JPH04263932A - Method for bonding substrate - Google Patents
Method for bonding substrateInfo
- Publication number
- JPH04263932A JPH04263932A JP2422191A JP2422191A JPH04263932A JP H04263932 A JPH04263932 A JP H04263932A JP 2422191 A JP2422191 A JP 2422191A JP 2422191 A JP2422191 A JP 2422191A JP H04263932 A JPH04263932 A JP H04263932A
- Authority
- JP
- Japan
- Prior art keywords
- substrates
- air bubbles
- curved plate
- bonding
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims description 24
- 239000002184 metal Substances 0.000 claims abstract description 11
- 238000003825 pressing Methods 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 18
- 230000001070 adhesive effect Effects 0.000 abstract description 18
- 238000010030 laminating Methods 0.000 abstract 1
- 239000000956 alloy Substances 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 13
- 235000012431 wafers Nutrition 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000007769 metal material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001203 Alloy 20 Inorganic materials 0.000 description 1
- 229910019589 Cr—Fe Inorganic materials 0.000 description 1
- 229910018499 Ni—F Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、基板と基板の間に存在
する気泡が残らないようにし、かつ接着温度において基
板全体に均一な接着圧力を加える基板の接着方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for bonding substrates, which prevents air bubbles from remaining between the substrates and applies uniform bonding pressure to the entire substrate at the bonding temperature.
【0002】0002
【従来の技術】従来、接着剤を用いた半導体基板あるい
は絶縁性基板の熱圧着による接着技術が、SOI基板の
製造(山田厚、川崎敏夫“接着剤を用いた半導体基板の
接合法”昭和61年秋期第47回応用物理学会講演会予
稿集pp495)や、デバイス転写法(遠藤伸祐、浜口
恒夫、笠井直記“1/2μm厚デバイス層の転写とその
特性”昭和61年秋期第47回応用物理学会講演会予稿
集pp495)などに応用されている。しかし基板面は
完全に平坦ではないので、基板と基板を接着剤で接着し
ようとすると、基板と接着剤の間あるいは接着剤と接着
剤の間にどうしても気泡が残り、熱圧着時に接着層中に
入り込んでしまう。[Prior Art] Conventionally, bonding technology by thermocompression bonding of semiconductor substrates or insulating substrates using adhesives has been used to manufacture SOI substrates (Atsushi Yamada, Toshio Kawasaki, "Method of Bonding Semiconductor Substrates Using Adhesives", 1988). Proceedings of the 47th Japan Society of Applied Physics Conference (Autumn 1988, pp 495), device transfer method (Shinsuke Endo, Tsuneo Hamaguchi, Naoki Kasai "Transfer of 1/2 μm thick device layer and its characteristics" 47th Applied Physics Conference, Autumn 1986) It has been applied to academic conference proceedings, pp. 495). However, since the substrate surface is not completely flat, when trying to bond two substrates with adhesive, air bubbles inevitably remain between the substrate and the adhesive or between the adhesives, and during thermocompression bonding, air bubbles are left in the adhesive layer. I get into it.
【0003】一方、接着剤を用いない基板同士の直接接
合においては、支持台に基板がたわむ状態とたわまない
状態の2つの状態で保持できる機構を持たせ、基板をた
わませた状態で一方の基板を接触させ、然る後に支持台
の真空吸着を解除して2枚の基板を接着させる方法が知
られている(特公昭61−182239号公報「半導体
基板の接着装置」)。この公報記載の接着方法を図7に
示す。(a)、(b)図のように支持台94およびホル
ダー93に半導体ウェハ91,92を保持し、(c)図
のように両者を近接させた状態で相対位置合わせを行っ
た後、(d)図のように支持台に保持されている半導体
ウェハをたわませ、ホルダーに保持されている半導体ウ
ェハを接触させ((e)図)、支持台の真空吸着を解除
して2枚の半導体ウェハを接着させる((f)図)。[0003] On the other hand, in direct bonding of substrates without using adhesive, the supporting stand is equipped with a mechanism that can hold the substrate in two states: a state in which the board is bent and a state in which it is not bent. A method is known in which one of the substrates is brought into contact with the other, and then the vacuum suction of the support is released to bond the two substrates together (Japanese Patent Publication No. 182239/1983, ``Semiconductor Substrate Bonding Apparatus''). The adhesion method described in this publication is shown in FIG. Semiconductor wafers 91 and 92 are held on the support stand 94 and holder 93 as shown in (a) and (b), and relative positioning is performed with the two brought close together as shown in (c). d) As shown in the figure, bend the semiconductor wafer held on the support stand, bring the semiconductor wafers held on the holder into contact (Figure (e)), release the vacuum suction on the support stand, and separate the two wafers. The semiconductor wafer is bonded (Figure (f)).
