[go: up one dir, main page]

JPH04346262A - Compound semiconductor element - Google Patents

Compound semiconductor element

Info

Publication number
JPH04346262A
JPH04346262A JP11967891A JP11967891A JPH04346262A JP H04346262 A JPH04346262 A JP H04346262A JP 11967891 A JP11967891 A JP 11967891A JP 11967891 A JP11967891 A JP 11967891A JP H04346262 A JPH04346262 A JP H04346262A
Authority
JP
Japan
Prior art keywords
electrode
substrate
compound semiconductor
bipolar transistor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11967891A
Other languages
Japanese (ja)
Other versions
JP2738165B2 (en
Inventor
Kazuhiko Honjo
和彦 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11967891A priority Critical patent/JP2738165B2/en
Publication of JPH04346262A publication Critical patent/JPH04346262A/en
Application granted granted Critical
Publication of JP2738165B2 publication Critical patent/JP2738165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the heat resistance of a bipolar transistor by a method wherein a field-effect transistor is formed on the surface of a semiinsulating compound semiconductor substrate, the bipolar transistor is formed on the rear and a heat sink is connected to the rear of the substrate. CONSTITUTION:A secondary-electron gas FET which is composed of an undoped GaAs channel layer 2, an electron supply layer 3, a gate electrode 8, a source electrode 9 and a drain electrode 10 is formed on the surface of a semiinsulating GaAs substrate. An HBT which is constituted of an emitter electrode 11 composed of AuGe-Ni, a collector layer 13 composed of AuGe-Ni and a base electrode 12 composed of AlMn-Ni is formed on the rear of the substrate 1. A grounding metal 16 and the emitter electrode 11 which have been formed on the rear of the semiinsulating GaAs substrate 1 are connected to a grounding metal block 18 which is used also as a heat sink. Thereby, the operating-layer temperature of a bipolar transistor can be lowered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は化合物半導体素子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to compound semiconductor devices.

【0002】0002

【従来の技術】化合物半導体を用いた能動素子は電界効
果トランジスタ(FET)系デバイスとバイポーラトラ
ンジスタ系デバイスとの2種類に大別できる。
2. Description of the Related Art Active elements using compound semiconductors can be roughly divided into two types: field-effect transistor (FET)-based devices and bipolar transistor-based devices.

【0003】FETの代表例は2次元電子ガスFETで
あり、バイポーラの代表例はヘテロ接合バイポーラトラ
ンジスタ(以下HBTと記す)である。
A typical example of an FET is a two-dimensional electron gas FET, and a typical example of a bipolar transistor is a heterojunction bipolar transistor (hereinafter referred to as HBT).

【0004】一般にFET系デバイスは低消費電力、高
速性、低RF雑音特性を併せもっているが電流駆動能力
が小さく、1/f雑音が大きいという欠点をもっている
Generally, FET devices have low power consumption, high speed, and low RF noise characteristics, but have the drawbacks of low current drive capability and high 1/f noise.

【0005】一方バイポーラ系デバイスは高速性、高い
電流駆動能力と低1/f雑音特性をもっているが消費電
力が大きいという欠点をもっている。
On the other hand, bipolar devices have high speed, high current drive capability, and low 1/f noise characteristics, but have the disadvantage of high power consumption.

【0006】そこでFET系デバイスとバイポーラ系デ
バイスとを同一の半導体チップ上に集積化し、互いの弱
点を補い合いながら両方の長所を最大限引き出すための
研究開発が行なわれている。
Therefore, research and development efforts are underway to integrate FET-based devices and bipolar-based devices on the same semiconductor chip, and to maximize the advantages of both while compensating for each other's weaknesses.

【0007】シリコンLSIの分野ではBi−CMOS
がこれに相当するが、化合物半導体素子の分野では低雑
音小信号増幅部にFET系デバイスを用い、高出力増幅
器、局部発振部にバイポーラ系デバイスを用いることが
多い。
[0007] In the field of silicon LSI, Bi-CMOS
This corresponds to this, but in the field of compound semiconductor devices, FET-based devices are often used in low-noise, small-signal amplification sections, and bipolar-based devices are often used in high-output amplifiers and local oscillation sections.

【0008】従来技術によるAlGaAs/GaAsH
BTおよびAlGaAs/GaAs2次元電子ガスFE
Tの混成集積回路について、図4を参照して説明する。
AlGaAs/GaAsH according to the prior art
BT and AlGaAs/GaAs two-dimensional electron gas FE
The hybrid integrated circuit of T will be explained with reference to FIG.

