JPH04151886A - Optical semiconductor device - Google Patents
Optical semiconductor deviceInfo
- Publication number
- JPH04151886A JPH04151886A JP27591090A JP27591090A JPH04151886A JP H04151886 A JPH04151886 A JP H04151886A JP 27591090 A JP27591090 A JP 27591090A JP 27591090 A JP27591090 A JP 27591090A JP H04151886 A JPH04151886 A JP H04151886A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- optical
- coupler
- optical semiconductor
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 47
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000009826 distribution Methods 0.000 claims abstract description 6
- 230000003321 amplification Effects 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 20
- 238000005530 etching Methods 0.000 abstract description 8
- 238000010884 ion-beam technique Methods 0.000 abstract description 6
- 239000000835 fiber Substances 0.000 description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 238000005253 cladding Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光通信の分野に必要とされる光電子集積回路
などに用いられる光半導体素子、特に光カップラが構成
されたチャンネル導波路構造を有する光半導体素子に関
する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to optical semiconductor devices used in optoelectronic integrated circuits and the like required in the field of optical communication, particularly channel waveguide structures in which optical couplers are configured. The present invention relates to an optical semiconductor device having the present invention.
[従来の技術]
従来、光カップラとして、第10図に示す様なY分岐型
光カップラ100を含む複合共振器レザの一種である干
渉型レーザが知られている(■H,A、Fattah
et al、”Sem1conductor i
nterferometric 1aser”App
l、Phys、Lett、41.2.pp、112−1
14 (July 1982)参照)。[Prior Art] Conventionally, as an optical coupler, an interference laser, which is a type of composite resonator laser, including a Y-branch type optical coupler 100 as shown in FIG.
et al, “Sem1conductor i
terferometric 1aser”App
l, Phys, Lett, 41.2. pp, 112-1
14 (July 1982)).
また、第11図(a)、(b)に示す様なX分岐型光カ
ップラ110a、110bを含む干渉型レーザも知られ
ている(J、Sal zman et a 1
、 ” Cr o s s c o
u p 1 e d c avity
semiconductor 1aser”
Appl、Phys、Lett、52. LO,pp
、 767−769 (March 1988
)参照)。ここでR,〜R4は共振面、L +〜L、4
は共振器長を夫々示す。Furthermore, an interference type laser including X-branch type optical couplers 110a and 110b as shown in FIGS. 11(a) and 11(b) is also known (J, Salzman et al.
, ”Crossco
u p 1 e d c a vity
semiconductor 1aser”
Appl, Phys, Lett, 52. L.O., pp.
, 767-769 (March 1988
)reference). Here, R, ~R4 are resonance surfaces, L + ~L, 4
indicate the resonator length, respectively.
[発明が解決しようとする課題]
しかし、上記従来例では次の様な欠点があった先ず、第
10図に示すY分岐型光カップラを含む例の場合、Y分
岐100の分岐角が大きくとれない、素子長が1mm以
上となる為に他の光デバイスに比ベサイズが大きくなり
過ぎ集積化が困難であると言う問題がある。[Problems to be Solved by the Invention] However, the conventional example described above has the following drawbacks. First, in the case of the example including the Y-branch type optical coupler shown in FIG. However, since the element length is 1 mm or more, the size is too large compared to other optical devices, making it difficult to integrate.
また、第11図に示すX分岐型光カップラを含む例の場
合、X分岐部1]、Oa、110bに要求される位置精
度、深さ精度などのプロセス精度が高(、歩留り、再現
性に乏しい等の問題点があった。すなわち、光導波路を
伝搬してくる光波の界分布に対してX分岐部がどの様に
形成されるかで分岐、合流の態様が決まって(るので、
そのプロセス精度に厳しさが要求されるのである。In addition, in the case of the example including the X-branch type optical coupler shown in FIG. 11, the process accuracy such as positional accuracy and depth accuracy required for the In other words, the mode of branching and merging is determined by how the X-branch is formed with respect to the field distribution of light waves propagating through the optical waveguide.
Strict precision is required for the process.
従って、本発明の目的は、上記の課題に鑑み、プロセス
が容易で信顆性及び再現性に優れ半導体光集積回路に適
する光カップラを含む光半導体素子を提供することにあ
る。Therefore, in view of the above problems, an object of the present invention is to provide an optical semiconductor device including an optical coupler that is easy to process, has excellent reliability and reproducibility, and is suitable for semiconductor optical integrated circuits.
