JPH04202051A - Transparent ggg sintered body and its production - Google Patents
Transparent ggg sintered body and its productionInfo
- Publication number
- JPH04202051A JPH04202051A JP33422690A JP33422690A JPH04202051A JP H04202051 A JPH04202051 A JP H04202051A JP 33422690 A JP33422690 A JP 33422690A JP 33422690 A JP33422690 A JP 33422690A JP H04202051 A JPH04202051 A JP H04202051A
- Authority
- JP
- Japan
- Prior art keywords
- ggg
- sintered body
- inert gas
- pressure
- purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- ZPDRQAVGXHVGTB-UHFFFAOYSA-N gallium;gadolinium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Gd+3] ZPDRQAVGXHVGTB-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000843 powder Substances 0.000 claims abstract description 13
- 238000007731 hot pressing Methods 0.000 claims abstract description 10
- 239000011261 inert gas Substances 0.000 claims abstract description 9
- 238000002834 transmittance Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001882 dioxygen Inorganic materials 0.000 claims description 3
- 238000001513 hot isostatic pressing Methods 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 1
- 239000001301 oxygen Substances 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 2
- 229940075613 gadolinium oxide Drugs 0.000 description 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、透光性に優れたGGG焼結体及びその製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a GGG sintered body with excellent translucency and a method for manufacturing the same.
GGG (ガドリニウム・ガリウム・ガーネツト:G
dGa0 )は、酸化ガドリニウム(GdO)と酸化ガ
リウム(Gap)からなる複合酸化物であって、磁気バ
ルブ素子用の基板結晶等として使用され、又N(lを添
加したGGGは固体レーザ材料として有望視されている
。GGG (Gadolinium Gallium Garnet: G
dGa0 ) is a composite oxide consisting of gadolinium oxide (GdO) and gallium oxide (Gap), and is used as a substrate crystal for magnetic valve elements, and GGG doped with N(l) is a promising solid-state laser material. being watched.
通常、GGGは酸化ガリウムのモル分率が58.7〜6
2.8モル%の範囲において結晶型が立方晶(ガーネッ
ト構造)の単一層となるため、結晶粒界での散乱なく良
好な透光性を示し、可視領域の波長0.3μm付近から
透光性が急激に高くなり、赤外領域の波長3〜5μm付
近まで均一な透光性を示すことが知られている。Typically, GGG has a mole fraction of gallium oxide of 58.7 to 6.
In the range of 2.8 mol%, the crystal type becomes a single layer of cubic crystals (garnet structure), so it exhibits good light transmission without scattering at grain boundaries, and transmits light from wavelengths around 0.3 μm in the visible region. It is known that the properties of these materials increase rapidly, and that they exhibit uniform translucency up to a wavelength of around 3 to 5 μm in the infrared region.
しかし、GGGの用途が上記の如く結晶基板材料や固体
レーザ材料等の単結晶としての用途に限られていたため
、従来からチョクラルスキー法(C2法)等によりGG
G単結晶の製造は行われていたが、粉末から焼結法によ
り多結晶体を製造する試みは殆ど行われていなかった。However, since the use of GGG was limited to single crystal applications such as crystal substrate materials and solid-state laser materials as mentioned above, GGG has traditionally been
Although G single crystals have been produced, there have been almost no attempts to produce polycrystals from powder by a sintering method.
又、CZ法等の単結晶製造法では大寸法製品を得ること
が困難であり、製品コストも高いので、単結晶GGGが
可視及び赤外透過窓等の光学材料として使用されること
はなかった。Furthermore, it is difficult to obtain large-sized products using single-crystal manufacturing methods such as the CZ method, and the product cost is high, so single-crystal GGG has not been used as an optical material such as visible and infrared transmitting windows. .
本発明はかかる従来の事情に鑑み、赤外透過窓材料等と
して好適な透光性GGG焼結体、及びその製造方法を提
供することを目的とする。In view of such conventional circumstances, an object of the present invention is to provide a translucent GGG sintered body suitable as an infrared-transmitting window material, and a method for manufacturing the same.
上記目的を達成するため、本発明においては、純度99
.5%以上の多結晶GGG (ガドリニウム・ガリウム
・ガーネツト)からなり、試料厚さ3闘での直線透過率
が波長0.4〜3μmの可視及び赤外領域で70%以上
、3〜5μmの赤外領域で75%以上である透光性GG
G焼結体を提供する。In order to achieve the above object, in the present invention, purity 99
.. It is made of polycrystalline GGG (gadolinium gallium garnet) with a thickness of 5% or more, and the in-line transmittance at a sample thickness of 3 is 70% or more in the visible and infrared wavelength regions of 0.4 to 3 μm, and in the red region of 3 to 5 μm. Translucency GG that is 75% or more in the outer area
A G sintered body is provided.