【0009】MOCVDにより半絶縁性GaAs基板1
上の一部に選択的にエピタキシャル成長したN+ 型G
aAsサブコレクタ層4a、N型GaAsコレクタ層5
、P+ 型GaAsベース層6、N型AlGaAsエミ
ッタ層3a、N+ 型GaAsエミッタキャップ層4b
が積層されている。その上にAuGe−Niからなるエ
ミッタ電極11、AuMn−Niからなるベース電極1
2およびAuGe−Niからなるコレクタ電極13が形
成されてHBTが構成されている。
A semi-insulating GaAs substrate 1 is formed by MOCVD.
N+ type G selectively epitaxially grown on the upper part
aAs sub-collector layer 4a, N-type GaAs collector layer 5
, P+ type GaAs base layer 6, N type AlGaAs emitter layer 3a, N+ type GaAs emitter cap layer 4b.
are layered. On top of that, an emitter electrode 11 made of AuGe-Ni and a base electrode 1 made of AuMn-Ni.
2 and a collector electrode 13 made of AuGe-Ni are formed to constitute an HBT.

【0010】さらにMOCVDによりGaAs基板1上
の他の部分に選択的にエピタキシャル成長したノンドー
プGaAsチャネル層2、N型AlGaAs電子供給層
3が積層されている。その上にAlからなるゲート電極
8、AuGe−Niからなるソース電極9およびドレイ
ン電極10が形成されている。
Furthermore, a non-doped GaAs channel layer 2 and an N-type AlGaAs electron supply layer 3, which are selectively epitaxially grown on other parts of the GaAs substrate 1 by MOCVD, are laminated. A gate electrode 8 made of Al, a source electrode 9 and a drain electrode 10 made of AuGe-Ni are formed thereon.

【0011】[0011]

【発明が解決しようとする課題】従来例においてHBT
の消費電力PHBTは同一平面積の2次元電子ガスFE
Tの消費電力PFET に比べて5倍程度大きい。HB
Tの動作部の温度をTCH、熱抵抗をRTとすれば上昇
温度は、ΔT=TCH−T0 =RT PHBT   
(1)となる。(1)式においてT0 はチップ裏面の
温度である。
[Problem to be solved by the invention] In the conventional example, HBT
The power consumption of PHBT is two-dimensional electron gas FE with the same planar area.
The power consumption is approximately 5 times larger than that of a T-type PFET. H.B.
If the temperature of the operating part of T is TCH and the thermal resistance is RT, the temperature increase is ΔT = TCH - T0 = RT PHBT
(1). In equation (1), T0 is the temperature of the back surface of the chip.

【0012】これに対して2次元電子ガスFETの動作
部の温度をTCFとすればΔTは ΔT=TCF−T0 =RT PFET   (2)と
なる。(1),(2)式からチップ裏面と動作部との温
度差はHBTの場合は2次元電子ガスFETに比べて5
倍程度大きくなる。通常T0 =50℃、TCF=80
℃程度であり、TCHは200℃にもなる。
On the other hand, if the temperature of the operating part of the two-dimensional electron gas FET is TCF, ΔT becomes ΔT=TCF−T0=RT PFET (2). From equations (1) and (2), the temperature difference between the back surface of the chip and the operating part is 5
It will be about twice as big. Normal T0 = 50℃, TCF = 80
℃, and TCH can be as high as 200℃.

【0013】トランジスタの信頼性は動作部の温度上昇
に対して指数関数的に劣化するので、従来例においては
HBTの信頼性は2次元電子ガスFETに比べて非常に
悪くなるという欠点があった。
[0013] Since the reliability of a transistor deteriorates exponentially as the temperature of the operating part increases, the conventional example had the disadvantage that the reliability of an HBT was much worse than that of a two-dimensional electron gas FET. .

【0014】本発明の目的はこのような問題を解消し、
HBTの信頼性を維持するFET・バイポーラ混成集積
回路を提供することにある。
[0014] The purpose of the present invention is to solve such problems,
An object of the present invention is to provide a FET/bipolar hybrid integrated circuit that maintains the reliability of HBT.