【0004】0004
【発明が解決しようとする課題】しかしながら、図7の
方法は吸着を解放するだけであるため高い圧力を加える
ことができない、支持台が可変であるなどの複雑な構造
を有するため高い温度に耐えられないといったことから
、この方法を高温高圧を要する接着剤を用いた基板の接
着には応用することができない。[Problems to be Solved by the Invention] However, since the method shown in FIG. 7 only releases adsorption, high pressure cannot be applied, and the method has a complicated structure such as a variable support stage, so it cannot withstand high temperatures. Therefore, this method cannot be applied to bonding substrates using adhesives that require high temperature and high pressure.
【0005】本発明の目的は、前述の気泡を除去しなが
ら、かつ最終的に基板全体に均一な圧力分布を与えるよ
うな熱圧着を行うための基板の接着方法を提供すること
にある。[0005] An object of the present invention is to provide a method for bonding substrates for thermocompression bonding that ultimately provides uniform pressure distribution over the entire substrate while removing the above-mentioned air bubbles.
【0006】[0006]
【課題を解決するための手段】本発明の基板接着方法は
、低膨張金属の板と高膨張金属の板が張り合わされ、か
つ常温では低膨張金属板側が凸であり温度を上昇させる
と共に変形し接着温度で平坦な形状になる曲面板を、加
圧ヘッドと接着を行おうとしている基板対との間に凸部
が基板対側に接触するように挟み込み、加圧および加熱
を施すことによって、基板間に存在する気泡を除去しな
がら、かつ基板全体に均一な接着圧力が加わるようにし
て行うことを特徴としている。[Means for Solving the Problems] In the substrate bonding method of the present invention, a low-expansion metal plate and a high-expansion metal plate are pasted together, and the low-expansion metal plate side is convex at room temperature, and deforms as the temperature rises. A curved plate that becomes flat at the bonding temperature is sandwiched between the pressure head and the pair of substrates to be bonded so that the convex portion is in contact with the opposite side of the substrate, and then pressure and heat are applied. It is characterized by applying uniform adhesive pressure to the entire substrate while removing air bubbles existing between the substrates.
【0007】[0007]
【作用】本発明においては、半導体基板あるいは絶縁性
基板等の接着を行う際、基板に圧力を加える部分と基板
との間に曲面板を凸側が基板と接触するようにはさみ込
んで使用する。こうすることにより、加圧時初期には中
心付近にだけ圧力が加わるようにして、まず基板間の中
心付近に存在する気泡を外側へ押し出す。つづいて熱を
加えることにより、曲面板は熱膨張係数のちがいによっ
て凸形状から平面形状になるように変形し、これに伴い
基板間の気泡はさらに外側へ押し出され、接着温度で平
行平板形状となり気泡は基板間から除去されかつ基板全
体に均一の圧力が加わるようになる。[Operation] In the present invention, when bonding semiconductor substrates, insulating substrates, etc., a curved plate is inserted between the part that applies pressure to the substrate and the substrate so that the convex side is in contact with the substrate. By doing this, pressure is applied only to the center area at the initial stage of pressurization, and air bubbles existing near the center between the substrates are first pushed out. Subsequently, by applying heat, the curved plate transforms from a convex shape to a flat shape due to the difference in thermal expansion coefficient, and as a result, the air bubbles between the substrates are further pushed outward, and at the bonding temperature, it becomes a parallel plate shape. Air bubbles are removed from between the substrates and uniform pressure is applied across the substrates.