[課題を解決する為の手段]
上記目的を達成する本発明の光半導体素子においては、
半導体基板−ヒに構成された少な(とも1つのチャンネ
ル導波路構造に光波の結合を行なう為のカップラ部が構
成され、カップラ部は少な(とも水平方向の導波光界分
布の波面分割を行なう様に(垂直方向ないし深さ方向の
導波光界分布の波面分割を併せて行なってもよい)導波
路構造の一部に反射率の異なる部位を形成して成ってい
るより具体的には、チャンネル導波路構造は活性層を含
んだり、カップラ部はこの活性層を越えてスリット状に
加工された(水平方向には導波路構造の一部にのみ形成
される)加工部分を含んだり、カップラ部は導波路構造
の一部(水平方向に関して)に加工深さが異なる部分が
形成されて成ったり、カップラ部は導波路構造のT型、
X型、Y型などの交差部位や非交差部位に設けられたり
(非交差部位に設けられて、複合共振器レーザを構成し
たりする)、カップラ部は複数方向に光波を分岐する様
に上記反射率の異なる部位を複数含んだり、カップラ部
は光導波路構造が分岐、合流する部分の一部(水平方向
に関して)に全反射ミラー(45° ミラー)となるス
リット溝を形成して構成されたりする。[Means for solving the problem] In the optical semiconductor device of the present invention that achieves the above object,
A coupler section for coupling light waves to a single channel waveguide structure is constructed on the semiconductor substrate. (Wavefront division of the waveguide optical field distribution in the vertical direction or depth direction may also be carried out) The waveguide structure may include an active layer, the coupler section may include a slit-shaped section (formed only in a part of the waveguide structure in the horizontal direction) beyond the active layer, or the coupler section may include a slit-shaped section (formed only in a part of the waveguide structure in the horizontal direction). is formed by forming a part of the waveguide structure (with respect to the horizontal direction) with a different processing depth, and the coupler part is a T-shaped part of the waveguide structure,
The coupler section may be provided at an intersection point or a non-intersection section such as an X-type or a Y-shape (it may be provided at a non-intersection section to form a composite resonator laser), or the coupler section may be provided in the above-mentioned manner so as to branch light waves in multiple directions. It may include multiple parts with different reflectances, or the coupler part may be configured by forming a slit groove that becomes a total reflection mirror (45° mirror) in a part of the part where the optical waveguide structure branches and merges (in the horizontal direction). do.
[実施例]
第1図は本発明の第1実施例であるT分岐カップラを含
む光半導体素子を示し、同図(a)は模式的上面図、同
図(b)は第1図のA−A′断面図、同図(c)は第1
図のB−B′断面図、同図(d)は第1図(a)の主要
部の拡大図である。[Example] FIG. 1 shows an optical semiconductor device including a T-branch coupler according to a first embodiment of the present invention, in which (a) is a schematic top view, and (b) is a schematic top view of A in FIG. -A' sectional view, the same figure (c) is the first
The sectional view taken along the line B-B' in the figure, and FIG. 1(d) is an enlarged view of the main part of FIG. 1(a).
先ず、第1実施例のプロセス手順について説明する。First, the process procedure of the first embodiment will be explained.
基板1上に、分子線成長法(MBE)により第1クラッ
ド層2、活性層3、第2クラッド層4、キャップ層5か
らなるエピタキシャル膜を順に成長させる。基板1との
界面には必要に応じてGaAsであるバッファ層を形成
してもよい。第1、第2クラッド層2.4の膜厚は1μ
mとし、活性層3の膜厚は約0.1μmとした。次に、
その上部にフォトリソグラフィ法により幅3μmの所望
のパターン(図示例ではT字型パターン)を形成し、反
応性イオンビームエツチング(RI B E)によりリ
ッジ部(第1図(b)参照)を形成し、横方向の閉じ込
めを行なうストライブ構造とした(第1図(a)、(b
)参照)。An epitaxial film consisting of a first cladding layer 2, an active layer 3, a second cladding layer 4, and a cap layer 5 is grown in order on a substrate 1 by molecular beam epitaxy (MBE). A buffer layer made of GaAs may be formed at the interface with the substrate 1 if necessary. The film thickness of the first and second cladding layers 2.4 is 1μ
m, and the thickness of the active layer 3 was approximately 0.1 μm. next,
A desired pattern (T-shaped pattern in the illustrated example) with a width of 3 μm is formed on the top by photolithography, and a ridge portion (see FIG. 1(b)) is formed by reactive ion beam etching (RIBE). A striped structure was adopted to perform lateral confinement (Fig. 1 (a), (b)).
)reference).
更に、集束イオンビームエツチング(FIBE)法によ
り、活性層3の下部に至る端面加工をしてスリット溝1
0を第1図(c)の如(形成するこのスリット溝10は
1、FIBEによる端面傾斜角度θが85度以」二で(
第1図(c)参照)リッジ導波路の分岐・合流部の中心
から光波の導波方向にφ=45°の角度を持って(第1
図(d)参照)形成され、45°ミラーすなわち全反射
ミラーを構成している。Furthermore, by using a focused ion beam etching (FIBE) method, the end face of the active layer 3 is processed down to the bottom of the slit groove 1.
0 as shown in FIG.
(See Figure 1(c)) At an angle of φ = 45° from the center of the branching/merging part of the ridge waveguide to the light wave guiding direction (see Figure 1(c))
(see Figure (d)), forming a 45° mirror, that is, a total reflection mirror.
続いて、この素子の端面なへき開により光が入射、出射
できる様にした。Next, the end face of this element was cleaved to allow light to enter and exit.
