amorphous silicon thin film is manufactured as follows. The inside of the reaction vessel 1 is evacuated by driving the vacuum pump. Monosilane, for example, is supplied at a flow rate of about 50 to 100 cc / min through the reaction gas introducing pipe 7, and the pressure in the reaction vessel 1 is set to 0.05 to 0.
Keep at 5 Torr. When a voltage is applied to the electrodes 2 and 3 from the high frequency power source 4 via the impedance matching circuit 104, the power introduction terminal 105, etc., glow discharge plasma is generated between the electrodes.

【0020】一方、図4(b)、(c)に示すように、
位相可変2出力発振器103から第1及び第2の電力増
幅器101、102を介して、それぞれ第1及び第2の
ソレノイドコイル5、100に、例えば位相を90°ず
らした周波数10Hzの正弦波電力を印加する。このと
き、同図(a)に示すように、第1及び第2のソレノイ
ドコイル5、100による磁界B1 及びB2 の合成磁界
Bが発生する。図5に示すように、この合成磁界Bは電
極2、3の間の電界Eに対し直交方向に一定の角速度2
0π(ラジアン/sec)で回転しながら、上記グロー
放電プラズマに印加される。この結果、図6に示すよう
に、グロー放電プラズマは、一定の角速度で回転する力
(E・Bドリフト)を受ける。したがって、電極2と3
との間のプラズマは電極2と平行方向に、かつ全方向に
揺り動かされる。なお、合成磁界Bの強さは40〜10
0ガウス程度でよい。
On the other hand, as shown in FIGS. 4 (b) and 4 (c),
For example, a sine wave power having a frequency of 10 Hz with a phase shifted by 90 ° is supplied from the phase variable dual output oscillator 103 to the first and second solenoid coils 5 and 100 via the first and second power amplifiers 101 and 102, respectively. Apply. At this time, a combined magnetic field B of the magnetic fields B 1 and B 2 is generated by the first and second solenoid coils 5 and 100, as shown in FIG. As shown in FIG. 5, this combined magnetic field B has a constant angular velocity 2 in the direction orthogonal to the electric field E between the electrodes 2 and 3.
It is applied to the glow discharge plasma while rotating at 0π (radian / sec). As a result, as shown in FIG. 6, the glow discharge plasma receives a force (E / B drift) that rotates at a constant angular velocity. Therefore, electrodes 2 and 3
The plasma between and is swung in a direction parallel to the electrode 2 and in all directions. The strength of the synthetic magnetic field B is 40 to 10
About 0 gauss is enough.

【0021】アモルファスシリコン薄膜の膜厚分布及び
成膜速度は、反応ガスの流量、圧力、電極間に供給され
る電力、及びグロー放電プラズマに印加される合成磁界
の強度などに依存する。そこで、以下のような条件でア
モルファスシリコン薄膜を成膜した。すなわち、直径1
000mmの電極及びガラス基板を用いた。反応ガスと
して、100%モノシランガスを100cc/minの
流量で供給し、反応容器内の圧力を0.5Torrに設
定した。電極2、3間に200Wの高周波電力を印加し
た。ソレノイドコイル5、100により印加される合成
磁界Bの強さ0、20、40、60、80、100ガウ
スに設定した。
The film thickness distribution and film forming rate of the amorphous silicon thin film depend on the flow rate and pressure of the reaction gas, the electric power supplied between the electrodes, the strength of the synthetic magnetic field applied to the glow discharge plasma, and the like. Therefore, an amorphous silicon thin film was formed under the following conditions. Ie 1 diameter
A 000 mm electrode and a glass substrate were used. As the reaction gas, 100% monosilane gas was supplied at a flow rate of 100 cc / min, and the pressure inside the reaction vessel was set to 0.5 Torr. A high frequency power of 200 W was applied between the electrodes 2 and 3. The strength of the synthetic magnetic field B applied by the solenoid coils 5 and 100 was set to 0, 20, 40, 60, 80, and 100 gauss.

【0022】図7に得られたアモルファスシリコン薄膜
の膜厚分布を示す。図7から、磁界を印加しない場合と
比較して、合成磁界Bの強さが40及び80ガウスの場
合には、広い面積にわたって膜厚が一様になっている。
FIG. 7 shows the film thickness distribution of the obtained amorphous silicon thin film. From FIG. 7, as compared with the case where no magnetic field is applied, when the strength of the composite magnetic field B is 40 and 80 Gauss, the film thickness is uniform over a wide area.