又、この透光性GGG焼結体の製造方法は、純度99.
5%以上及び比表面積CBET値) 3 rrVg以上
のGGG粉末を、真空中又は不活性ガス中において温度
1200〜1720 C及び圧力100〜500”97
F、m2でホットプレスすることにより理論密度比95
%以上に緻密化し、次に温度1500〜1720 C及
び圧力500 kgAm”以上でHIP処理することを
特徴とする。In addition, this method of manufacturing the translucent GGG sintered body has a purity of 99.
5% or more and specific surface area CBET value) 3rrVg or more GGG powder in vacuum or inert gas at a temperature of 1200 to 1720 C and a pressure of 100 to 500''97
Theoretical density ratio 95 by hot pressing at F, m2
% or more, and then subjected to HIP treatment at a temperature of 1500 to 1720 C and a pressure of 500 kgAm'' or more.
本発明において、真空中又は不活性ガス中でのホットプ
レス及びその後のH工P(熱間等方圧プレス)により、
焼結助剤を使用せずに、高純度で且つ高密度の多結晶G
GG焼結体が得られることが解った。In the present invention, by hot pressing in vacuum or inert gas and subsequent H-P (hot isostatic pressing),
High purity and high density polycrystalline G without using sintering aids
It was found that a GG sintered body could be obtained.
この多結晶GGG焼結体は、結晶型が立方晶であるから
結晶粒界での散乱が少なく、高純度で緻密に焼結されて
いるから、可視領域から赤外領域において公知の単結晶
GGGと同等の極めて高い透光性が得られる。即ち、光
学惣として一般的な厚さである厚さ3 mrnの試料で
、波長0.4〜3μmの可視及び赤外領域で70%以上
、3〜5μmの赤外領域で75%以上の直線透過率が得
られた。Since this polycrystalline GGG sintered body has a cubic crystal type, there is little scattering at grain boundaries, and since it is highly pure and densely sintered, it can be used in the visible range to the infrared range. Extremely high translucency equivalent to that obtained can be obtained. That is, for a sample with a thickness of 3 mrn, which is a common thickness for optical materials, a straight line of 70% or more in the visible and infrared wavelength range of 0.4 to 3 μm, and 75% or more in the infrared region of 3 to 5 μm. The transmittance was obtained.
本発明方法において、GGG焼結体の原料として用いる
GGG粉末は、不純物吸収による透光性の低下を防ぐた
めに99.5%以上の純度のものを使用し、特にFe等
の遷移金属元素の含有は好ましくない。又、GGG粉末
は一次粒子の粒径が約0.3μm以下、即ち比表面積が
BET値で3 tri/g。In the method of the present invention, the GGG powder used as a raw material for the GGG sintered body has a purity of 99.5% or more to prevent a decrease in translucency due to absorption of impurities, and in particular contains transition metal elements such as Fe. is not desirable. In addition, the primary particle size of the GGG powder is about 0.3 μm or less, that is, the specific surface area is 3 tri/g in BET value.
以上、好ましくは7〜15φ′g以上であることが、緻
密な焼結体を得るために必要である。このように高純度
で且つ微細なGGG粉末としては、アルコキシドの加水
分解又は共沈法等により製造した粉末が好適である。As mentioned above, it is necessary to preferably have a diameter of 7 to 15 φ'g or more in order to obtain a dense sintered body. As such a highly pure and fine GGG powder, a powder produced by alkoxide hydrolysis or coprecipitation method is suitable.
本発明方法では、上記の如く高純度で高密度なGGG粉
末を真空中又は不活性ガス中でホットプレスにより焼結
する。ホットプレス焼結における温度は1200〜17
20C,及び圧力は100〜500kyΔm2とする。In the method of the present invention, the high-purity, high-density GGG powder as described above is sintered by hot pressing in vacuum or in an inert gas. The temperature in hot press sintering is 1200-17
20C and the pressure is 100 to 500kyΔm2.