この全反射ミラーによって、活性層3に第1図(a>の
B−B′方向に入射した光波11は、分岐・合流部で光
波12(反射)と光波13(透過)にほぼ同一の比率で
分岐される。このとき、光波12は第1図(d)に示す
分岐・合流部の下半分のスリット溝10で全反射され、
光波13はこの分岐・合流部の上半分をそのまま透過し
ていくことで生じる。By this total reflection mirror, the light wave 11 incident on the active layer 3 in the direction B-B' in FIG. At this time, the light wave 12 is totally reflected by the slit groove 10 in the lower half of the branching/merging section shown in FIG.
The light wave 13 is generated by passing through the upper half of this branching/merging section as it is.
本実施例における分岐・合流部すなわち光カップラは、
水平方向(チャンネル導波路構造が形成された基板lの
伸展方向)の波面分割型の分岐カップラを形成するもの
である為、スリット溝10の端面の加工深さは活性層3
(チャンネル導波路構造の中心となる導波路層)を越え
てエツチングするものであればよ(精度の厳しい深さ制
御が不必要となる。そして、45°ミラーの位置制御を
することによって、光波の透過・反射の比率な所望の値
に設定することができる。The branching/merging section, that is, the optical coupler in this example is as follows:
Since this forms a branching coupler of wavefront splitting type in the horizontal direction (the direction of extension of the substrate l on which the channel waveguide structure is formed), the machining depth of the end face of the slit groove 10 is equal to that of the active layer 3.
(The waveguide layer that is the center of the channel waveguide structure) can be etched (there is no need for precise depth control. Also, by controlling the position of the 45° mirror, it is possible to The transmission/reflection ratio can be set to a desired value.
本実施例では、チャンネル導波路構造としてリッジ導波
路について述べたが、屈折率型の導波路も同様に利用で
きる。In this embodiment, a ridge waveguide has been described as the channel waveguide structure, but a refractive index waveguide can also be used.
第2図と第3図は第1実施例の変形例を示し、第2図の
T型カップラでは、スリット溝20が第1実施例と対称
的な位置にすなわち第1実施例では透過部であったとこ
ろに形成されており、第3図のT型カップラでは、スリ
ット溝21が、導波方向に対して45°の角度を成して
、分岐・合流部の中央部に形成されている。2 and 3 show a modification of the first embodiment, and in the T-type coupler of FIG. 2, the slit groove 20 is located at a position symmetrical to that of the first embodiment, that is, in the first embodiment, it is a transparent part. In the T-type coupler shown in Fig. 3, the slit groove 21 is formed at the center of the branching/merging section at an angle of 45° with respect to the waveguide direction. .
第4図はY分岐カップラの第2実施例を示し、スリット
溝25が図示の如(形成されて、第4図の矢印で示す如
(光波が分岐・合流される。FIG. 4 shows a second embodiment of the Y-branch coupler, in which slit grooves 25 are formed as shown in the figure, and light waves are branched and merged as shown by arrows in FIG.
第5図は第3実施例を示す。第3実施例は本発明を送信
部と受信部を併設した光ノードに応用した例である。FIG. 5 shows a third embodiment. The third embodiment is an example in which the present invention is applied to an optical node that includes a transmitting section and a receiving section.
第6図と第7図は第5図のA−A′断面図、B−B′断
面図を夫々示す。本実施例は上記第1実施例の加工端面
を集積カップラに用いた例である第5図において、29
はFIBで形成されたスリット溝であり、30a、30
bは電流注入によってゲインを有する不図示の光アンプ
を具備する増幅領域、31a、31bは逆バイアス印加
により動作する光検出器を具備する光検出領域である3
8a、38bは端面に形成されたARコートであり、A
1゜Q 3 + Z r O2をエレクトロンビム(E
B)蒸着によって堆積している。39は導波路である。6 and 7 show a sectional view taken along line AA' and line BB' in FIG. 5, respectively. This embodiment is an example in which the processed end surface of the first embodiment is used in an integrated coupler.
are slit grooves formed by FIB, 30a, 30
b is an amplification region equipped with an optical amplifier (not shown) that has a gain by current injection; 31a and 31b are photodetection regions equipped with photodetectors operated by applying a reverse bias;
8a and 38b are AR coats formed on the end faces;
1゜Q 3 + Z r O2 as electron beam (E
B) Deposited by vapor deposition. 39 is a waveguide.
導波路39は上面に十字型に形成されたもので、その中
心から上下方向の導波路部分は増幅領域30a、30b
とされ、左右方向は検出領域38a、38bとされてい
る。スリット溝29は、その長平方向が、上述した十字
型の導波路39の各長手方向に対して45°傾斜し左下
端より中央部まで伸びたものとなるように導波路39の
略中央部分に設けられている。これにより、導波路39
の中央部分は破線にて示した集積カップラ部32とされ
る。The waveguide 39 is formed in a cross shape on the upper surface, and the waveguide portions in the vertical direction from the center are amplification regions 30a and 30b.
The left and right directions are defined as detection areas 38a and 38b. The slit groove 29 is formed approximately at the center of the waveguide 39 so that its elongate direction is inclined at 45 degrees with respect to each longitudinal direction of the cross-shaped waveguide 39 and extends from the lower left end to the center. It is provided. As a result, the waveguide 39
The central portion is an integrated coupler portion 32 indicated by a broken line.
