JPH0438454B2 - - Google Patents
Info
- Publication number
- JPH0438454B2 JPH0438454B2 JP58189115A JP18911583A JPH0438454B2 JP H0438454 B2 JPH0438454 B2 JP H0438454B2 JP 58189115 A JP58189115 A JP 58189115A JP 18911583 A JP18911583 A JP 18911583A JP H0438454 B2 JPH0438454 B2 JP H0438454B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- supported
- carrier
- activity
- catalyst body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
産業上の利用分野
本発明は排ガス中の有害成分を浄化処理する触
媒体に関するものである。
従来例の構成とその問題点
各種の燃焼器具、内燃焼関から排出される排ガ
スの主要な有害成分であるCO,NOXを同時に浄
化処理する触媒として、ぺロブスカイト型複合酸
化物を触媒成分とする担持型触媒が提案されてい
る。この触媒は貴金属に匹敵する活性、優れた耐
熱性、低価格という利点を持つているが、担持型
触媒体を作製する方法としては、触媒成分を均一
分散させた溶液を含浸して担持する方法や、セメ
ントなどの結合剤を介して担体に塗布担持する方
法が一般的である。しかるに前者においては第1
図に示すように解媒成分1は担体2の細孔3に集
中して担持されるために担体の表面を有効に利用
できない欠点を有し、後者においては第2図に示
すように結合剤4が介在するために触媒成分1が
埋没したり不均一分散したりする結果、有効な触
媒作用が得られないという欠点を有する。さら
に、長期の使用において触媒成分が脱落したり、
あるいは結合剤と反応して失活する場合もありう
る。
発明の目的
本発明は前記の担持触媒が有する諸問題に鑑み
て、担体表面を有効に利用でき、かつ強固な担持
が可能で長期の過酷な使用にも十分耐えうる優れ
た触媒体を提供しようとするものである。
発明の構成
本発明になる触媒体は、担体と担体表面に溶射
によつて担持されたぺロブスカイト型複合酸化物
触媒(以下、触媒成分という)とからなる担持型
触媒体である。担体材料としてはアルミナ、コー
デイエライト、ムライト等のセラミツクからなる
ハニカム成型体、ステンレス等の耐熱耐食性金
網、あるいはアルミナ、シリカ等のセラミツク繊
維からなる布等が適する。
実施例の説明
実施例に示す担持型触媒体に共通する表面部分
の断面を第3図に示したが、触媒成分1は担体表
面に均一に担持され、表面の利用効率は非常に高
い。表1は本発明になる担持触媒体の活性を従来
例と共に示したものである。触媒成分にはLa0.1
Sr0.9Co0.2Fe0.8O3を用い、担体にはアルミナ製の
ハニカム成型体(110mmφ×10mmt,3×3mmセ
ル,セル数500)を用いた。この担体表面に水素
炎溶射により解媒成分を約100μmの厚さに付着
させた(実施例1)。従来例としては、同じ触媒
成分をアルミナセメントと重量比3対2で混練し
たものを担体表面に約300μmの厚さに塗布担持
したもの(従来例1)、さらに、触媒成分を分散
した水溶液を同じ担体に真空含浸することによつ
て担持したもの(従来例2)の二例を用いた。こ
の触媒体を市販のポータブン型石油ストーブの燃
焼筒の上部に取り付け、触媒体通過前後の排ガス
中の濃度およびNOx(=NO+NO2)濃度を測定
した。排ガス温度は約600℃であつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a catalyst body that purifies harmful components in exhaust gas. Configuration of conventional examples and their problems Perovskite-type composite oxide is used as a catalyst component to simultaneously purify CO and NO Supported catalysts have been proposed. This catalyst has the advantages of activity comparable to precious metals, excellent heat resistance, and low cost; however, the method for producing a supported catalyst body is to impregnate and support it with a solution in which the catalyst components are uniformly dispersed. A common method is to apply and support the material on a carrier via a binder such as cement. However, in the former case, the first
As shown in the figure, the dissolving solvent component 1 has the disadvantage that the surface of the carrier cannot be used effectively because it is supported in a concentrated manner in the pores 3 of the carrier 2. Due to the presence of catalyst component 4, the catalyst component 1 is buried or non-uniformly dispersed, resulting in a disadvantage that effective catalytic action cannot be obtained. Furthermore, catalyst components may fall off during long-term use,
Alternatively, it may be deactivated by reacting with the binder. Purpose of the Invention In view of the above-mentioned problems with supported catalysts, it is an object of the present invention to provide an excellent catalyst body that can effectively utilize the surface of the carrier, can be strongly supported, and can withstand long-term harsh use. That is. Structure of the Invention The catalyst of the present invention is a supported catalyst comprising a carrier and a perovskite complex oxide catalyst (hereinafter referred to as catalyst component) supported on the surface of the carrier by thermal spraying. Suitable carrier materials