温度が1200 r未満又は圧力が100kg/cm
”未満では理論密度比95%以上の高密度な焼結体が得
難く、逆に温度が1720 Cを超えると液相の発生が
みられ、組成比のズレや第2相の析出により光散乱要因
が増大したり、同時に粒内に気孔が残留しやすくなり、
透光性の大幅な低下を招く。又、ホットプレス圧力が5
0 Q kg/cm2を超えると、強度的に通常のグラ
ファイト型の使用が難しくなるので好ましくない。Temperature less than 1200 r or pressure 100 kg/cm
If the temperature is less than 1,720°C, it is difficult to obtain a high-density sintered body with a theoretical density ratio of 95% or more.On the other hand, if the temperature exceeds 1720C, a liquid phase will occur, and light scattering will occur due to a deviation in the composition ratio and precipitation of a second phase. The factors increase, and at the same time, pores tend to remain in the grains,
This results in a significant decrease in translucency. Also, the hot press pressure is 5
If it exceeds 0 Q kg/cm2, it becomes difficult to use a normal graphite mold due to its strength, which is not preferable.
上記ホットプレスに続くH工P処理法では、1500〜
1720Cの温度と500 kg/cm2以上の圧力で
焼結体を等方的に加圧するので、焼結体中の空孔が塑性
変形や拡散機構により除去される。従って、上下2方向
加圧のホットプレスで得られた焼結体は更に高密度化さ
れ、歪みが少なくなり、光学的に均一で高い透光性が得
られる。尚、ホットプレスで得られた焼結体の理論密度
比が95%未満の場合には、残留気孔の多くが所謂解放
気孔となり、この気孔を通ってH工Pで用いる高圧ガス
が焼結体内部に侵入してしまうため、H工Pによる高密
度化が十分進行しない結果となる。In the H-P treatment method following the above-mentioned hot press, 1500~
Since the sintered body is isotropically pressurized at a temperature of 1720C and a pressure of 500 kg/cm2 or more, pores in the sintered body are removed by plastic deformation and a diffusion mechanism. Therefore, the sintered body obtained by hot pressing in two directions (up and down) has a higher density, less distortion, and is optically uniform and has high light transmittance. In addition, if the theoretical density ratio of the sintered body obtained by hot pressing is less than 95%, most of the remaining pores become so-called open pores, and the high pressure gas used in the H process passes through these pores into the sintered body. Since it invades the inside, the densification by H-P does not proceed sufficiently.
HIP処理で用いるガスは、Ar等の不活性ガス又は酸
素ガス、若しくはこれらの混合ガスが好ましい。特に、
酸素ガスを混合することによってH工P処理時の焼結体
の還元などによって起こる組成ズレをコントロールでき
、透光性の低下を防止出来る利点がある。The gas used in the HIP process is preferably an inert gas such as Ar, oxygen gas, or a mixed gas thereof. especially,
By mixing oxygen gas, it is possible to control the composition deviation caused by reduction of the sintered body during the H-P treatment, and there is an advantage that a decrease in translucency can be prevented.
実施例1
純度99.9%、比表面積54g(BET値)の高純度
GGG粉末を、内径5Qmmのグラファイト型を用いて
I X 10 ”−2torrの真空中において150
0Cの温度と300 kv′cm2の圧力で3時間ホッ
トプレスし、理論密度比99%の白色の焼結体を得た。Example 1 High-purity GGG powder with a purity of 99.9% and a specific surface area of 54 g (BET value) was heated at 150 m
Hot pressing was carried out for 3 hours at a temperature of 0C and a pressure of 300 kv'cm2 to obtain a white sintered body with a theoretical density ratio of 99%.
この焼結体をH工P装置に入れ、Arガスを用いて16
50 Cの温度と2000 kg/cm”の圧力で2時
間 ・H工P処理し、無色透明な焼結体を得た。This sintered body was placed in a H-P equipment and heated at 16°C using Ar gas.
A colorless and transparent sintered body was obtained by H-P treatment at a temperature of 50 C and a pressure of 2000 kg/cm'' for 2 hours.
このGGG焼結体の両面を鏡面研磨加工して厚さ3 m
mの試料とした。この試料の直線透過率を分光光度計で
測定したところ、波長0.4〜3μmの領域で平均78
%、及び3〜5μmの領域で平均81%の優れた透光性
を示した。Both sides of this GGG sintered body are mirror polished to a thickness of 3 m.
The sample was taken as m. When the in-line transmittance of this sample was measured using a spectrophotometer, the average transmittance was 78 in the wavelength range of 0.4 to 3 μm.
%, and showed excellent light transmittance of 81% on average in the 3-5 μm region.
実施例2
実施例1と同じGGG粉末を用い、温度1400Cとし
た以外は実施例1と同様にホットプレスし、理論密度比
98%の白色の焼結体を得た。次にこの焼結体を実施例
1と同様にH工P処理したが、温度を1600 C及び
時間を3時間とし、無色透明な焼結体を得た。Example 2 A white sintered body having a theoretical density ratio of 98% was obtained by hot pressing in the same manner as in Example 1 except that the same GGG powder as in Example 1 was used and the temperature was 1400C. Next, this sintered body was subjected to H-P treatment in the same manner as in Example 1, but at a temperature of 1600 C and for 3 hours to obtain a colorless and transparent sintered body.