次に、第3実施例のプロセス手順を説明する。Next, the process procedure of the third embodiment will be explained.
先ず、第6図と第7図から分かる様に、n型GaAs基
板41上にMBE法により、順次、バッファ層としての
n型GaAs42を1. g m厚で、クラッド層とし
てのn型A 10.4 Gao、c As43を1.5
ILm厚で形成した。次に、ノンドープGaΔ5(10
0人厚) 、 A 10.2 G an、a A S
(30人厚)を4回(り返し積層し最後にGaAsを1
00人厚で積層し、多重量子井戸構造の活性層44を形
成し、その上にクラッド層としてのp型A 1 (1,
4’G ao6A S 45を1.51jm厚で、キャ
ップ層としてのGaAs46を0.5μm厚で形成した
。First, as can be seen from FIGS. 6 and 7, n-type GaAs 42 as a buffer layer is sequentially deposited on an n-type GaAs substrate 41 using the MBE method. g m thickness, n-type A 10.4 Gao as cladding layer, c As43 1.5
It was formed with a thickness of ILm. Next, undoped GaΔ5 (10
0 person thickness), A 10.2 G an, a A S
(30 layers thick) 4 times (repeatedly layered, and finally 1 layer of GaAs)
The active layer 44 having a multi-quantum well structure is formed by stacking the active layer 44 to a thickness of 0.000 nm, and on top of this, a p-type A 1 (1,
4'Gao6A S 45 was formed to a thickness of 1.51jm, and GaAs46 as a cap layer was formed to a thickness of 0.5μm.
次に、この半導体レーザウェハ上に、フオI・リソグラ
フィー工程により、幅3μmの所望の十字型のマスクパ
ターン(導波路39のパターン)を形成し、このマスク
を通して塩素ガス雰囲気のRIBE法により活性層44
の手前0.2μmまでエツチングし、リッジ部を形成し
て横方向の閉じ込めを行なうストライブ構造とした。Next, a desired cross-shaped mask pattern (pattern of the waveguide 39) with a width of 3 μm is formed on this semiconductor laser wafer by a photolithography process, and an active layer 44 is formed through the mask by the RIBE method in a chlorine gas atmosphere.
The striped structure was etched to 0.2 μm in front of the ridge to form a ridge to provide lateral confinement.
続いて、このリッジが形成されたレーザウェハ上に、S
iNから成る絶縁膜47(厚さ1200人)をプラズマ
CVD法によって形成し、SiN絶縁膜47−Fにレジ
ストを約り、O+tmスビンコトした。その後、4Pa
の02雰囲気でのRIBE法によって、成膜されたレジ
ストのみを除去し、リッジの順き部のSiN絶縁膜47
を露出させ、更に4PaのCF4ガス雰囲気でのRI
B IE法を実施してリッジの頂き部の露出したSiN
絶縁膜を選択的にエツチングした。その後、残存してい
るレジストを4Paの02雰囲気でのRIBE法により
除去した。Next, S is applied onto the laser wafer on which this ridge has been formed.
An insulating film 47 (thickness: 1200 nm) made of iN was formed by plasma CVD, a resist was applied to the SiN insulating film 47-F, and an O+tm coating was applied. After that, 4 Pa
By RIBE method in 02 atmosphere, only the deposited resist is removed and the SiN insulating film 47 in the ridge area
RI in a CF4 gas atmosphere of 4 Pa
B IE method was performed to expose the top of the ridge.
The insulating film was selectively etched. Thereafter, the remaining resist was removed by the RIBE method in an 02 atmosphere of 4 Pa.
次いで、リッジの頂き部に形成された表面酸化膜を塩酸
によってウェットエツチングし電流注入窓とし、続いて
、上部電極としてCr−Auオーミック用電極48を真
空蒸着法で形成し、GaAS基板41をラッピングで1
00μmの厚さまで削った後にn型用オーミック用電極
49としてAuGe−Au電極を蒸着した。そして、p
型、n型の電極のオーミックコンタクトをとる為の熱処
理を行ない、リッジ型半導体素子とした。Next, the surface oxide film formed on the top of the ridge is wet-etched with hydrochloric acid to form a current injection window, and then a Cr-Au ohmic electrode 48 is formed as an upper electrode by vacuum evaporation, and the GaAS substrate 41 is wrapped. de1
After cutting to a thickness of 00 μm, an AuGe-Au electrode was deposited as an n-type ohmic electrode 49. And p
Heat treatment was performed to establish ohmic contact between the type and n-type electrodes, resulting in a ridge-type semiconductor element.
更に、加速電圧40KeVのGa+イオンを用いたFI
B法によるエツチングにより、カップラ部32のスリッ
ト満29を第5図に示す態様で形成した。スリブ1〜溝
29は上述した如(傾斜し、深さは活性層44よりIg
m深く、且つ溝の傾斜角度は85°以上になる様にした
(第7図参照)最後に、共振面をへき開により形成し、
EB(エレクトロンビーム)蒸着によってA1゜03+
ZrO2を蒸着しARコート38a、38bとしスクラ
イブで分離し電極はワイヤーボンディングにより取り出
した。Furthermore, FI using Ga + ions with an accelerating voltage of 40 KeV
By etching using Method B, the slit 29 of the coupler portion 32 was formed in the manner shown in FIG. The grooves 1 to 29 are as described above (inclined, and the depth is lower than the active layer 44).
m deep, and the inclination angle of the groove was 85° or more (see Figure 7).Finally, a resonant surface was formed by cleaving,
A1゜03+ by EB (electron beam) evaporation
ZrO2 was deposited to form AR coats 38a and 38b, which were separated by scribing, and the electrodes were taken out by wire bonding.
