[go: up one dir, main page]

JPH05131194A - Recovery of silica from aqueous solution - Google Patents

Recovery of silica from aqueous solution

Info

Publication number
JPH05131194A
JPH05131194A JP25814591A JP25814591A JPH05131194A JP H05131194 A JPH05131194 A JP H05131194A JP 25814591 A JP25814591 A JP 25814591A JP 25814591 A JP25814591 A JP 25814591A JP H05131194 A JPH05131194 A JP H05131194A
Authority
JP
Japan
Prior art keywords
silica
electrodes
hot water
aqueous solution
geothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25814591A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kubota
康宏 窪田
Akira Ueda
晃 上田
Yukimitsu Sugawara
幸光 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP25814591A priority Critical patent/JPH05131194A/en
Publication of JPH05131194A publication Critical patent/JPH05131194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prevent a silica scale from generating in an aqueous solution flow path and utilize the recovered silica as a silicon resource by separating and recovering silica from geothermal water as well as from an aqueous solution containing silica. CONSTITUTION:Geothermal water 1 separated from vapor in a separation tank 3 is allowed to run through a reaction flow path 4, and at the same time, an alternating current is applied to an area between electrodes 5A, 5B installed in the reaction flow path 4. Thus silica is allowed to deposit alternately on the surface of the electrodes 5A, 5B, and the deposited silica is permitted to precipitate to the bottom of the reaction flow path 4 for recovery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地熱熱水を始めとする
シリカ(SiO2)含有水溶液からシリカを分離回収
し、前記水溶液の流路におけるシリカスケールの生成を
防止するとともに、回収したシリカを珪素資源として利
用する水溶液中のシリカ回収法に関する。
FIELD OF THE INVENTION The present invention separates and recovers silica from an aqueous solution containing silica (SiO 2 ) such as geothermal hot water, prevents the formation of silica scale in the flow path of the aqueous solution, and recovers the recovered silica. The present invention relates to a method for recovering silica in an aqueous solution which utilizes as a silicon resource.

【0002】[0002]

【従来の技術】地熱発電は、地中の高温地熱流体を噴出
させ、分離された水蒸気を利用して発電を行うものであ
るが、この場合、水蒸気とともに、シリカを500〜1
000mg/lの濃度で含む地熱熱水が噴出する。噴出し
た地熱熱水は、地下還元井を経て地中に還流されるが、
前記地熱流体の温度が250℃〜350℃であるのに対
し、前記地熱熱水の温度が97℃〜98℃と低温である
ため、前記地熱熱水におけるシリカの溶解度が相対的に
低下し、しかも前記水蒸気との分離に伴いシリカが濃縮
されることから、前記地熱熱水に含まれるシリカの一部
は過飽和状態となる。この過飽和シリカはシリカスケー
ルとして地熱発電所内の熱水経路や地下還元井等に析出
しやすく、熱交換器の熱効率低下や前記熱水経路の閉
塞、あるいは前記地下還元井の能力減少等の問題を生じ
させ、前記地熱熱水の利用上大きな障害となっている。
2. Description of the Related Art In geothermal power generation, high-temperature geothermal fluid in the ground is jetted to generate electric power by utilizing separated steam.
Geothermal hot water containing at a concentration of 000 mg / l erupts. The ejected geothermal hot water is returned to the ground through an underground reduction well,
Since the temperature of the geothermal fluid is 250 ° C to 350 ° C, whereas the temperature of the geothermal water is low at 97 ° C to 98 ° C, the solubility of silica in the geothermal water is relatively lowered, Moreover, since silica is concentrated as it is separated from the water vapor, some of the silica contained in the geothermal hot water becomes supersaturated. This supersaturated silica is likely to precipitate as a silica scale in the hot water path in the geothermal power plant, the underground reduction well, etc., and causes problems such as a decrease in heat efficiency of the heat exchanger and blockage of the hot water path, or a decrease in the capacity of the underground reduction well. This is a major obstacle to the utilization of the geothermal hot water.

【0003】一方、高純度シリカは、半導体素子等に用
いられる金属シリコンの原料として利用され、またその
需要が近年大きく増加しているものであるが、そのほと
んどを海外からの輸入に頼っているため、供給面で不安
定な資源と言わざるを得ない。
On the other hand, high-purity silica is used as a raw material for metallic silicon used for semiconductor devices and the demand for it has increased significantly in recent years, but most of it depends on imports from overseas. Therefore, it must be said that it is an unstable resource in terms of supply.