得られたGGG焼結体の両面を鏡面研磨加工して得た厚
さ3闘の試料について、実施例1と同様に測定した直線
透過率は、波長0.4〜3μmの領域で平均75%、及
び3〜5μmの領域で平均78%の優れた透光性を示し
た。The in-line transmittance measured in the same manner as in Example 1 for a sample with a thickness of 3 mm obtained by mirror-polishing both sides of the obtained GGG sintered body was 75% on average in the wavelength range of 0.4 to 3 μm. , and exhibited excellent light transmittance of 78% on average in the 3-5 μm region.
実施例3
純度99.9%、比表面積10 rrl/g(B I
T値)の高純度GGG粉末を、内径50闘のグラファイ
ト型を用いて0.9気圧のArガス中において1300
Cの温度と500 Jc9Am”の圧力で3時間ホッ
トプレスし、理論密度比96%の白色の焼結体を得た。Example 3 Purity 99.9%, specific surface area 10 rrl/g (BI
High-purity GGG powder with a T value of
Hot pressing was carried out for 3 hours at a temperature of C and a pressure of 500 Jc9Am'' to obtain a white sintered body with a theoretical density ratio of 96%.
この焼結体をH工P装置に入れ、Ar−1%0 ガスを
用いて1520 Cの温度と2000 ky/Cm2の
圧力で8時間H工P処理し、無色透明な焼結体を得た。This sintered body was placed in a H-P apparatus and subjected to H-P treatment using Ar-1%0 gas at a temperature of 1520 C and a pressure of 2000 ky/Cm2 for 8 hours to obtain a colorless and transparent sintered body. .
得られたGGG焼結体の両面を鏡面研磨加工して得た厚
さ3 amの試料について、実施例1と同様に測定した
直線透過率は、波長0.4〜3μmの領域で平均70%
、及び3〜5μmの領域で平均75%の優れた透光性を
示した。For a sample with a thickness of 3 am obtained by mirror polishing both sides of the obtained GGG sintered body, the in-line transmittance measured in the same manner as in Example 1 was 70% on average in the wavelength range of 0.4 to 3 μm.
, and exhibited excellent light transmittance of 75% on average in the 3-5 μm region.
本発明によれば、高純度且つ高密度であり可視及び赤外
領域において非常に優れた直線透過率を有する透光性G
GG焼結体を提供出来る。According to the present invention, a translucent G having high purity and high density and excellent in-line transmittance in the visible and infrared regions can be used.
We can provide GG sintered bodies.
この透光性GGG焼結体は厚さ3闘以上で使用される可
視又は赤外透過窓等の光学素材として特に有用である。This translucent GGG sintered body is particularly useful as an optical material for visible or infrared transparent windows having a thickness of 3 mm or more.
Claims (3)
ム・ガリウム・ガーネツト)からなり、試料厚さ3mm
での直線透過率が波長0.4〜3μmの可視及び赤外領
域で70%以上、3〜5μmの赤外領域で75%以上で
あることを特徴とする透光性GGG焼結体。(1) Made of polycrystalline GGG (gadolinium gallium garnet) with a purity of 99.5% or more, sample thickness 3 mm
1. A translucent GGG sintered body having a linear transmittance of 70% or more in the visible and infrared wavelength regions of 0.4 to 3 μm and 75% or more in the infrared region of 3 to 5 μm.
m^2/g以上のGGG(ガドリニウム・ガリウム・ガ
ーネツト)粉末を、真空中又は不活性ガス中において温
度1200〜1720℃及び圧力100〜500kg/
cm^2でホツトプレスすることにより理論密度比95
%以上に緻密化し、次に温度1500〜1720℃及び
圧力500kg/cm^2以上でHIP処理することを
特徴とする透光性GGG焼結体の製造方法。(2) Purity 99.5% or more and specific surface area (BET value) 3
GGG (gadolinium gallium garnet) powder of m^2/g or more is heated in vacuum or inert gas at a temperature of 1200 to 1720°C and a pressure of 100 to 500 kg/g.
Theoretical density ratio is 95 by hot pressing at cm^2.
% or more, and then subjected to HIP treatment at a temperature of 1500 to 1720°C and a pressure of 500 kg/cm^2 or more.
はこれらの混合ガスを用いることを特徴とする透光性G
GG焼結体の製造方法。(3) A translucent G characterized by using an inert gas, oxygen gas, or a mixed gas thereof for HIP treatment.