【0015】[0015]

【課題を解決するための手段】本発明の化合物半導体素
子は、半絶縁性化合物半導体基板の表面に電界効果トラ
ンジスタが形成され、前記基板の裏面にバイポーラトラ
ンジスタが形成されている。さらに前記半絶縁性化合物
半導体基板の裏面にヒートシンクが接続されている。さ
らに前記半絶縁性化合物半導体基板の表面に形成された
回路と、前記基板の裏面に形成された回路とが、バイア
ホール回路および容量結合回路のうち少なくとも1つに
よって、電気的に接続されている。また前記電界効果ト
ランジスタとして2次元電子ガストランジスタを用い、
前記バイポーラトランジスタとしてヘテロ接合バイポー
ラトランジスタを用いる。
In the compound semiconductor device of the present invention, a field effect transistor is formed on the front surface of a semi-insulating compound semiconductor substrate, and a bipolar transistor is formed on the back surface of the substrate. Further, a heat sink is connected to the back surface of the semi-insulating compound semiconductor substrate. Further, the circuit formed on the front surface of the semi-insulating compound semiconductor substrate and the circuit formed on the back surface of the substrate are electrically connected by at least one of a via hole circuit and a capacitive coupling circuit. . Further, a two-dimensional electron gas transistor is used as the field effect transistor,
A heterojunction bipolar transistor is used as the bipolar transistor.

【0016】[0016]

【作用】消費電力の小さい電界効果トランジスタをチッ
プ表面に形成し、消費電力の大きいバイポーラトランジ
スタをチップの裏面に形成して、バイポーラトランジス
タの動作層温度を低く抑える。
[Operation] A field effect transistor with low power consumption is formed on the front surface of the chip, and a bipolar transistor with high power consumption is formed on the back surface of the chip to keep the operating layer temperature of the bipolar transistor low.

【0017】その結果バイポーラトランジスタの高信頼
性を維持して、チップ面積を縮小することができる。バ
イポーラトランジスタおよび電界効果トランジスタから
なる混成集積回路の集積度を上げることができる。
As a result, the chip area can be reduced while maintaining high reliability of the bipolar transistor. The degree of integration of a hybrid integrated circuit consisting of bipolar transistors and field effect transistors can be increased.

【0018】[0018]

【実施例】本発明の第1の実施例について、図1を参照
して説明する。
Embodiment A first embodiment of the present invention will be described with reference to FIG.

【0019】半絶縁性GaAs基板1の表面にノンドー
プGaAsチャネル層2、N型AlGaAs電子供給層
3、Alからなるゲート電極8、AlGe−Niからな
るソース電極9、ドレイン電極10から構成される2次
元電子ガスFETが形成されている。
A layer 2 consisting of a non-doped GaAs channel layer 2, an N-type AlGaAs electron supply layer 3, a gate electrode 8 made of Al, a source electrode 9 made of AlGe-Ni, and a drain electrode 10 is formed on the surface of the semi-insulating GaAs substrate 1. A dimensional electron gas FET is formed.

【0020】この基板1の裏面には、N+ 型GaAs
サブコレクタ層4a、N型GaAsコレクタ層5、P+
 型GaAsベース層6、N型AlGaAsエミッタ層
3a、N+ 型GaAsエミッタキャップ層4bが積層
されている。その上にAuGe−Niからなるエミッタ
電極11、AuGe−Niからなるコレクタ電極13、
AlMn−Niからなるベース電極12から構成される
HBTが形成されている。その周囲はプロトンイオン注
入層7で絶縁され、さらに接地金属16が形成されてい
る。
[0020] On the back surface of this substrate 1, an N+ type GaAs
Sub-collector layer 4a, N-type GaAs collector layer 5, P+
A GaAs base layer 6, an N-type AlGaAs emitter layer 3a, and an N+-type GaAs emitter cap layer 4b are stacked. On top of that, an emitter electrode 11 made of AuGe-Ni, a collector electrode 13 made of AuGe-Ni,
An HBT is formed with a base electrode 12 made of AlMn-Ni. The periphery thereof is insulated by a proton ion implantation layer 7, and a ground metal 16 is further formed.

【0021】つぎに第1の実施例の実装方法について、
図2を参照して説明する。
Next, regarding the implementation method of the first embodiment,
This will be explained with reference to FIG.

【0022】半絶縁性GaAs基板1の裏面に形成され
た接地金属16およびエミッタ電極11は、ヒートシン
クを兼ねた接地金属ブロック18に接続されている。
The ground metal 16 and emitter electrode 11 formed on the back surface of the semi-insulating GaAs substrate 1 are connected to a ground metal block 18 which also serves as a heat sink.

【0023】つぎに本発明の第2の実施例について、図
3を参照して説明する。
Next, a second embodiment of the present invention will be explained with reference to FIG.