【0023】また、図8に磁界の強さと得られたアモル
ファスシリコン薄膜の成膜速度との関係を示す。図8か
ら、本発明の方法では、磁界を印加しない場合に比べ、
合成磁界を印加すれば成膜速度を著しく向上できること
がわかる。また、従来の方法では磁界の強度を強くして
も成膜速度を向上させる効果が小さい。
FIG. 8 shows the relationship between the strength of the magnetic field and the film formation rate of the obtained amorphous silicon thin film. From FIG. 8, in the method of the present invention, compared to the case where no magnetic field is applied,
It can be seen that the film formation rate can be significantly improved by applying a synthetic magnetic field. Further, in the conventional method, the effect of improving the deposition rate is small even if the strength of the magnetic field is increased.

【0024】[0024]

【発明の効果】以上詳述したように本発明によれば、グ
ロー放電プラズマに放電電界と直交する平面内を一定角
速度で回転する合成磁界を印加することにより、大面積
の非晶質薄膜を高速に成膜できる。したがって、アモル
ファスシリコン太陽電池、薄膜トランジスタ及び光電子
デバイスなどの製造分野での工業的価値が著しく大き
い。
As described in detail above, according to the present invention, a large area amorphous thin film is formed by applying a synthetic magnetic field to the glow discharge plasma that rotates at a constant angular velocity in a plane orthogonal to the discharge electric field. High speed film formation. Therefore, the industrial value in the manufacturing field of amorphous silicon solar cells, thin film transistors, optoelectronic devices, etc. is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るプラズマCVD装置の構
成を示す断面図。
FIG. 1 is a sectional view showing the configuration of a plasma CVD apparatus according to an embodiment of the present invention.

【図2】同プラズマCVD装置に用いられる2個のソレ
ノイドコイルの斜視図。
FIG. 2 is a perspective view of two solenoid coils used in the plasma CVD apparatus.

【図3】同プラズマCVD装置の反応容器と2個のソレ
ノイドコイルとの位置関係を示す平面図。
FIG. 3 is a plan view showing a positional relationship between a reaction container of the plasma CVD apparatus and two solenoid coils.

【図4】(a)は2個のソレノイドコイルによる合成磁
界を説明する図、(b)及び(c)は各ソレノイドコイ
ルが発生する磁界を説明する図。
FIG. 4A is a diagram illustrating a combined magnetic field generated by two solenoid coils, and FIGS. 4B and 4C are diagrams illustrating magnetic fields generated by the respective solenoid coils.

【図5】2個のソレノイドコイルによる合成磁界の回転
を説明する図。
FIG. 5 is a diagram illustrating rotation of a synthetic magnetic field by two solenoid coils.

【図6】合成磁界と放電電界との相互作用により発生す
るE・Bドリフトの回転を説明する図。
FIG. 6 is a diagram for explaining rotation of EB drift generated by interaction between a synthetic magnetic field and a discharge electric field.

【図7】本発明の装置により得られたアモルファスシリ
コン薄膜の膜厚分布を示す特性図。
FIG. 7 is a characteristic diagram showing a film thickness distribution of an amorphous silicon thin film obtained by the device of the present invention.

【図8】本発明の装置により得られたアモルファスシリ
コン薄膜の成膜速度と磁界の強さとの関係を示す特性
図。
FIG. 8 is a characteristic diagram showing the relationship between the film formation rate of an amorphous silicon thin film obtained by the apparatus of the present invention and the magnetic field strength.

【図9】従来のプラズマCVD装置の構成を示す断面
図。
FIG. 9 is a sectional view showing the configuration of a conventional plasma CVD apparatus.

【図10】従来のプラズマCVD装置の欠点を示す説明
図。
FIG. 10 is an explanatory view showing a defect of the conventional plasma CVD apparatus.