【0008】[0008]
【実施例】次に図1から図6を参照して本発明の実施例
について説明する。図1は曲面板10の断面図で(a)
が常温Tr ℃における断面図、(b)が接着温度Ta
℃まで上昇させた時の断面図である。高膨張合金板1
1と低膨張合金板12が、常温Tr ℃においては低膨
張合金側が凸になるように張り合わされており、これに
熱を加えると高膨張合金板が低膨張合金板よりも大きく
膨張し、接着温度Ta ℃において平坦な形状に変形す
る。なお曲面板10の大きさは、接着しようとする基板
とほぼ同じ大きさかやや大きめの大きさが適当である。Embodiments Next, embodiments of the present invention will be described with reference to FIGS. 1 to 6. FIG. 1 is a cross-sectional view of the curved plate 10 (a).
is a cross-sectional view at room temperature Tr °C, and (b) is a cross-sectional view at adhesion temperature Ta
FIG. 3 is a cross-sectional view when the temperature is raised to ℃. High expansion alloy plate 1
1 and a low expansion alloy plate 12 are pasted together so that the low expansion alloy side is convex at room temperature Tr ℃. When heat is applied to this, the high expansion alloy plate expands more than the low expansion alloy plate, and the bonding occurs. It deforms into a flat shape at a temperature of Ta °C. Note that the appropriate size of the curved plate 10 is approximately the same size as the substrate to be bonded or slightly larger.
【0009】図1(b)のように接着温度Ta ℃の時
にちょうど平坦な形状となるように製作することが重要
である。図2にその設計の一例を示す。高膨張合金の膨
張係数をMh 、低膨張合金の膨張係数をMl とし、
曲面板10は室温Tr ℃で図2(a)に示すように曲
率半径r,開角θの球面状であり、合金板間の距離はd
とする。ただし、合金板間の距離dの値は、合金板の厚
さを無視しそれぞれの合金板の中心部間の距離で代表し
ている。こうした時、曲面板を次の式(1)を満たすよ
うに作製すれば、接着温度Ta ℃の時に図2(b)に
示すようにちょうど平坦な板になる。[0009] It is important to manufacture the film so that it has an exactly flat shape when the bonding temperature is Ta° C. as shown in FIG. 1(b). Figure 2 shows an example of the design. The expansion coefficient of the high expansion alloy is Mh, the expansion coefficient of the low expansion alloy is Ml,
The curved plate 10 has a spherical shape with a radius of curvature r and an opening angle θ at room temperature Tr °C, as shown in Fig. 2(a), and the distance between the alloy plates is d.
shall be. However, the value of the distance d between the alloy plates is represented by the distance between the centers of the respective alloy plates, ignoring the thickness of the alloy plates. In such a case, if a curved plate is manufactured to satisfy the following equation (1), it will become a flat plate as shown in FIG. 2(b) when the bonding temperature is Ta°C.
【0010】0010
【0011】バイメタルの特性値が各社のカタログなど
によりわかっている場合は、例えば次のように設計すれ
ばよい。JIS法(日本)(文献:金属材料 第12
巻 第1号 p.70 第1図参照)では次の式
(2)のように湾曲常数Kが定義されている。[0011] If the characteristic values of the bimetal are known from the catalogs of various companies, the design may be made as follows, for example. JIS method (Japan) (Reference: Metal materials No. 12
Volume No. 1 p. 70), the curvature constant K is defined as in the following equation (2).