【0024】これは半絶縁性GaAs基板1の表面に形
成された回路と、裏面に形成された回路との電気的接続
方法を説明するものである。
This describes a method of electrically connecting a circuit formed on the front surface of the semi-insulating GaAs substrate 1 and a circuit formed on the back surface.

【0025】表面に形成された電極15aはバイアホー
ル回路14を通して裏面に形成された電極15bと接続
されている。また表面に形成された電極15cは静電容
量により裏面に形成された電極15dと結合されている
。さらに裏面に形成された接地金属16およびエミッタ
電極11は、ヒートシンクを兼ねた接地金属ブロック1
8に接続されている。
The electrode 15a formed on the front surface is connected through the via hole circuit 14 to the electrode 15b formed on the back surface. Further, the electrode 15c formed on the front surface is coupled to the electrode 15d formed on the back surface by capacitance. Further, a ground metal block 16 and an emitter electrode 11 formed on the back surface are connected to a ground metal block 1 that also serves as a heat sink.
8 is connected.

【0026】以上の実施例では化合物半導体基板として
GaAs基板を用いたが、化合物半導体材料としてはこ
のほかInAlAs/InGaAsヘテロ接合系を用い
るInPなどを用いることができる。また素子の集積度
は2個、3個に限定することなく、本発明の効果を得る
ことができる。
In the above embodiments, a GaAs substrate was used as the compound semiconductor substrate, but other compound semiconductor materials such as InP using an InAlAs/InGaAs heterojunction system can also be used. Further, the effects of the present invention can be obtained without limiting the degree of integration of elements to two or three elements.

【0027】[0027]

【発明の効果】消費電力の大きいバイポーラトランジス
タをチップ裏面に形成してヒートシンクと直接接触させ
るので、バイポーラトランジスタの熱抵抗が著しく低減
され、ΔTは従来の150℃から本発明の10℃まで大
幅に改善した。
Effects of the Invention: Since the bipolar transistor, which consumes a large amount of power, is formed on the back side of the chip and brought into direct contact with the heat sink, the thermal resistance of the bipolar transistor is significantly reduced, and ΔT is significantly reduced from the conventional 150°C to the present invention's 10°C. Improved.

【0028】一方消費電力の小さいFETはチップ表面
に形成されるので、バイポーラトランジスタの高信頼性
を維持して、バイポーラトランジスタとFETとからな
る混成集積回路の集積度を上げることができる。
On the other hand, since the FET with low power consumption is formed on the chip surface, the high reliability of the bipolar transistor can be maintained and the degree of integration of the hybrid integrated circuit consisting of the bipolar transistor and the FET can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第1の実施例の実装方法を示す断面図
である。
FIG. 2 is a sectional view showing the mounting method of the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す断面図である。FIG. 3 is a sectional view showing a second embodiment of the invention.

【図4】従来技術による化合物半導体素子を示す断面図
である。
FIG. 4 is a cross-sectional view showing a compound semiconductor device according to the prior art.

【符号の説明】[Explanation of symbols]

1    半絶縁性GaAs基板 2    ノンドープGaAs層 3,3a    N型AlGaAs層 4,4a,4b    N+ 型GaAs層5    
N型GaAs層 6    P+ 型GaAs層 7    プロトンイオン注入層 8    ゲート電極 9    ソース電極 10    ドレイン電極 11    エミッタ電極 12    ベース電極 13    コレクタ電極 14    バイアホール回路 15,15a,15b,15c,15d    電極1
6    接地金属 17,17a,17b,17c    電極18   
 金属ブロック
1 Semi-insulating GaAs substrate 2 Non-doped GaAs layers 3, 3a N-type AlGaAs layers 4, 4a, 4b N+-type GaAs layer 5
N-type GaAs layer 6 P+-type GaAs layer 7 Proton ion implantation layer 8 Gate electrode 9 Source electrode 10 Drain electrode 11 Emitter electrode 12 Base electrode 13 Collector electrode 14 Via hole circuit 15, 15a, 15b, 15c, 15d Electrode 1
6 Ground metal 17, 17a, 17b, 17c Electrode 18
metal block