【図11】従来のプラズマCVD装置において印加され
る磁界を説明する図。
FIG. 11 is a diagram illustrating a magnetic field applied in a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1…反応容器、2、3…電極、4…高周波電源、5、1
00…ソレノイドコイル、10…基板、101、102
…増幅器、103…位相可変2出力発振器。
1 ... Reactor container 2, 3 ... Electrode, 4 ... High frequency power source, 5, 1
00 ... Solenoid coil, 10 ... Substrate, 101, 102
... amplifier, 103 ... a phase variable two-output oscillator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 グロー放電プラズマを用いて非晶質薄膜
を形成する方法において、放電時に印加される電界と直
交する平面内を一定の角速度で回転する磁界を印加する
ことを特徴とするプラズマCVD法。
1. A method for forming an amorphous thin film using glow discharge plasma, which comprises applying a magnetic field rotating at a constant angular velocity in a plane orthogonal to an electric field applied during discharge. Law.
【請求項2】 2個のソレノイドコイルを、それぞれの
発生する磁界が放電用電極が発生する電界と直交しかつ
互いに直交するように配置することにより、磁界を一定
の角速度で回転させることを特徴とする請求項1記載の
プラズマCVD法。
2. The magnetic field is rotated at a constant angular velocity by arranging the two solenoid coils so that the magnetic fields generated by the two solenoid coils are orthogonal to the electric field generated by the discharge electrode and are orthogonal to each other. The plasma CVD method according to claim 1.
【請求項3】 反応容器と、この反応容器に反応ガスを
導入し、排気する手段と、上記反応容器内に収容された
放電用電極と、放電用電極にグロー放電用電力を供給す
る電源と、それぞれの発生する磁界が放電用電極が発生
する電界と直交しかつ互いに直交するように配置された
2個のソレノイドコイルと、これらのソレノイドコイル
に磁界発生用の電力を供給する交流電源とを有し、上記
放電用電極が発生する電界と直交するように支持された
基板上に非晶質薄膜を形成することを特徴とするプラズ
マCVD装置。
3. A reaction vessel, a means for introducing and exhausting a reaction gas into the reaction vessel, a discharge electrode housed in the reaction vessel, and a power supply for supplying glow discharge power to the discharge electrode. , Two solenoid coils arranged so that the respective magnetic fields generated are orthogonal to the electric field generated by the discharge electrode and also orthogonal to each other, and an AC power supply for supplying electric power for generating a magnetic field to these solenoid coils. A plasma CVD apparatus having an amorphous thin film formed on a substrate supported so as to be orthogonal to an electric field generated by the discharge electrode.
JP4096615A 1992-04-16 1992-04-16 Plasma cvd method and its device Pending JPH05299680A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4096615A JPH05299680A (en) 1992-04-16 1992-04-16 Plasma cvd method and its device
EP93250088A EP0574100B1 (en) 1992-04-16 1993-03-22 Plasma CVD method and apparatus therefor
DE69324849T DE69324849T2 (en) 1992-04-16 1993-03-22 Method and device for plasma-assisted chemical vapor deposition
CA002092756A CA2092756C (en) 1992-04-16 1993-03-26 Plasma cvd method and apparatus therefor
KR1019930006268A KR930022463A (en) 1992-04-16 1993-04-15 Plasma CVD Method and Its Apparatus
US08/127,377 US5423915A (en) 1992-04-16 1993-09-28 Plasma CVD apparatus including rotating magnetic field generation means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4096615A JPH05299680A (en) 1992-04-16 1992-04-16 Plasma cvd method and its device

Publications (1)

Publication Number Publication Date
JPH05299680A true JPH05299680A (en) 1993-11-12

Family

ID=14169765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096615A Pending JPH05299680A (en) 1992-04-16 1992-04-16 Plasma cvd method and its device

Country Status (2)

Country Link
JP (1) JPH05299680A (en)
KR (1) KR930022463A (en)

Also Published As

Publication number Publication date
KR930022463A (en) 1993-11-24

Similar Documents

Publication Publication Date Title
EP0574100B1 (en) Plasma CVD method and apparatus therefor
JP2989279B2 (en) Plasma CVD equipment
JP2785442B2 (en) Plasma CVD equipment
JPH05299680A (en) Plasma cvd method and its device
JPH0766138A (en) Plasma cvd system
JPH05311447A (en) Plasma cvd method and its device
JPH0745540A (en) Chemical plasma evaporating device
JPH04120277A (en) Plasma cvd device
JPH03162583A (en) Vacuum process device
JP3151596B2 (en) Plasma processing method and apparatus
JPH01181513A (en) Plasma cvd apparatus
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JPH07147243A (en) Plasma cvd method
JP3492933B2 (en) Etching method for crystalline lens
JPH0250954A (en) Thin film-forming equipment
JPH0645285A (en) Plasma processing device
JPS619577A (en) Plasma chemical vapor phase growing method
Kawasaki et al. Two-dimensional profile of emissive species in a magnetized SiH/sub 4//Ar glow discharge for the scanning-plasma CVD method
JPS62263236A (en) Formation of amorphous thin film and its system
JPH0465149B2 (en)
JPS6323826B2 (en)
JPH0576549B2 (en)
JPH0650724B2 (en) Low temperature plasma electromagnetic field control mechanism
JPS62143418A (en) Thin film forming equipment
JPS6247485A (en) Device for forming deposited film by plasma cvd

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020416