【0012】0012
【0013】図3(a)中の31がT1 ℃における形
状、32がT2 ℃における形状、Dは温度をT1 ℃
からT2 ℃へ変化させた時の変形量である。ただし、
T2 >T1 である。したがって、逆に図3(b)の
33に示すように室温Tr ℃において次式(3)で示
すDだけ変形されておけば、接着温度Ta ℃でちょう
ど34に示すように平坦な形状になる。In FIG. 3(a), 31 is the shape at T1°C, 32 is the shape at T2°C, and D is the temperature at T1°C.
This is the amount of deformation when changing from T2 °C to T2 °C. however,
T2 > T1. Therefore, if it is deformed by D expressed by the following equation (3) at room temperature Tr ℃ as shown at 33 in FIG. .
【0014】[0014]
【0015】変形量Dは加工には使いにくい量なので、
これを図3(c)のように曲率半径rおよび開角θにつ
いて次式(4),(5)のように換算し、このr、θを
用いて加工すればよい。[0015] Since the amount of deformation D is difficult to use for machining,
As shown in FIG. 3(c), the radius of curvature r and the opening angle θ are converted as shown in the following equations (4) and (5), and processing can be performed using these r and θ.
【0016】[0016]
【0017】一例として、低膨張金属が42%Ni−F
e、高膨張金属が25%Ni−8.5%Cr−Feであ
る。バイメタルを使用する場合を計算してみる。湾曲常
数KはK=11.3×10−6/℃(温度範囲20〜3
50℃)である(文献:金属材料第12巻 第1号
p.68 第1表参照)。バイメタル板の厚さdを
0.5cmウェハおよびバイメタル板の直径を10cm
、ウェハの接着には例えば接着温度約300℃のポリイ
ミドを使用するものとする。これらの値を式(4),(
5)に代入して曲率半径rおよび開角θを計算すると、
r≒79cm,θ≒7.3°
となり、このようにバイメタル板を加工すれば接着温度
の時平坦になり、気泡の除去されたウェハの接着が可能
となる。As an example, the low expansion metal is 42% Ni-F.
e, the high expansion metal is 25%Ni-8.5%Cr-Fe. Let's calculate the case when using bimetal. The curvature constant K is K=11.3×10-6/℃ (temperature range 20~3
50℃) (Reference: Metal Materials Vol. 12 No. 1
p. 68 (see Table 1). The thickness d of the bimetal plate is 0.5 cm, and the diameter of the wafer and bimetal plate is 10 cm.
For example, polyimide with a bonding temperature of about 300° C. is used to bond the wafers. These values are expressed as equation (4), (
5) and calculate the radius of curvature r and opening angle θ,
r≈79 cm, θ≈7.3°, and if the bimetal plate is processed in this way, it will become flat at the bonding temperature, making it possible to bond wafers from which air bubbles have been removed.
【0018】図3で示したような方法以外で、ATM法
(ヨーロッパ)、ASTM法(米国)(文献:金属材料
第12巻 第1号 p.70 第1図参照)
などで測定された湾曲率がわかっている場合でも、それ
ぞれにあわせた設計方法は図3で示した方法と同様にし
て容易に考えられる。あるいは、前述した設計方法など
で作製した曲面板を実際に接着温度まで加熱し、その際
平坦面からずれているようなら外力を加え平坦な形状に
なるように変形し、その後室温に戻すという操作を施す
ことによって、より正確な形状を作製することも可能で
ある。Other than the method shown in FIG. 3, ATM method (Europe), ASTM method (USA) (Reference: Metal Materials Vol. 12, No. 1, p. 70, see FIG. 1)
Even if the measured curvature ratio is known, a design method tailored to each case can be easily devised in the same manner as the method shown in FIG. Alternatively, a curved plate manufactured using the above-mentioned design method is actually heated to the bonding temperature, and if it deviates from the flat surface, external force is applied to deform it into a flat shape, and then it is returned to room temperature. It is also possible to create a more accurate shape by applying
【0019】図4〜図6に本曲面板を用いた基板接着方
法の一実施例としてポリイミド接着剤を使用したシリコ
ン基板の接着方法を示す。まず、図4に示すように加圧
ヘッド55b上に、ポリイミド接着剤24でシリコン基
板23,25が接着された基板対20をのせ、その上に
曲面板10を低膨張合金12側が基板対20側になるよ