次ぎに、動作について説明する。入射した光波33は、
増幅領域30aにて増幅された入射波34として集積カ
ップラ部32に入射し、第1図の実施例で述べた如く透
過波36と反射波35に分離される。反射波35は入射
波33の光検出領域31aにて光電変換され、光波33
中の信号成分をモニタすることが行なわれる。一方、透
過波36は増幅領域30bにて更に増幅され、出射光3
7として出力される。逆から(ARコート38bを介し
て)入射した場合には光検出領域31bにてモニタが行
なわれ、その他の増幅動作に関しては同様となる。Next, the operation will be explained. The incident light wave 33 is
The incident wave 34 is amplified in the amplification region 30a and enters the integrated coupler section 32, where it is separated into a transmitted wave 36 and a reflected wave 35 as described in the embodiment of FIG. The reflected wave 35 is photoelectrically converted in the photodetection area 31a of the incident wave 33, and the light wave 33
Monitoring of the signal components within is performed. On the other hand, the transmitted wave 36 is further amplified in the amplification region 30b, and the output light 3
It is output as 7. When the light enters from the opposite direction (via the AR coat 38b), monitoring is performed in the photodetection region 31b, and other amplification operations are the same.
カップラ32の損失及び端面結合損失を補填する形で光
増幅率(ゲイン)を設定すれば、見掛は上、損失のない
受光用光ノードとして機能し多段化接続が可能となる。If the optical amplification factor (gain) is set in such a way as to compensate for the loss of the coupler 32 and the end-coupling loss, it appears to function as a lossless light-receiving optical node and can be connected in multiple stages.
なお、以上の説明においては、受信のみを行なうものと
して説明したが、送信部、受信部を併設させれば送受信
可能な光ノードの実現が可能となり、この様に構成して
も当然よい。Although the above description has been made on the assumption that the optical node performs only reception, it is possible to realize an optical node capable of transmitting and receiving by providing a transmitting section and a receiving section.
第8図は本発明の第4実施例を示し、第9図は第8図の
カップラ部のA−A′断面図である。FIG. 8 shows a fourth embodiment of the present invention, and FIG. 9 is a sectional view taken along the line AA' of the coupler section in FIG.
本実施例では、パスライン方向に配置された光増幅部8
0a、80bが形成され、受信部・送信部への分岐導波
路82.83が、パスライン方向の導波路と交差してい
る。分岐カップラ88は、交差部に八字形の溝81、を
形成することによりて、分岐結合を行なっている。分岐
結合の比率は、導波路の光電磁界分布と満81の長さな
どを制御(位置制御)することによって、調整すること
ができる。このような溝81の形成には、Ga集東イオ
ンビーム(F I B)によるエツチング、反応性イオ
ンビーム(RIT’3E)によるエツチングなどの微細
加工技術が利用できる。In this embodiment, the optical amplifying section 8 arranged in the path line direction
0a and 80b are formed, and branch waveguides 82 and 83 to the receiving section and transmitting section intersect with the waveguide in the path line direction. The branch coupler 88 performs branch coupling by forming an eight-shaped groove 81 at the intersection. The ratio of branching and coupling can be adjusted by controlling the optical electromagnetic field distribution and the length of the waveguide (position control). To form such grooves 81, microfabrication techniques such as etching using a Ga focused ion beam (FIB) and etching using a reactive ion beam (RIT'3E) can be used.
分岐カッ、ブラ部88以外の部分は、前記第3実施例と
同様の構成で実現できる。The parts other than the branching cup and the bra part 88 can be realized with the same structure as the third embodiment.
本実施例におけるハネ型分岐カップラ81は、左右の分
岐導波路82.83への分岐比が異なる。通常、受信部
の方の結合を高めるため、ハネ型の上部(狭くなってい
る方)の方を受信部側分岐導波路82に向けて配置する
とよい。溝の分岐比を一3dB、過剰損失を無視すると
、受信部側への分岐比は一3dB、送信部側への分岐比
は一6dBとなる。また、ハネ型の下部(開いた側)に
光が入射する場合、−6dBの反射が存在する為、送信
部側の周波数安定化の為に、アイソレータを挿入するこ
とが必要となる(不図示)。The wing type branching coupler 81 in this embodiment has different branching ratios into the left and right branching waveguides 82 and 83. Usually, in order to improve the coupling toward the receiving section, it is preferable to arrange the upper part (the narrower side) of the wing shape toward the receiving section side branch waveguide 82. If the branching ratio of the groove is -3 dB and excess loss is ignored, the branching ratio to the receiver side is -3 dB and the branching ratio to the transmitter side is -6 dB. In addition, when light enters the lower part (open side) of the wing type, there is a reflection of -6 dB, so it is necessary to insert an isolator to stabilize the frequency on the transmitter side (not shown). ).