Method for manufacturing GG sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33422690A JPH04202051A (en) | 1990-11-30 | 1990-11-30 | Transparent ggg sintered body and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33422690A JPH04202051A (en) | 1990-11-30 | 1990-11-30 | Transparent ggg sintered body and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04202051A true JPH04202051A (en) | 1992-07-22 |
Family
ID=18274963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33422690A Pending JPH04202051A (en) | 1990-11-30 | 1990-11-30 | Transparent ggg sintered body and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04202051A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7253129B2 (en) * | 2003-01-27 | 2007-08-07 | Konoshima Chemical Co., Ltd. | Rare earth garmet sintered compact |
JP2008001556A (en) * | 2006-06-22 | 2008-01-10 | Konoshima Chemical Co Ltd | Translucent rare earth-gallium-garnet sintered compact, its production method, and optical device |
US8228059B2 (en) | 2009-03-16 | 2012-07-24 | Jfe Mineral Company, Ltd. | Ferrite material having composition gradient for measuring magneto-optical-effect properties and method for evaluating properties of ferrite |
WO2014006947A1 (en) * | 2012-07-06 | 2014-01-09 | 神島化学工業株式会社 | Light-transmitting rare-earth gallium garnet ceramic, process for producing same, and faraday rotator |
-
1990
- 1990-11-30 JP JP33422690A patent/JPH04202051A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7253129B2 (en) * | 2003-01-27 | 2007-08-07 | Konoshima Chemical Co., Ltd. | Rare earth garmet sintered compact |
JP2008001556A (en) * | 2006-06-22 | 2008-01-10 | Konoshima Chemical Co Ltd | Translucent rare earth-gallium-garnet sintered compact, its production method, and optical device |
US8228059B2 (en) | 2009-03-16 | 2012-07-24 | Jfe Mineral Company, Ltd. | Ferrite material having composition gradient for measuring magneto-optical-effect properties and method for evaluating properties of ferrite |
WO2014006947A1 (en) * | 2012-07-06 | 2014-01-09 | 神島化学工業株式会社 | Light-transmitting rare-earth gallium garnet ceramic, process for producing same, and faraday rotator |
JPWO2014006947A1 (en) * | 2012-07-06 | 2016-06-02 | 神島化学工業株式会社 | Translucent rare earth gallium garnet ceramics, manufacturing method thereof, and Faraday rotator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2112127B1 (en) | Transparent spinel ceramics, method for production thereof, and optical material using the transparent spinel ceramics | |
JP5861397B2 (en) | Colored translucent zirconia sintered body, method for producing the same, and use thereof | |
EP0332393B1 (en) | Method of producing a light-transmitting spinel sintered body | |
JP2773193B2 (en) | Method for producing translucent yttria sintered body | |
KR20120098118A (en) | Manufacturing method of polycrystalline aluminum oxynitride with improved transparency | |
KR20150112997A (en) | Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body | |
CN110467464A (en) | Preparation is for the method for the ceramic mouldings of sintering and the method for manufacture ceramic sintered bodies | |
JPH03218963A (en) | Production of transparent yttrium-aluminumgarvent-ceramics | |
JPH0218354A (en) | Transparent spinel sintered body and its manufacturing method | |
JPH04202051A (en) | Transparent ggg sintered body and its production | |
JP3000685B2 (en) | Translucent yttria sintered body and method for producing the same | |
JP2019199078A (en) | Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body | |
JPWO2019031105A1 (en) | Oxide sintered body and sputtering target | |
JPH0459658A (en) | Light-transmitting sintered yttria and production thereof | |
TW201524936A (en) | White zirconia sintered compact, and fabricating method thereof and member including the same | |
US11639312B2 (en) | Transparent ceramic as a component for fracture-resistant optical units | |
JPH0248462A (en) | Method for manufacturing translucent spinel sintered body | |
EP1810955B1 (en) | Translucent ceramic, process for producing the same, optical part and optical apparatus | |
JP2984581B2 (en) | Member composed of indium-tin oxide and method for producing the same | |
JPH01230465A (en) | Light-transmitting spinel sintered material and production thereof | |
JPH0323269A (en) | Transparent aluminum oxynitride sintered body and its manufacturing method | |
JPH0323251A (en) | Translucent calcium fluoride sintered body and its manufacturing method | |
JPH03275561A (en) | Transparent YAG sintered body and its manufacturing method | |
JPH04175265A (en) | Colored translucent YAG sintered body and its manufacturing method | |
JPH02212357A (en) | Transparent spinel sintered body for ornamentation and production thereof |