うにしてのせる。その際曲面板10と基板対20の中心
を一致させる。次に加圧ヘッド55aを押し下げ、シリ
コン基板23−ポリイミド接着剤24−シリコン基板2
5に圧力を加える。曲面板10の凸側が基板に接触して
いるため基板の中心付近に高い圧力がかかり、中心付近
に存在している気泡67が外側へ押し出される(図5)
。つづいてヒーター56をONにし熱を加えると曲面板
10が平坦な形状に近づく方へ徐々に変形し、それに伴
って基板間に存在する気泡67はさらに外側へ押し出さ
れる。そして、ポリイミド接着剤の接着温度約400℃
となったところで図6のように曲面板は平坦な形状とな
り、気泡67は基板間から除去され、かつ基板全体に均
一な圧力が加わり、同時にポリイミド接着剤が硬化する
。これによって基板間に気泡が存在せず、かつ基板全体
で均一な接着強度を持つ基板の接着を実現することがで
きる。FIGS. 4 to 6 show a method for bonding silicon substrates using a polyimide adhesive as an example of the method for bonding substrates using the curved plate of the present invention. First, as shown in FIG. 4, a pair of substrates 20 to which silicon substrates 23 and 25 are bonded with polyimide adhesive 24 is placed on a pressure head 55b, and a curved plate 10 is placed on top of the pair of substrates 20, with the low expansion alloy 12 side facing the pair of substrates 20. Place it on the side. At this time, the centers of the curved plate 10 and the substrate pair 20 are made to coincide. Next, the pressure head 55a is pushed down and the silicon substrate 23 - polyimide adhesive 24 - silicon substrate 2 is pressed down.
Apply pressure to step 5. Since the convex side of the curved plate 10 is in contact with the substrate, high pressure is applied near the center of the substrate, and air bubbles 67 existing near the center are pushed out (Figure 5).
. Subsequently, when the heater 56 is turned on and heat is applied, the curved plate 10 gradually deforms toward a flat shape, and accordingly, the air bubbles 67 existing between the substrates are further pushed out. And the adhesive temperature of polyimide adhesive is about 400℃
At this point, the curved plate assumes a flat shape as shown in FIG. 6, the air bubbles 67 are removed from between the substrates, uniform pressure is applied to the entire substrate, and at the same time the polyimide adhesive is cured. This makes it possible to bond the substrates without any air bubbles between the substrates and with uniform adhesive strength over the entire substrate.
【0020】[0020]
【発明の効果】以上詳述したように、本発明によれば基
板間に気泡が存在せずかつ基板全体で均一な接着強度を
持つように接着できる。As described in detail above, according to the present invention, it is possible to bond the substrates so that no air bubbles are present between the substrates and the bonding strength is uniform throughout the substrates.
【図1】本発明の一実施例で用いる曲面板の断面図。FIG. 1 is a sectional view of a curved plate used in an embodiment of the present invention.
【図2】曲面板の設計例を説明するための図。FIG. 2 is a diagram for explaining a design example of a curved plate.
【図3】曲面板の設計例を説明するための図。FIG. 3 is a diagram for explaining a design example of a curved plate.
【図4】本発明の接着方法を示す図。FIG. 4 is a diagram showing the bonding method of the present invention.
【図5】本発明の接着方法を示す図。FIG. 5 is a diagram showing the bonding method of the present invention.
【図6】本発明の接着方法を示す図。FIG. 6 is a diagram showing the bonding method of the present invention.
【図7】基板同士を直接接合する従来方法を説明するた
めの図。FIG. 7 is a diagram for explaining a conventional method of directly bonding substrates.