【0004】そこで、前記地熱熱水中のシリカを予め回
収すれば、前記熱水経路や前記地下還元井におけるシリ
カスケールの析出が防止され、しかも珪素資源の活用に
もなるため、従来より多くの研究がなされている。
Therefore, if silica in the geothermal hot water is recovered in advance, precipitation of silica scale in the hot water passage and the underground reduction well can be prevented, and moreover, silicon resources can be utilized. Research is being done.

【0005】ここで、これら従来のシリカ回収法は、ほ
ぼ以下の三種類に大別される。
Here, these conventional silica recovery methods are roughly classified into the following three types.

【0006】(1) 限外濾過膜法:特開昭60−94
198号公報、特開昭63−1496号公報、および特
開昭63−2805号公報等に開示されている方法で、
前記地熱熱水のシリカにシリカシード等の薬液を添加し
てコロイド状とした後、ポリ塩化ビニル等からなる限外
濾過膜を用いて濾過し、回収するものである。
(1) Ultrafiltration membrane method: JP-A-60-94
198, JP-A-63-1496, JP-A-63-2805, and the like.
A chemical solution such as silica seed is added to silica of the geothermal hot water to form a colloidal form, which is then collected by filtration using an ultrafiltration membrane made of polyvinyl chloride or the like.

【0007】(2) 吸着法:特開昭59−16588
号公報、特開昭60−114391号公報、および特公
昭59−13919号公報等に開示されている方法で、
前記地熱熱水に吸着剤(チオエーテル重合体等の有機溶
媒、または、カルシウム、マグネシウム等を含有する金
属化合物や活性アルミナ等)を添加するものである。同
方法においては、添加物とシリカと重合させるか、上記
添加物の加水分解の結果生じた二次生成物の水酸化物と
ともに沈澱したシリカを回収する。
(2) Adsorption method: JP-A-59-16588
Japanese Patent Publication No. 60-114391 and Japanese Patent Publication No. 59-13919.
An adsorbent (an organic solvent such as a thioether polymer, or a metal compound containing calcium, magnesium, etc., activated alumina, etc.) is added to the geothermal hot water. In the same method, silica is polymerized with the additive or the precipitated silica is recovered together with a hydroxide of a secondary product formed as a result of hydrolysis of the additive.

【0008】(3) 浮上分離法:前記地熱熱水にシリ
カ捕収剤を含む発泡性液剤を添加し、発生した気泡の表
面に微細なシリカ粒子を吸着させて、泡層として回収す
る方法である。
(3) Floating separation method: a method in which a foaming liquid agent containing a silica collector is added to the geothermal hot water, and fine silica particles are adsorbed on the surface of the generated bubbles to collect as a foam layer. is there.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記各
方法のうち、限外濾過法においては、濾過膜が容易に目
詰まりを起こすためその都度洗浄もしくは交換する必要
があり、また回収率も数%にすぎないことから、回収に
必要な経費が増大するという問題があった。
However, among the above methods, in the ultrafiltration method, the filtration membrane is easily clogged, so that the filtration membrane needs to be washed or replaced each time, and the recovery rate is several%. However, there is a problem that the cost required for recovery increases.

【0010】一方、吸着法は、シリカの回収率は高いも
のの、特殊な薬剤を使用する必要があり、特に有機溶媒
を用いた場合には、添加する有機溶媒が高価であるた
め、経済性の点で問題があった。また、金属化合物を用
いた場合には、シリカがCa(OH)2あるいはMg
(OH)2等添加した金属の水酸化物を多量に含むスラ
ッジ(沈殿物)に吸着されるため、その回収には改めて
濾過等の手段を用いる必要があった。
On the other hand, although the adsorption method has a high recovery rate of silica, it requires the use of a special chemical agent. Particularly when an organic solvent is used, the organic solvent to be added is expensive, so that it is economical. There was a problem in terms. When a metal compound is used, silica is Ca (OH) 2 or Mg.
Since it is adsorbed by sludge (precipitate) containing a large amount of metal hydroxide added with (OH) 2, etc., it was necessary to use a means such as filtration again for its recovery.