include honeycomb molded bodies made of ceramics such as alumina, cordierite and mullite, heat-resistant and corrosion-resistant wire meshes made of stainless steel, cloth made of ceramic fibers such as alumina and silica, and the like. Description of Examples FIG. 3 shows a cross section of a surface portion common to the supported catalyst bodies shown in Examples. The catalyst component 1 is uniformly supported on the surface of the carrier, and the surface utilization efficiency is very high. Table 1 shows the activity of the supported catalyst of the present invention together with conventional examples. La 0.1 for catalyst component
Sr 0.9 Co 0.2 Fe 0.8 O 3 was used, and an alumina honeycomb molded body (110 mmφ×10 mmt, 3×3 mm cells, 500 cells) was used as the carrier. A desolvent component was deposited on the surface of this carrier to a thickness of about 100 μm by hydrogen flame spraying (Example 1). Conventional examples include a method in which the same catalyst component is mixed with alumina cement at a weight ratio of 3:2 and coated on the surface of a carrier to a thickness of about 300 μm (Conventional Example 1), and an aqueous solution in which the catalyst component is dispersed is also applied. Two examples were used in which the same carrier was supported by vacuum impregnation (Conventional Example 2). This catalyst body was attached to the top of the combustion tube of a commercially available portabun oil stove, and the concentration and NO x (=NO+NO 2 ) concentration in the exhaust gas before and after passing through the catalyst body were measured. The exhaust gas temperature was approximately 600°C.
【表】
結果から明らかなように、本発明実施例の活性
は非常に高い。実施例では触媒体の全表面が触媒
成分で構成された形になつており、従来例に比べ
て有効な活性点の数がはるかに多いことが高活性
の原因となつている。
第4図および第5図はステンレス製金網に担持
した場合の例である。解媒成分は前記と同じもの
を用いた。金網には長径10mm短径5mmの開口をも
つSUS304製ラス網を用いた。解媒成分の溶射は
前記と同じであり、これを実施例2とした。また
従来例1と同様にして触媒成分を塗布担持したも
のを比較に用い、これを従来例3とした。この触
媒体を30mmφの円板様に切り抜いたものを5枚重
ねて反応管内に設置し、CO1500ppmNO2
40ppmN2残部の混合ガスを通し、300〜900℃の
範囲で触媒体通過前後のそれぞれのガス濃度を測
定し、ガス濃度の減少率を求めた。この例におい
ても実施例2のCO酸化率とNO2還元率は共に従
来例3の値を上回つており、触媒成分の担持状態
の違いが明らかに表われている。
なお、金網担持型の場合には本発明例の担持強
度の優位性も見られ、担持済の金網の屈曲に際し
て従来触媒体では屈曲部周辺の触媒成分が結合剤
と共に脱落し易いのに対し、本発明触媒体の場合
は屈曲部で触媒成分層にクラツクが生じる程度で
ある。
次に、触媒体の熱安定性と寿命について述べ
る。前述のアルミナ製ハニカム成型担体を用いた
実施例1と従来例1の触媒体をポータブル型ガス
ストーブの燃焼筒の上部に設置し、30分燃焼−15
分消火のサイクルを5000回くり返し、初期および
1000回毎に触媒体通過前後の排ガス中のCO濃度
とNOx濃度を測定し、各ガス濃度の減少率を求
めた。その結果を第6図および第7図に示した。
また同時に触媒体の外観を観察し、触媒層の脱
落、クラツク等の有無を確認した。活性データか
ら、本発明触媒体の初期特性が優れていることは
もちろん、長期の燃焼テスト後も殆ど活性低下は
みられないことがわかる。一方従来触媒体では
徐々に活性が低下している。外観観察により、本
発明触媒体では外観異状が認められないが、従来
触媒体では部分的に触媒層の脱落や浮き上がりが
認められ、これが活性低下に結びついていると考
えられる。
もう一例、アルミナ繊維製の布を担体に用いた
触媒体の特性を述べる。約10μmφの単繊維をよ
り合わせた糸で2mm×2mmの開口をもつ布を構成
したものを担体とした。触媒成分およびその担持
法は実施例1と従来径1に準じた。それぞれ実施
例3および従来例4とする。
活性測定は前述のハニカム成型体の例と同様に
した。110mmφに切り抜いた本触媒体を2枚重ね
にし、ポータブル型石油ストーブの燃焼筒の上部
に設置し、触媒体通過前後の排ガスの成分濃度を
測定した。結果を表2に示したが、本発明になる
触媒体の優位は明らかである。[Table] As is clear from the results, the activity of the Examples of the present invention is very high. In the example, the entire surface of the catalyst body is made up of catalyst components, and the reason for the high activity is that the number of effective active sites is much larger than in the conventional example. FIGS. 4 and 5 are examples of the case where it is supported on a stainless wire mesh. The same solvent components as above were used. The wire mesh used was a lath mesh made of SUS304 with openings of 10 mm in the major axis and 5 mm in the minor axis. The spraying of the solvent component was the same as described above, and this was designated as Example 2. Further, a sample in which a catalyst component was coated and supported in the same manner as Conventional Example 1 was used for comparison, and was designated as Conventional Example 3. This catalyst body was cut out into 30mmφ discs and placed in a stack of 5 sheets in a reaction tube to produce CO1500ppmNO 2.