10 曲面板 11 高膨張合金 12 低膨張合金 20 基板対 31 T1 ℃における形状 32 T2 ℃における形状 33 Tr ℃における形状 34 Ta ℃における形状 23,25 シリコン基板 24 ポリイミド接着剤 55 加圧ヘッド 56 ヒーター 67 気泡 91,92 半導体ウェハ 93 ホルダー 94 支持台 10 Curved plate 11 High expansion alloy 12 Low expansion alloy 20 Board pair Shape at 31 T1 ℃ Shape at 32 T2 ℃ Shape at 33 Tr °C Shape at 34 Ta °C 23, 25 Silicon substrate 24 Polyimide adhesive 55 Pressure head 56 Heater 67 Bubbles 91,92 Semiconductor wafer 93 Holder 94 Support stand
Claims (1)
り合わされ、かつ常温では低膨張金属板側が凸であり温
度を上昇させると共に変形し接着温度で平坦な形状にな
る曲面板を、加圧ヘッドと接着を行おうとしている基板
対との間に、凸部が基板対側に接触するように挟み込み
加圧および加熱を施すことを特徴とする基板の接着方法
。1. A curved plate in which a low-expansion metal plate and a high-expansion metal plate are pasted together, and the low-expansion metal plate side is convex at room temperature, but deforms as the temperature rises and becomes flat at the bonding temperature, A method for bonding substrates, which comprises sandwiching between a pressure head and a pair of substrates to be bonded so that a convex portion is in contact with the opposite side of the substrates, and applying pressure and heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2422191A JPH04263932A (en) | 1991-02-19 | 1991-02-19 | Method for bonding substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2422191A JPH04263932A (en) | 1991-02-19 | 1991-02-19 | Method for bonding substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04263932A true JPH04263932A (en) | 1992-09-18 |
Family
ID=12132232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2422191A Pending JPH04263932A (en) | 1991-02-19 | 1991-02-19 | Method for bonding substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04263932A (en) |
-
1991
- 1991-02-19 JP JP2422191A patent/JPH04263932A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN119110988A (en) | Low temperature direct bonding | |
US4607779A (en) | Non-impact thermocompression gang bonding method | |
JP2945834B2 (en) | Sealing device and method useful for bonding between materials having differential thermal expansion in semiconductor processing equipment | |
TW487817B (en) | Apparatus and method for a liquid crystal panel | |
JPS60136331A (en) | Method of removing semiconductor chip from dicing film | |
JPS63261831A (en) | Layer joining method and apparatus for performing joining | |
US20040126994A1 (en) | Method of forming a multi-layer semiconductor structure having a seamless bonding interface | |
JPH04263932A (en) | Method for bonding substrate | |
JP2751261B2 (en) | Semiconductor substrate bonding method | |
JP4421833B2 (en) | Substrate bonding equipment | |
JP2001126851A (en) | Heater unit for semiconductor wafer and 1t3 manufacturing method | |
JPH05283757A (en) | Photoelectric conversion element | |
JP6951697B2 (en) | Manufacturing method of electronic device | |
JP2001308033A (en) | Method for fixing wafer | |
CN111845003A (en) | Controllable hot-pressing method for nanomaterials | |
JP2005209829A (en) | Method and apparatus of fixing semiconductor wafer, and structure to fix semiconductor wafer | |
JP3235395B2 (en) | Thermocompression bonding apparatus and thermocompression bonding method for electronic components | |
JP5795272B2 (en) | Method for manufacturing ceramic element | |
JPH06188166A (en) | Electrostatic bonding method | |
JP2004071608A (en) | Semiconductor device manufacturing apparatus | |
JPH08197171A (en) | Production of metallic honeycomb sandwich plate | |
JP2755927B2 (en) | Method for manufacturing semiconductor device | |
JPH05326378A (en) | Manufacture of x-ray mask structure | |
JP2004361635A (en) | Method of forming fine structure of curved surface | |
JPH06196377A (en) | Bonding method for semiconductor substrates |