【0011】更に、浮上分離法では、回収したシリカ中
に、アルミニウムや砒素等、前記地熱熱水中の金属が混
合するため純度が低下し、しかも回収効率を高めるた
め、pH調整その他の方法を用いて予めシリカの重合お
よび凝集を促進させておく必要がある等、工程が複雑と
なっていた。
Further, in the flotation separation method, since metals such as aluminum and arsenic in the geothermal hot water are mixed in the recovered silica, the purity is lowered and the recovery efficiency is improved. It is necessary to promote the polymerization and aggregation of silica in advance, which complicates the process.

【0012】[0012]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、地熱熱水等シリカを含有
する水溶液に少なくとも一対の電極を接触させ、これら
の電極間に交流電流を通電して、前記電極の表面にシリ
カを析出させると同時に析出したシリカを前記電極の表
面から脱落させる前記水溶液中のシリカ回収法である。
The present invention has been made to solve the above-mentioned problems, and at least a pair of electrodes is brought into contact with an aqueous solution containing silica such as geothermal hot water, and an alternating current is applied between these electrodes. Is applied to cause the silica to deposit on the surface of the electrode, and at the same time, the deposited silica is removed from the surface of the electrode to recover the silica in the aqueous solution.

【0013】以下、図面に基づき本発明の手段について
更に詳しく説明する。本発明におけるシリカ回収設備の
基本的な構成を図1、図3および図4に示す。図1にお
いて、符号3は円筒状をなす分離槽で、その側面には導
入管2が接続されている。また、分離器3は、U字溝状
をなす反応流路4の先端に管等で接続されている。
The means of the present invention will be described below in more detail with reference to the drawings. The basic structure of the silica recovery facility in the present invention is shown in FIGS. 1, 3 and 4. In FIG. 1, reference numeral 3 is a cylindrical separation tank, and the introduction pipe 2 is connected to the side surface thereof. The separator 3 is connected to the tip of the U-shaped reaction channel 4 by a pipe or the like.

【0014】反応流路4内には各々長方形平板状をなす
一対の電極5A,5Bが設置されているが、その位置
は、反応流路4に地熱熱水1を流した場合、電極5A,
5Bの下部が地熱熱水1に浸漬されるような位置となっ
ている。更に、電極5A,5Bの上端にはスイッチ7を
経て交流電源8が接続され、反応流路4と併せてシリカ
回収部6を形成している。そして、反応流路4の後端に
は還元管9が接続され、還元管9は更に地下還元井(図
示せず)に接続されている。
A pair of electrodes 5A and 5B each having a rectangular flat plate shape are installed in the reaction channel 4, and the positions of the electrodes 5A and 5B are 5A, 5B when the geothermal hot water 1 is flown into the reaction channel 4.
The lower part of 5B is located so as to be immersed in the geothermal hot water 1. Further, an AC power supply 8 is connected to the upper ends of the electrodes 5A and 5B via a switch 7, and a silica recovery part 6 is formed together with the reaction channel 4. Then, a reduction pipe 9 is connected to the rear end of the reaction channel 4, and the reduction pipe 9 is further connected to an underground reduction well (not shown).

【0015】一方、分離槽3の上部には、地熱熱水1が
混入しない位置に蒸気移送管10の一端が挿入され、ま
た、蒸気移送管10の他端は発電設備(図示せず)に接
続されている。
On the other hand, one end of the steam transfer pipe 10 is inserted at a position where the geothermal water 1 is not mixed in the upper part of the separation tank 3, and the other end of the steam transfer pipe 10 is connected to a power generation facility (not shown). It is connected.

【0016】地中より噴出した地熱熱水1は導入管2を
経て分離槽3内に貯留された後、渦流となって反応流路
4に流入し、反応流路4において電極5A,5Bと接触
しつつ還元管9へと向かう流れを形成する。この状態で
スイッチ7を入れると、交流電源8より供給された交流
電流により地熱熱水1を介して電極5A,5B間が導通
し、交流電源8と電極5A,5B間に回路が形成される
とともに、電極5A,5Bのうち陽極の表面に、地熱熱
水1中に含まれるシリカが析出する。
The geothermal hot water 1 ejected from the ground is stored in the separation tank 3 through the introduction pipe 2 and then becomes a vortex flow into the reaction flow path 4 to form electrodes 5A and 5B in the reaction flow path 4. A flow toward the reduction tube 9 is formed while making contact. When the switch 7 is turned on in this state, the electrodes 5A and 5B are electrically connected via the geothermal hot water 1 by the AC current supplied from the AC power source 8, and a circuit is formed between the AC power source 8 and the electrodes 5A and 5B. At the same time, silica contained in the geothermal hot water 1 is deposited on the surface of the anode of the electrodes 5A and 5B.