A mixed gas of 40 ppm N 2 was passed through the mixture, and the gas concentrations before and after passing through the catalyst were measured in the range of 300 to 900°C, and the rate of decrease in gas concentration was determined. In this example as well, both the CO oxidation rate and the NO 2 reduction rate of Example 2 exceed the values of Conventional Example 3, and the difference in the supported state of the catalyst components is clearly evident. In addition, in the case of the wire mesh-supported type, the example of the present invention is superior in support strength, and when the supported wire mesh is bent, in the conventional catalyst body, the catalyst components around the bent part easily fall off together with the binder. In the case of the catalyst of the present invention, only cracks occur in the catalyst component layer at the bent portions. Next, the thermal stability and life of the catalyst will be described. The catalyst bodies of Example 1 and Conventional Example 1 using the alumina honeycomb molded carrier described above were installed at the top of the combustion tube of a portable gas stove, and burned for 30 minutes.
Repeat the extinguishing cycle 5,000 times, and
The CO concentration and NO x concentration in the exhaust gas before and after passing through the catalyst were measured every 1000 times, and the reduction rate of each gas concentration was determined. The results are shown in FIGS. 6 and 7.
At the same time, the appearance of the catalyst body was observed to confirm the presence or absence of falling off of the catalyst layer, cracks, etc. From the activity data, it can be seen that not only the initial properties of the catalyst of the present invention are excellent, but also almost no decrease in activity is observed even after a long-term combustion test. On the other hand, the activity of conventional catalysts gradually decreases. When observing the appearance, no abnormality was observed in the catalyst body of the present invention, but in the conventional catalyst body, partial drop-off or lifting of the catalyst layer was observed, which is considered to be linked to a decrease in activity. As another example, we will describe the characteristics of a catalyst using alumina fiber cloth as a carrier. The carrier was made of a cloth with an opening of 2 mm x 2 mm made of threads made by twisting single fibers with a diameter of about 10 μm. The catalyst components and the method for supporting them were the same as in Example 1 and Conventional Diameter 1. These are referred to as Example 3 and Conventional Example 4, respectively. The activity was measured in the same manner as in the case of the honeycomb molded body described above. Two sheets of this catalyst body cut out to a diameter of 110 mm were placed on top of the combustion tube of a portable kerosene stove, and the concentration of components in the exhaust gas before and after passing through the catalyst body was measured. The results are shown in Table 2, and the superiority of the catalyst according to the present invention is clear.