尚、第8図において、83aはファイバ91の端面が当
接するARコート、83bはファイバ92の端面が当接
するARコート、83cは受信部側のファイバ94が当
接するARコート、83dは送信部側のファイバ95が
当接するA Rコートであり、第9図において、第7図
の符号と同一の符号で示すものは第7図の部位と同じも
のである第4実施例の動作を説明する。In FIG. 8, 83a is the AR coat that the end face of the fiber 91 comes into contact with, 83b is the AR coat that the end face of the fiber 92 is in contact with, 83c is the AR coat that the fiber 94 on the receiving side is in contact with, and 83d is the AR coat on the transmitting side. The operation of the fourth embodiment will be described in which the AR coat is in contact with the fiber 95 of FIG.
光ファイバ91.ARコート83aを介して入射した光
波は、増幅部80aで増幅された入射波として集積カッ
プラ部88に入り、透過、反射するスリット溝81と満
のない部分により、光波は、左側の受信部への導波路8
2に入る光波と右側の送信部への導波路83に入る光波
(これは上記アイソレータで遮断される)と増幅部80
bに入る光波とに分岐される。導波路82.ファイバ9
4を経て受信部に入る光波はそこで信号が検出され、増
幅部80bへ入った光波はそこで更に増幅されてファイ
バ92へと出力される。逆から(Al1
Rコート83bを介して)入射した光波についても、上
と同じである。送信部からファイバ95、導波路83を
介してカップラ部88に入る光波は、同じ(透過、反射
するスリット溝81と溝のない部分により、導波路82
.83(導波路83に反射される光波はアイソレータで
遮断される)及び増幅部80a、80bへと入る光波に
分岐される。導波路82とファイバ94を介して受信部
に入る光波はそこで信号成分がモニタされ、増幅部80
a、80bへと入る光波は、夫々、そこで増幅されてフ
ァイバ91.92へと出力される。Optical fiber 91. The light wave that has entered through the AR coat 83a enters the integrated coupler section 88 as an incident wave that has been amplified by the amplification section 80a, and is transmitted and reflected by the slit groove 81 and the unfilled portion, so that the light wave is directed to the receiving section on the left side. waveguide 8
2, the light wave entering the waveguide 83 to the transmitting section on the right side (this is blocked by the above-mentioned isolator), and the amplifying section 80
It is split into a light wave entering b. Waveguide 82. fiber 9
The light wave that enters the receiving section via the optical fiber 4 is detected as a signal there, and the light wave that enters the amplifying section 80b is further amplified there and output to the fiber 92. The same applies to the light waves incident from the opposite direction (via the Al1 R coat 83b). The light waves entering the coupler section 88 from the transmitting section via the fiber 95 and the waveguide 83 are the same (transmitted and reflected by the slit groove 81 and the part without grooves, and the waveguide 82
.. 83 (the light wave reflected by the waveguide 83 is blocked by the isolator) and the light wave enters the amplification sections 80a and 80b. The light wave entering the receiving section via the waveguide 82 and the fiber 94 is monitored for signal components, and then sent to the amplifying section 80.
Light waves entering a and 80b are amplified there and output to fibers 91 and 92, respectively.
以上の実施例においては、レーザの共振面をへき開によ
って形成した例を示したが、RIBE法、反応性イオン
エツチング等のドライエツチング等のエツチングによっ
て形成されるエツチング端面を用いてもよい。In the above embodiments, an example was shown in which the resonant surface of the laser was formed by cleavage, but an etched end surface formed by etching such as RIBE method or dry etching such as reactive ion etching may also be used.
また、以上の実施例においては、活性領域をMQW(多
重量子井戸構造)で形成したが、本発明はこれに限定さ
れるものではなく、DH(ダブルへテロ)構造、5QW
(囃−量子井戸)構造などであってもよい。In addition, in the above embodiments, the active region is formed with an MQW (multiple quantum well structure), but the present invention is not limited to this, and the active region is formed with a DH (double hetero) structure, a 5QW
(Hyaku-Quantum Well) structure etc. may be used.
また、以上の実施例においては、GaAs系を用いたり
ッジウェーブ型構造を例にとって述べたが、BH(埋め
込みへテロストライブ)構造、CPS構造(チャネル基
板プレーナストライブ)、電流光の狭窄の為の吸収層を
活性層近(に設けた構造等の屈折率導波型のレーザに対
しても有効である。ストライブ電極型やプロトンボンバ
ード型などの利得導波型レーザに対しても有効である。In addition, in the above embodiments, GaAs system was used and edge wave structure was used as an example, but BH (buried heterostrive) structure, CPS structure (channel substrate planar strive), and current light confinement It is also effective for refractive index waveguide type lasers, such as structures in which the absorption layer is provided near the active layer.It is also effective for gain waveguide type lasers, such as striped electrode type and proton bombarded type lasers. .