【0017】そして、反応流路4から排出された地熱熱
水1は過飽和シリカをほとんど含まない状態で還元管9
を経て前記地下還元井から地中に還元される。従って、
熱水経路や前記地下還元井においてシリカスケールが生
成することはない。
Then, the geothermal hot water 1 discharged from the reaction channel 4 contains the reduction tube 9 in a state where it contains almost no supersaturated silica.
Via the underground return well. Therefore,
No silica scale is generated in the hot water path or the underground reduction well.

【0018】一方、地熱熱水1とともに噴出した水蒸気
は、分離槽3で地熱熱水1と分離された後、蒸気移送管
9を経て前記発電設備に移送され発電に利用される。
On the other hand, the steam ejected together with the geothermal hot water 1 is separated from the geothermal hot water 1 in the separation tank 3 and then transferred to the power generation facility through the steam transfer pipe 9 and used for power generation.

【0019】ここで、本発明の場合交流電源8を使用し
ているため、通電中は電極5A,5B間で陽極と陰極と
がその周波数に対応する周期で絶えず交互に入れ替わっ
ている。従って、通電中は電極5A,5Bの双方にシリ
カが析出するが、析出したシリカは、その電極が陰極と
なった際には地熱熱水1に再溶解することなく電極の表
面より自ずから剥離する。すなわち、通電中は電極5
A,5B間でシリカの析出とその剥離とが前記周波数に
対応する周期で交互に繰り返され、その結果、析出した
シリカの剥離に伴い電極5A,5Bの表面が常に清浄に
保たれるとともに、剥離したシリカが反応流路4の底部
に沈澱する。よって、本発明においては、シリカの回収
および電極5A,5B間の導通確保の目的で電極5A,
5Bに析出したシリカを電極5A,5Bより人為的に除
去する必要はない。
Here, in the case of the present invention, since the AC power source 8 is used, the anode and the cathode are continuously alternated between the electrodes 5A and 5B at a cycle corresponding to the frequency during energization. Therefore, silica is deposited on both the electrodes 5A and 5B during energization, but when the electrode becomes a cathode, the deposited silica is spontaneously exfoliated from the surface of the electrode without being redissolved in the geothermal hot water 1. . That is, the electrode 5 is energized.
Deposition of silica and peeling thereof between A and 5B are alternately repeated at a cycle corresponding to the frequency, and as a result, the surfaces of the electrodes 5A and 5B are always kept clean due to the peeling of deposited silica. The separated silica precipitates on the bottom of the reaction channel 4. Therefore, in the present invention, for the purpose of recovering silica and ensuring conduction between the electrodes 5A, 5B, the electrodes 5A,
It is not necessary to artificially remove the silica deposited on 5B from the electrodes 5A and 5B.

【0020】また、ここで回収されたシリカは、SiO
2としての純度が非常に高く前記電極以外の不純物をほ
とんど含有しないため半導体素子等の用途に使用可能で
あることに加え、粒子径が均一であるため取り扱いの点
でも有利である。更に、水洗等の操作を行うことによ
り、より純度の高いシリカが得られる。
The silica recovered here is SiO 2.
The purity as 2 is very high and contains almost no impurities other than the above-mentioned electrodes, so that it can be used for semiconductor devices and the like, and in addition, it has an even particle size, which is advantageous in handling. Further, by performing operations such as washing with water, silica with higher purity can be obtained.

【0021】しかも、交流電源8を使用することによ
り、通常電気分解等に使用される直流電源の場合と比較
して消費電力が大幅に低減される他、電力会社等より給
電される電気を変換器等を使用することなく直接使用で
きるため、給電設備の簡略化が可能となっている。
Moreover, by using the AC power supply 8, the power consumption is greatly reduced as compared with the case of the DC power supply normally used for electrolysis, and the electricity supplied from the power company is converted. Since it can be used directly without using a device, it is possible to simplify the power supply equipment.

