JPH04140636A - Manufacture of specimen for measuring equally thick interference fringe and method for observing the same - Google Patents
Manufacture of specimen for measuring equally thick interference fringe and method for observing the sameInfo
- Publication number
- JPH04140636A JPH04140636A JP2264002A JP26400290A JPH04140636A JP H04140636 A JPH04140636 A JP H04140636A JP 2264002 A JP2264002 A JP 2264002A JP 26400290 A JP26400290 A JP 26400290A JP H04140636 A JPH04140636 A JP H04140636A
- Authority
- JP
- Japan
- Prior art keywords
- cleavage
- sample
- substrate
- plane
- wedge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明(戴 たとえば化合物半導体によりなるくさび形
結晶の先端部に電子線を入射して電子線の強度分布によ
る干渉縞を生じさせて、くさび形結晶内のへテロ界面の
急峻性や組成および組成変動を精度よく測定するための
等厚干渉縞測定用試料の作製方法および観察方法に関す
るものであa従来の技術
最近の半導体結晶成長技術の著しい進歩により単原子層
レベルでの結晶成長が可能となっ島特く 有機金属気相
成長法(λ40 V P E法)や分子線エピタキシー
法(MBE法)により、組成の異なる極めて薄い層を積
層した超格子構造を作製したり、これらの超格子を活性
領域に用いた半導体レーザや光検出器等の光デイバイス
や単一へテロ構造を利用したHEMTなどの高速電子デ
イバイスなどが次々と開発されていも
これらの開発に伴t\ 極めて薄い層が設計通りの組成
になっているの力\ またへテロ界面の急峻性はどの程
度かを評価することが問題となってくム
透過電子顕微鏡(TEM)を用いて、くさび形結晶の先
端部に電子線を入射させて、結晶内での電子線の強度分
布による干渉縞を観察することによりヘテロ界面の急峻
性や組成分布を精度よく測定する方法があも
従来 干渉縞を生じさせる試料の作製方法として日立製
作所の水田および柿林らが電子顕微鏡Vo1.24、N
o、1、(1989)52.に次のように述べていも
くさび形結晶の作製は GaAsが(110)面で容易
にへき開できることを利用して行う。DETAILED DESCRIPTION OF THE INVENTION Industrial Application Fields of the Invention The present invention (for example, a wedge-shaped crystal made by injecting an electron beam into the tip of a wedge-shaped crystal made of a compound semiconductor to generate interference fringes due to the intensity distribution of the electron beam) This relates to a method for preparing and observing a sample for measurement of equal-thickness interference fringes to accurately measure the steepness, composition, and compositional fluctuations of heterointerfaces in the semiconductor.a.Conventional technologyRemarkable progress in recent semiconductor crystal growth technology. This makes it possible to grow crystals at the monoatomic layer level.In particular, metal-organic vapor phase epitaxy (λ40 VPE method) and molecular beam epitaxy (MBE method) have made it possible to grow crystals at the monoatomic layer level. Although lattice structures have been fabricated and optical devices such as semiconductor lasers and photodetectors that use these superlattices in their active regions, and high-speed electronic devices such as HEMTs that utilize a single heterostructure, are being developed one after another. With these developments, it has become a problem to evaluate how steep the hetero interface is, which is the force behind the extremely thin layer having the designed composition. There is a method to accurately measure the steepness and composition distribution of heterointerfaces by injecting an electron beam into the tip of a wedge-shaped crystal and observing interference fringes due to the intensity distribution of the electron beam within the crystal. As a method for preparing samples that produces interference fringes, Hitachi's Mizuta and Kakibayashi et al. have developed an electron microscope Vol. 1.24, N
o, 1, (1989) 52. However, wedge-shaped crystals are manufactured by taking advantage of the fact that GaAs can be easily cleaved along the (110) plane.
ま哄 基板100 (表面が(001)面の裏面から機
械研磨をして厚さを0. 2mm程度にして、へき関し
やすいようにする(第4図a)。Substrate 100 (The surface is mechanically polished from the back side of the (001) plane to a thickness of about 0.2 mm to facilitate separation (Fig. 4a).