更に加えて、半導体レーザの材料はGaAs・AlGa
As系の他、I nP ・I’nGaAsP系AIGa
InP系等の材料に対しても同様に当てはまるのは言う
までもない。In addition, the material of the semiconductor laser is GaAs/AlGa.
In addition to As-based, I nP ・I'nGaAsP-based AIGa
Needless to say, the same applies to materials such as InP.
[発明の詳細な
説明した様に、本発明によれば、少なくとも水平方向の
界分布の波面分割を行なう構成となっているので、深さ
方向の波面分割の程度などを左程厳格に設定する必要が
な(なり、Y分岐、X分岐などのカップラが水平方向の
位置精度だけで作製できる様になる。よって集積化が第
10図の従米国と比べて容易であり、プロセスが第11
図の従来例と比べて容易で、信頼性、再現性に優れ、歩
留りが向上する。また、光カップラが構成された光電子
集積化デバイスが実現可能になった。[As described in detail, the present invention is configured to perform wavefront division of the field distribution at least in the horizontal direction, so the degree of wavefront division in the depth direction is set as strictly as shown. (This means that couplers such as Y branch and
Compared to the conventional example shown in the figure, it is easier, has superior reliability and reproducibility, and improves yield. Furthermore, it has become possible to realize an optoelectronic integrated device in which an optical coupler is configured.
第1図(a)、(b)、(c)、(d)は本発明の第1
実施例の平面図、A−A′断面図、B−B′断面図、部
分拡大図、第2図と第3図は第1実施例の変形例の図、
第4図は第2実施例の平面図、第5図は第3実施例の平
面図、第6図は第5図のA−A′断面図、第7図は第5
図のB−B’断面図、第8図は第4実施例の平面図、第
9図は第8図のA−A′断面図、第10図と第11図は
従来例を示す図である。
l、41・・・・・基板、2.4.43.45・・・・
・クラッド層、3.44・・・・・活性層5.46・・
・・・キャップ層、10.20.21.25.29.8
1・・・・・スリット溝、47・・・・・絶縁膜、48
.49・・・・・電極、80a、80b・−・・’−光
光幅幅部82、83−−−・−導波路、83a、83b
、83c83d・・・・・ARコート、88・・・・・
カップラ部、91.92.94.95・・・・・光ファ
イバFIGS. 1(a), (b), (c), and (d) are the first embodiments of the present invention.
A plan view of the embodiment, an A-A' cross-sectional view, a B-B' cross-sectional view, a partially enlarged view, and FIGS. 2 and 3 are views of modifications of the first embodiment,
4 is a plan view of the second embodiment, FIG. 5 is a plan view of the third embodiment, FIG. 6 is a sectional view taken along line AA' in FIG. 5, and FIG.
8 is a plan view of the fourth embodiment, FIG. 9 is a sectional view taken along A-A' in FIG. 8, and FIGS. 10 and 11 are views showing the conventional example. be. l, 41...Substrate, 2.4.43.45...
・Clad layer, 3.44...Active layer 5.46...
... Cap layer, 10.20.21.25.29.8
1...Slit groove, 47...Insulating film, 48
.. 49...electrode, 80a, 80b...'-light beam width portion 82, 83---waveguide, 83a, 83b
, 83c83d...AR coat, 88...
Coupler part, 91.92.94.95...Optical fiber
Claims (1)
光波の結合を行なう為のカップラ部が構成されており、
該カップラ部は少なくとも水平方向の導波光界分布の波
面分割を行なう様に該導波路構造の一部に反射率の異な
る部位を形成して成ることを特徴とする光半導体素子。 2、前記チャンネル導波路構造は活性層を含む請求項1
記載の光半導体素子。 3、前記カップラ部は活性層を越えてスリット状に加工
された加工部分を含む請求項2記載の光半導体素子。 4、前記カップラ部は、チャンネル導波路構造の一部に
加工深さが異なる部分が形成されて成る請求項1記載の
光半導体素子。 5、前記カップラ部の加工深さが異なる部分はスリット
状に加工された形態を有する請求項4記載の光半導体素
子。 6、前記カップラ部はチャンネル導波路構造の交差部位
に設けられている請求項1記載の光半導体素子。 7、前記交差部位はT型、X型或はY型である請求項6
記載の光半導体素子。 8、前記カップラ部は、前記交差部位に、光導波方向に
対して所定の角度を成して水平方向に途中まで伸びた或
は一部に亙って伸びた少なくとも1つのスリット溝が形
成されて成る請求項6記載の光半導体素子。 9、前記チャンネル導波路構造が、カップラ部を成す交
差部位を含んで複数形成され、そのうち1組は光増幅領
域となり、他の1組は送信部と受信部の少なくとも一方
に接続される様に構成され、分岐、合流、増幅機能を示
す光ノードを構成している請求項1記載の光半導体素子
。 10、前記カップラ部は複数方向に光波を分岐する様に
前記反射率の異なる部位を複数含む請求項1記載の光半
導体素子。[Claims] 1. A coupler section for coupling light waves is configured in a channel waveguide structure configured on a semiconductor substrate,
An optical semiconductor device characterized in that the coupler portion is formed by forming portions with different reflectances in a part of the waveguide structure so as to perform wavefront division of the waveguide optical field distribution in at least the horizontal direction. 2. Claim 1, wherein the channel waveguide structure includes an active layer.