【0022】一方、電極5A,5Bに用いられる材質と
しては、アルミニウム、銅、鉄、亜鉛、鉛、ニッケル、
コバルト、チタン、カルシウム、およびマグネシウムか
ら選択される金属またはその合金が用いられるが、必要
に応じそれ以外の素材を用いることもできる。また、通
電時の電流の大きさ、周波数および通電時間は上記析出
物が生成されるような条件とするが、交流電源8とし
て、図2に示すような波形を呈する、いわゆる矩形波を
用いてもよい。この場合、通電時における最大振幅の維
持時間と通電時間がほぼ等しいため、通電による前記析
出物の回収効率が向上する。
On the other hand, the materials used for the electrodes 5A and 5B are aluminum, copper, iron, zinc, lead, nickel,
A metal selected from cobalt, titanium, calcium, and magnesium or an alloy thereof is used, but other materials can be used if necessary. Moreover, the magnitude of the current during energization, the frequency and the energizing time are set so that the above-mentioned precipitates are produced. Good. In this case, since the maximum amplitude maintaining time and the energizing time at the time of energizing are almost equal, the efficiency of collecting the deposit by energizing is improved.

【0023】更に、電極5A,5Bの形状および大き
さ、電極5A,5B間の距離、反応流路4の容積等の条
件は、反応流路4内における地熱熱水1の流速、地熱熱
水1の温度、および地熱熱水1中のシリカの濃度ならび
に他の金属イオンを始めとする混合物の有無およびその
濃度等の条件に応じて決定される。具体的には、実験に
より求める。
Further, conditions such as the shape and size of the electrodes 5A and 5B, the distance between the electrodes 5A and 5B, the volume of the reaction channel 4 and the like are determined by the flow velocity of the geothermal water 1 in the reaction channel 4 and the geothermal water. 1 and the concentration of silica in the geothermal hot water 1, the presence or absence of a mixture including other metal ions, and the concentration thereof. Specifically, it is determined by experiment.

【0024】なお、図1のシリカ回収設備においては、
反応流路4の断面形状を図3に示すようなU字溝状とし
たが、図4に示すように、流路の断面形状を管状とし、
この反応流路4A内に電極5A,5Bを設置してもよ
い。また、回収部6を複数個設け、地熱熱水1が各回収
部6を順次通過するに従い地熱熱水1中のシリカが段階
的に除去されるような構成としてもよく、分離槽3に直
接電極5A,5Bを設置し、分離槽3内で通電を行って
もよい。
Incidentally, in the silica recovery equipment of FIG.
Although the cross-sectional shape of the reaction flow path 4 is U-shaped as shown in FIG. 3, the cross-sectional shape of the flow path is tubular as shown in FIG.
The electrodes 5A and 5B may be installed in the reaction channel 4A. Alternatively, a plurality of recovery parts 6 may be provided so that the silica in the geothermal hot water 1 is removed stepwise as the geothermal hot water 1 passes through the recovery parts 6 in sequence. The electrodes 5A and 5B may be installed and electricity may be supplied in the separation tank 3.

【0025】[0025]

【実施例】次に、実施例を挙げて、本発明の効果につい
て説明する。平均868.4ppmの濃度でシリカを含
有する地熱熱水を、体積304cm3、断面積16cm2
の樋状反応槽内に流下させるとともに、この反応槽内
に、浸漬部分の表面積が71.25cm2であるアルミ
ニウム製極板を2枚浸漬して周波数50Hzの交流電流
を通電した。
EXAMPLES Next, the effects of the present invention will be described with reference to examples. Geothermal hot water containing silica at an average concentration of 868.4 ppm was used, and the volume was 304 cm 3 and the cross-sectional area was 16 cm 2.
While being made to flow down into the gutter-shaped reaction tank, two aluminum electrode plates having a surface area of the immersed portion of 71.25 cm 2 were immersed in this reaction tank, and an alternating current having a frequency of 50 Hz was applied.

【0026】前記地熱熱水の流下条件および通電条件、
ならびに前記反応槽から流出した地熱熱水のシリカ濃度
を表1にそれぞれ示す。
[0026] The flow conditions and energization conditions of the geothermal hot water,
Table 1 shows the silica concentrations of the geothermal hot water flowing out of the reaction tank.

【0027】[0027]

【表1】 但し、表1中の水温は、前記反応容器への流入時の水温
を示す。
[Table 1] However, the water temperature in Table 1 shows the water temperature at the time of flowing into the reaction vessel.