【表】
このようなセラミツク繊維担体は、それ自体可
撓性があり、比較的自由な形状にしうる特徴をも
つている。溶射を用いると、この性質を殆ど損う
ことなく触媒成分を担持できるが、セメントなど
の結合剤を用いると、可撓性を損うと共に、無理
に曲げると触媒が脱落し易く、加工の自由度が小
さい。
以上の実施例ではX=0.8の場合について説明
したが、0<X<1の範囲においては、他の組成
になる複合酸化物を用いた場合にも同様の効果が
得られた。また、実施例ではMeとしてFeの場合
についてとりあげたが、Mn,Cr,V,Tiを用い
た場合、さらにはそれらを組み合わせて用いた場
合にも同様の効果が得られる。このように種々の
検討の結果、従来の担持法によつて作製された触
媒体に比べ、溶射法によつて作製された触媒体が
優れた特性を発揮することが明らかになつた。
発明の効果
以上の実施例でも明らかなように、溶射を用い
れば、様々な担体に容易に触媒成分を担持でき、
しかも担体の表面を最大限有効に利用できるた
め、活性の高い触媒体を得ることができる。さら
に、担体への付着強度は極めて大きいため、耐熱
衝撃性も大きく、触媒の長寿命化も図れるうえ
に、触媒体の後加工も比較的容易であるなど、極
めて優れた特徴を有している。[Table] Such a ceramic fiber carrier is itself flexible and has the characteristic that it can be formed into a relatively free shape. When thermal spraying is used, catalyst components can be supported with almost no loss of this property, but when a binder such as cement is used, flexibility is lost and the catalyst tends to fall off when bent forcibly, making it difficult to process freely. The degree is small. In the above examples, the case where X=0.8 was explained, but in the range of 0<X<1, similar effects were obtained when complex oxides having other compositions were used. Further, although the example deals with the case where Fe is used as Me, similar effects can be obtained when Mn, Cr, V, and Ti are used, or when they are used in combination. As a result of these various studies, it has become clear that the catalyst body produced by the thermal spraying method exhibits superior properties compared to the catalyst body produced by the conventional supporting method. Effects of the Invention As is clear from the examples above, by using thermal spraying, catalyst components can be easily supported on various carriers.
Moreover, since the surface of the carrier can be utilized as effectively as possible, a highly active catalyst can be obtained. Furthermore, because the adhesion strength to the carrier is extremely high, it has excellent thermal shock resistance, extends the life of the catalyst, and is relatively easy to post-process the catalyst body. .
第1図は含浸担持型触媒体の表面断面模式図、
第2図は塗布担持型触媒体の表面断面模式図、第
3図は溶射担持型触媒体の表面断面模式図、第4
図は金網担持型触媒体のCO酸化活性を示すグラ
フ、第5図は金網担持型触媒体のNO2還元活性
を示すグラフ、第6図はハニカム担持触媒体の寿
命試験(CO酸化活性)の結果を示すグラフ、第
7図はハニカム担持触媒体の寿命試験(NOx還
元活性)の結果を示すグラフである。
Figure 1 is a schematic cross-sectional view of the surface of an impregnated supported catalyst;
Figure 2 is a schematic cross-sectional view of the surface of a coated supported catalyst, Figure 3 is a schematic cross-sectional view of the surface of a spray supported catalyst, and Figure 4 is a schematic cross-sectional view of the surface of a spray supported catalyst.
Figure 5 is a graph showing the CO oxidation activity of the wire mesh supported catalyst, Figure 5 is the graph showing the NO 2 reduction activity of the wire mesh supported catalyst, and Figure 6 is the life test (CO oxidation activity) of the honeycomb supported catalyst. Graph showing the results, FIG. 7 is a graph showing the results of the life test (NO x reduction activity) of the honeycomb-supported catalyst.