The optical semiconductor device described above. 3. The optical semiconductor device according to claim 2, wherein the coupler portion includes a slit-shaped portion extending beyond the active layer. 4. The optical semiconductor device according to claim 1, wherein the coupler portion is formed by forming a portion of a channel waveguide structure with a different processing depth. 5. The optical semiconductor device according to claim 4, wherein the portions of the coupler portion having different processing depths are processed into slit shapes. 6. The optical semiconductor device according to claim 1, wherein the coupler portion is provided at an intersection of the channel waveguide structures. 7. Claim 6: The intersection portion is T-shaped, X-shaped, or Y-shaped.
The optical semiconductor device described above. 8. The coupler part has at least one slit groove formed at the intersection part that extends halfway or partially in the horizontal direction at a predetermined angle with respect to the optical waveguide direction. 7. The optical semiconductor device according to claim 6, comprising: 9. The channel waveguide structure is formed in plurality including intersection parts forming coupler parts, one set of which becomes an optical amplification region, and the other set is connected to at least one of a transmitting part and a receiving part. 2. The optical semiconductor device according to claim 1, which constitutes an optical node exhibiting branching, merging, and amplifying functions. 10. The optical semiconductor device according to claim 1, wherein the coupler portion includes a plurality of portions having different reflectances so as to branch light waves in a plurality of directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27591090A JPH04151886A (en) | 1990-10-15 | 1990-10-15 | Optical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27591090A JPH04151886A (en) | 1990-10-15 | 1990-10-15 | Optical semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04151886A true JPH04151886A (en) | 1992-05-25 |
Family
ID=17562134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27591090A Pending JPH04151886A (en) | 1990-10-15 | 1990-10-15 | Optical semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04151886A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5815615A (en) * | 1994-12-28 | 1998-09-29 | Sharp Kabushiki Kaisha | Integrated optical control element and a method for fabricating the same and optical integrated circuit element and optical integrated circuit device using the same |
US5825952A (en) * | 1995-11-06 | 1998-10-20 | Sharp Kabushiki Kaisha | Optical circuit element and an integrated type optical circuit device |
WO2003084015A1 (en) * | 2002-03-28 | 2003-10-09 | Fujitsu Limited | Laser array device and laser array control method |
-
1990
- 1990-10-15 JP JP27591090A patent/JPH04151886A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5815615A (en) * | 1994-12-28 | 1998-09-29 | Sharp Kabushiki Kaisha | Integrated optical control element and a method for fabricating the same and optical integrated circuit element and optical integrated circuit device using the same |
US5838854A (en) * | 1994-12-28 | 1998-11-17 | Sharp Kabushiki Kaisha | Integrated optical control element and a method for fabricating the same and optical integrated circuit element and optical integrated circuit device using the same |
US5825952A (en) * | 1995-11-06 | 1998-10-20 | Sharp Kabushiki Kaisha | Optical circuit element and an integrated type optical circuit device |
WO2003084015A1 (en) * | 2002-03-28 | 2003-10-09 | Fujitsu Limited | Laser array device and laser array control method |
US7400664B1 (en) | 2002-03-28 | 2008-07-15 | Fujitsu Limited | Laser array device and laser array control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4888785A (en) | Miniature integrated optical beam splitter | |
EP0496301A1 (en) | Optical waveguide formed of compound semiconductor materials and process of its fabrication | |
JPH05249331A (en) | Waveguide type beam spot conversion element and production thereof | |
JPH04372907A (en) | Waveguide type branching-coupling element | |
JPH1114842A (en) | Waveguide type optical integrated circuit element and its manufacture | |
JP3943615B2 (en) | Optical circuit element and integrated optical circuit device using the same | |
EP0481464B1 (en) | Integrated optical branching/combining coupler and method of manufacturing such coupler | |
US5202948A (en) | Traveling-wave type light amplifier | |
US5249244A (en) | Optical device with an optical coupler for effecting light branching/combining and a method for producing the same | |
JPH04151886A (en) | Optical semiconductor device | |
US6895134B2 (en) | Integrated optoelectronics devices | |
JPH05273421A (en) | Integrated optical coupler and optical transmitter/ receiver and optical communication system using the same | |
JPH063542A (en) | Integrated optical coupler and its use method | |
JP2873857B2 (en) | Integrated optical coupler | |
JPH07174931A (en) | Semiconductor optical waveguide and its production | |
JP3104817B2 (en) | Semiconductor laser device | |
JPH0511609B2 (en) | ||
JPH10142434A (en) | Optical multiplexing element | |
JP3104801B2 (en) | Integrated optical coupler | |
JPH02199882A (en) | Semiconductor optical amplifier | |
JPH06160653A (en) | Integrated optical coupler and its manufacture and usage | |
JPH0777708A (en) | Integrated optical coupler and method for using the same | |
JPH0850213A (en) | Integrated optical coupler and its use method | |
JP3104800B2 (en) | Manufacturing method of integrated optical coupler | |
JPH0777616A (en) | Integrated optical coupler and method for using the same |