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  半絶縁性化合物半導体基板の表面に電
界効果トランジスタが形成され、前記基板の裏面にバイ
ポーラトランジスタが形成されている化合物半導体素子
1. A compound semiconductor device in which a field effect transistor is formed on the front surface of a semi-insulating compound semiconductor substrate, and a bipolar transistor is formed on the back surface of the substrate.
【請求項2】  半絶縁性化合物半導体基板の裏面にヒ
ートシンクが接続されている請求項1記載の半導体素子
2. The semiconductor device according to claim 1, wherein a heat sink is connected to the back surface of the semi-insulating compound semiconductor substrate.
【請求項3】  半絶縁性化合物半導体基板の表面に形
成された回路と、前記基板の裏面に形成された回路とが
、バイアホール回路および容量結合回路のうち少なくと
も1つによって、電気的に接続されている請求項1記載
の化合物半導体素子。
3. A circuit formed on the front surface of a semi-insulating compound semiconductor substrate and a circuit formed on the back surface of the substrate are electrically connected by at least one of a via hole circuit and a capacitive coupling circuit. 2. The compound semiconductor device according to claim 1, wherein:
【請求項4】  電界効果トランジスタとして2次元電
子ガストランジスタを用い、バイポーラトランジスタと
してヘテロ接合バイポーラトランジスタを用いた請求項
1記載の化合物半導体素子。
4. The compound semiconductor device according to claim 1, wherein a two-dimensional electron gas transistor is used as the field effect transistor, and a heterojunction bipolar transistor is used as the bipolar transistor.
JP11967891A 1991-05-24 1991-05-24 Compound semiconductor device Expired - Lifetime JP2738165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11967891A JP2738165B2 (en) 1991-05-24 1991-05-24 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11967891A JP2738165B2 (en) 1991-05-24 1991-05-24 Compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH04346262A true JPH04346262A (en) 1992-12-02
JP2738165B2 JP2738165B2 (en) 1998-04-08

Family

ID=14767346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11967891A Expired - Lifetime JP2738165B2 (en) 1991-05-24 1991-05-24 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JP2738165B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864169A (en) * 1994-07-20 1999-01-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including plated heat sink and airbridge for heat dissipation
JP2000223501A (en) * 1999-01-28 2000-08-11 Nec Corp Semiconductor integrated circuit and its manufacture
US7413932B2 (en) 2002-07-23 2008-08-19 Mediatek Inc. Power amplifier having high heat dissipation
TWI456755B (en) * 2011-05-11 2014-10-11 Univ Nat Kaohsiung Normal Metamorphic integrated bifets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864169A (en) * 1994-07-20 1999-01-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including plated heat sink and airbridge for heat dissipation
JP2000223501A (en) * 1999-01-28 2000-08-11 Nec Corp Semiconductor integrated circuit and its manufacture
US7413932B2 (en) 2002-07-23 2008-08-19 Mediatek Inc. Power amplifier having high heat dissipation
TWI456755B (en) * 2011-05-11 2014-10-11 Univ Nat Kaohsiung Normal Metamorphic integrated bifets

Also Published As

Publication number Publication date
JP2738165B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US5250826A (en) Planar HBT-FET Device
US7989845B2 (en) Semiconductor device having a hetero-junction bipolar transistor and manufacturing method thereof
JPH027532A (en) Stacked channel field effect transistor
JP2007335586A (en) Semiconductor integrated circuit device and its manufacturing method
US20150380399A1 (en) Devices and methodologies related to structures having hbt and fet
JP2012109444A (en) Semiconductor device and manufacturing method thereof
JPH05109750A (en) Semiconductor device and manufacture of the same
JP4219433B2 (en) Semiconductor device
JP3439578B2 (en) Semiconductor device and manufacturing method thereof
JPH04346262A (en) Compound semiconductor element
WO2009040509A1 (en) A multilayer semiconductor structure, a bifet includin such a structure, and a multilayer semiconductor substrate
JP2008182158A (en) Semiconductor device
JP2000349096A (en) Compound field effect transistor and method of manufacturing the same
US5670804A (en) PN-junction gate FET
JP2004241471A (en) Compound semiconductor device and method of manufacturing the same, semiconductor device and high-frequency module
JP2554672B2 (en) Field effect type semiconductor device
JP2868083B2 (en) Method for manufacturing semiconductor device
US7208777B1 (en) Field-effect semiconductor device
JPH06267992A (en) Semiconductor device and manufacturing method thereof
JP3087278B2 (en) Monolithic integrated circuit device
JPH0269943A (en) Compound semiconductor device and manufacture thereof
JP3135851B2 (en) Field effect transistor, semiconductor integrated circuit device, and method of manufacturing field effect transistor
JP2006278544A (en) Active element and its fabrication process
JP3460104B2 (en) Field effect semiconductor device and method of manufacturing the same
JPH0763051B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971216