【0028】その結果、いずれの場合にも、双方の極板
上に析出物が生成され、この析出物は析出後前記反応槽
の底部に沈澱した。また、更なる調査の結果、この析出
物は、夾雑物として若干のアルミニウムのみを含む高純
度シリカであった。
As a result, in each case, a deposit was formed on both electrode plates, and this deposit was deposited at the bottom of the reaction vessel after deposition. Further, as a result of further investigation, this precipitate was high-purity silica containing only a small amount of aluminum as a contaminant.

【0029】更に、前記反応槽から流出する前記地熱熱
水のシリカ濃度を測定したところ、表2のような結果を
得た。
Further, when the silica concentration of the geothermal hot water flowing out from the reaction tank was measured, the results shown in Table 2 were obtained.

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示した数値から明かな通り、いずれ
の場合にも、通電後の前記地熱熱水中のシリカ濃度が減
少した。これは、通電により前記地熱熱水中のシリカが
除去されたことを示すものである。
As is clear from the numerical values shown in Table 2, in all cases, the silica concentration in the geothermal hot water after energization decreased. This indicates that the silica in the geothermal hot water was removed by applying electricity.

【0032】[0032]

【発明の効果】以上説明した通り、本発明においては、
地熱熱水を始めとするシリカ含有液に交流電流を通電さ
せるだけで、前記含有液中より高純度のシリカを容易に
回収することができる。そのため、回収の操作が簡単と
なるばかりではなく、回収に要する経費も大幅に低減さ
れる。しかも、特殊な薬剤等を使用することがないの
で、経済性と安全性が更に高められる。すなわち、本発
明の利用により、地熱発電等における地熱熱水中のシリ
カの回収およびシリカスケールの生成防止を、簡単かつ
安価に、しかも確実に行うことが可能であるとともに、
回収したシリカを珪素資源として活用できる。
As described above, according to the present invention,
By simply passing an alternating current through a silica-containing liquid such as geothermal hot water, high-purity silica can be easily recovered from the contained liquid. Therefore, not only the operation of collection is simplified, but also the cost required for collection is significantly reduced. Moreover, since no special chemicals are used, economic efficiency and safety are further enhanced. That is, by utilizing the present invention, the recovery of silica in geothermal water in geothermal power generation and the prevention of silica scale production can be performed easily and inexpensively and reliably, and
The recovered silica can be utilized as a silicon resource.

【0033】また、交流電源を使用することにより、直
流電源使用の場合と比較して消費電力が大幅に低減され
る他、電力会社より給電される電気を変換器等を使用す
ることなく直接使用することが可能であるため、給電設
備が簡略化されるという利点を有する。
Further, by using the AC power source, the power consumption is greatly reduced as compared with the case of using the DC power source, and the electricity supplied from the power company is directly used without using a converter or the like. Therefore, there is an advantage that the power supply equipment is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるシリカ回収設備の基本的な構成
を示す概念図である。
FIG. 1 is a conceptual diagram showing a basic configuration of silica recovery equipment in the present invention.

【図2】本発明における通電電流の波形の例を示す図で
ある。
FIG. 2 is a diagram showing an example of a waveform of an energizing current in the present invention.

【図3】本発明における反応流路の形状の例を示すシリ
カ回収部の横断面図である。
FIG. 3 is a cross-sectional view of a silica recovery part showing an example of the shape of a reaction channel in the present invention.

【図4】本発明における反応流路の形状の例を示すシリ
カ回収部の横断面図である。
FIG. 4 is a cross-sectional view of a silica recovery part showing an example of the shape of a reaction channel in the present invention.

【符号の説明】[Explanation of symbols]