Claims (1)
Co1-xMexO3(MeはFe,Mn,Cr,V,Tiから選
ぶ少なくとも一種の元素、O<X<1)で表され
るぺロブスカイト型複合酸化物を担持した担持型
触媒からなることを特徴とする排ガス浄化用触媒
体。 2 担体がセラミツク成型体あるいは耐熱耐食性
金網あるいはセラミツク繊維からなることを特徴
とする特許請求の範囲第1項記載の排ガス浄化用
触媒体。[Claims] 1 The general formula La (1-x)/2 Sr (1+x)/2 is formed by thermal spraying onto a carrier.
From a supported catalyst supporting a perovskite complex oxide represented by Co 1-x Me x O 3 (Me is at least one element selected from Fe, Mn, Cr, V, and Ti, O<X<1) A catalyst body for exhaust gas purification characterized by: 2. The catalyst body for exhaust gas purification according to claim 1, wherein the carrier is made of a ceramic molded body, a heat-resistant and corrosion-resistant wire mesh, or a ceramic fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58189115A JPS6082138A (en) | 1983-10-07 | 1983-10-07 | Catalyst body for purifying waste gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58189115A JPS6082138A (en) | 1983-10-07 | 1983-10-07 | Catalyst body for purifying waste gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6082138A JPS6082138A (en) | 1985-05-10 |
JPH0438454B2 true JPH0438454B2 (en) | 1992-06-24 |
Family
ID=16235629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58189115A Granted JPS6082138A (en) | 1983-10-07 | 1983-10-07 | Catalyst body for purifying waste gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6082138A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63158130A (en) * | 1986-12-23 | 1988-07-01 | Tech Res Assoc Conduct Inorg Compo | Catalyst for purifying exhaust gas |
JPH02183728A (en) * | 1989-01-10 | 1990-07-18 | Matsushita Electric Ind Co Ltd | Soot purifying catalyst and cooker |
JPH04117136U (en) * | 1991-03-30 | 1992-10-20 | マツダ株式会社 | Engine exhaust purification device |
JPH06241025A (en) * | 1993-02-19 | 1994-08-30 | Matsushita Electric Ind Co Ltd | High frequency heating element with catalytic function |
-
1983
- 1983-10-07 JP JP58189115A patent/JPS6082138A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6082138A (en) | 1985-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940000867B1 (en) | Exhaust gas cleaning catalyst and its preparation | |
KR102090726B1 (en) | Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same | |
JP2930990B2 (en) | Molecular sieves on supports-palladium-platinum catalysts | |
JPS61283348A (en) | Oxidizing catalyst | |
US8753999B2 (en) | Oxidation catalyst | |
JPH0438454B2 (en) | ||
JPH03106446A (en) | Catalyst for purifying exhaust gas and preparation thereof | |
JPH03154637A (en) | Flat catalyst | |
JPS6054736A (en) | Oxidation catalyst | |
JP4303799B2 (en) | Method for producing lean NOx purification catalyst | |
JPS61230747A (en) | Catalyst carrier for purifying exhaust gas | |
JPH04145946A (en) | Catalyst for purification of exhaust gas | |
JPH04110045A (en) | Catalyst body for purification of exhaust gas and its production | |
JPH0478447A (en) | Catalytic metal carrier and production thereof | |
JPH0464736B2 (en) | ||
JPH04104838A (en) | Waste gas purifying catalytic body | |
WO2020149313A1 (en) | Catalyst for exhaust gas purification use | |
JPH03296438A (en) | Catalyst for waste gas purification | |
JP2018538122A (en) | Honeycomb catalyst and method for its preparation for removal of nitrogen oxides in flue and exhaust gases | |
JPH01317540A (en) | Oxidizing catalyst | |
JPH04122455A (en) | Exhaust gas purification catalyst body | |
JPS5821534B2 (en) | catalyst body | |
WO2020149315A1 (en) | Catalyst for exhaust gas purification use, and method for producing catalyst for exhaust gas purification use | |
JPH02164456A (en) | Gas purifying material | |
JPS6147575B2 (en) |