1 地熱熱水 2 導入管 3 分離槽 4,4A 反応流路 5A,5B 電極 6 シリカ回収部 7 スイッチ 8 交流電源 9 還元管 10 蒸気移送管 1 Geothermal hot water 2 Introduction pipe 3 Separation tank 4, 4A Reaction channel 5A, 5B Electrode 6 Silica recovery part 7 Switch 8 AC power supply 9 Reduction pipe 10 Steam transfer pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリカを含有する水溶液に少なくとも一
対の電極を接触させ、更に前記対をなす電極間に交流電
流を通電して、前記電極の表面にシリカを析出させると
同時に析出したシリカを前記電極の表面から脱落させる
ことを特徴とする水溶液中のシリカ回収法。
1. At least a pair of electrodes are brought into contact with an aqueous solution containing silica, and an alternating current is applied between the pair of electrodes to deposit silica on the surface of the electrodes, and at the same time deposit the deposited silica. A method for recovering silica in an aqueous solution, which comprises removing the silica from the surface of the electrode.
【請求項2】 上記電極に用いられる材質として、アル
ミニウム、白金、銅、鉄、亜鉛、鉛、ニッケル、コバル
ト、チタン、カルシウム、およびマグネシウムから選択
される金属またはそれらの合金を用いることを特徴とす
る請求項1記載の水溶液中のシリカ回収法。
2. A material selected from aluminum, platinum, copper, iron, zinc, lead, nickel, cobalt, titanium, calcium, and magnesium or an alloy thereof is used as a material used for the electrode. The method for recovering silica in an aqueous solution according to claim 1.
【請求項3】 前記交流電流として、矩形波を示す電流
を通電することを特徴とする請求項1または請求項2記
載の水溶液中のシリカ回収法。
3. The method for recovering silica in an aqueous solution according to claim 1, wherein a current having a rectangular wave is passed as the alternating current.
JP25814591A 1991-10-04 1991-10-04 Recovery of silica from aqueous solution Pending JPH05131194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25814591A JPH05131194A (en) 1991-10-04 1991-10-04 Recovery of silica from aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25814591A JPH05131194A (en) 1991-10-04 1991-10-04 Recovery of silica from aqueous solution

Publications (1)

Publication Number Publication Date
JPH05131194A true JPH05131194A (en) 1993-05-28

Family

ID=17316151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25814591A Pending JPH05131194A (en) 1991-10-04 1991-10-04 Recovery of silica from aqueous solution

Country Status (1)

Country Link
JP (1) JPH05131194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285602A (en) * 1998-04-02 1999-10-19 Mitsubishi Materials Corp Device and method for recovering suspended matter from geothermal hot water
JP2002336861A (en) * 2001-05-21 2002-11-26 Tousui:Kk Electrode type scale component deposition suppressing equipment
JP2016501716A (en) * 2012-11-21 2016-01-21 オーヴェ ティー アーネンセン Water treatment apparatus and water treatment method by substitution mainly using fluctuating electric field

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285602A (en) * 1998-04-02 1999-10-19 Mitsubishi Materials Corp Device and method for recovering suspended matter from geothermal hot water
JP2002336861A (en) * 2001-05-21 2002-11-26 Tousui:Kk Electrode type scale component deposition suppressing equipment
JP2016501716A (en) * 2012-11-21 2016-01-21 オーヴェ ティー アーネンセン Water treatment apparatus and water treatment method by substitution mainly using fluctuating electric field

Similar Documents

Publication Publication Date Title
US5558755A (en) Method for removing contaminants from an aqueous medium
CN101886271B (en) Rotational-flow electrolysis method and device thereof
JP3327922B2 (en) Metal recovery equipment
EP0187720A2 (en) Method and apparatus for removing impurities from liquids
JPH01294368A (en) Preparation of electrolyte for redox flow battery
CN110453225B (en) Method for treating acidic waste etching solution
CN1875132A (en) Electrolytic cell for removal of material from a solution
CN1220793C (en) Process for the preparation of metal hydroxides or basic metal carbonates
CN104498992A (en) Method for separating and recovering metal compound waste materials
CN101367571B (en) Electrocoagulation reactor and wastewater treatment method
JP2010059502A (en) Treatment method and device for copper etching waste solution
JPH05131194A (en) Recovery of silica from aqueous solution
CN100430525C (en) Electrochemical decomposition method of powder and its applicable electrolytic cell
JPS61106788A (en) Metal collecting method and its device
CN110467243A (en) A kind of novel electric flocculation UF membrane integrated device
WO2020209719A1 (en) Method, device and wastewater treatment system for phosphorus, such as phosphate, removal from a feed solution
JPH0523672A (en) Recovering method for silica in water solution
US1344127A (en) Metallurgical process
JPH05131192A (en) Removal of silica from aqueous solution and recovery of valued element
JPH0557285A (en) Method for removing silica in aqueous solution and recovering valuable element
AP422A (en) Method and apparatus for mineral recovery.
JPS61245888A (en) Removal of impurities in liquid
JP4169367B2 (en) Electrochemical system
KR920002415B1 (en) Metal recovery process
RU2185334C2 (en) Way of electrochemical treatment of hydrothermal heat transfer agent

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000627