へき開装置(スクライバ−101、可動試料ステージ、
光学顕微鏡などから成る)を用いて、縦および横方向に
けがき傷102を入れる(第4図b)。 試料として
用いる部分ζよ けがき傷102からなるべく離れるよ
うにすも
次に ナイフ103をけがき傷102の真下にあてて、
試料片の両端に軽い力を加えてへき関する(第4図C)
。 この啄 試料片をパラフィン紙104で包むなど
して汚染しないようにすムまた へき開した試料片同士
がぶつかって先端部が欠けないように注意すム 最後
へ 短冊状にへき関した試料片105の観察部分106
に汚染や欠陥が無いことを光学顕微鏡で確認した後へl
rnm長さに切断して試料を得る(第4図d)。Cleavage device (scriber 101, movable sample stage,
Scratches 102 are made in the vertical and horizontal directions using an optical microscope or the like (FIG. 4b). Next, place the knife 103 directly under the scribing scratch 102 as far as possible from the scribing scratch 102 on the part ζ to be used as a sample.
Separate the sample piece by applying a light force to both ends (Figure 4C)
. Wrap the sample pieces in paraffin paper 104 to prevent contamination, and be careful not to cause the cleaved sample pieces to collide with each other and chip the tips. Observation part 106
After confirming that there are no contamination or defects using an optical microscope, proceed to
A sample is obtained by cutting to a length of rnm (Fig. 4d).
また くさび形試料105のTEM用試料ホルダーへの
固定法は次のようであも トップエントリー型あるいは
サイドエントリー型2軸傾斜ホルダーを用いているので
固定を可能にするたべ ジンバル110上4Q 0.
2mm幅の溝111が掘ってあり、かつ45°の傾き
を持たせた治具112を設ζす、試料105を治具11
2の溝(図示せず)に差し込めば 電子線113のレン
ズの焦点位置に45@の傾きで固定できるようになって
いる(第5図)。The method for fixing the wedge-shaped sample 105 to the TEM sample holder is as follows: Since a top entry type or side entry type two-axis inclined holder is used, fixation is possible on the top gimbal 110.
A jig 112 with a groove 111 having a width of 2 mm and an inclination of 45° is installed.
If it is inserted into the groove 2 (not shown), it can be fixed at the focal position of the lens of the electron beam 113 at an angle of 45@ (Fig. 5).
発明が解決しようとする課題
しかしなか板 上記の方法で作製された試料は試料ホル
ダーの傾斜角が45°に限定されているためにくさび型
結晶試料105の先端部の角度は90”の角度に限定さ
れも 例え(fl、GaAs試料の場合、 (110)
と(110)にへき開でき先端部が90°となる(00
1)面上のエピタキシャル膜の場合、上記方法で観察用
試料が作製できる力(へき開後先端部が60°もしくは
1206となる(111)面上のエピタキシャル膜には
応用できないだけでなく、TEM用試料としては比較的
大きく、TEM装置内での試料スペースが広くなくては
ならな−また 専用の試料固定用のホルダーが必要であ
り、測定スペースの狭い既存のTEM装置には使用でき
な−
また 試料を固定する際!、:、0. 2mm幅の溝に
差し込むだけでは試料がTEM装置内で落下する可能性
があり、TEM装置内を汚染する原因になa さらく
くさび形試料が大きくなると測定スペースを大きくしな
ければならないがその分測定精度が落ちる可能性があり
測定試料はできる限り小さいほうがよ(−
課題を解決するための手段
この発明の要旨とするところ;ヨくさび形結晶の先端部
に電子線を入射して等厚干渉縞を観察する試料を第1の
へき開面と第2のへき開面を交差させて作製する際に
基板表面の一部にけがき傷を入れ前記基板裏面から力を
加えて前記第1のへき開面を作製した後、前記基板裏面
の所定の位置に前記第1のへき開面と平行にけがき傷を
入れて、前記第1のへき開面に平行な面の一部を垂直に
切るように前記基板表面にけがき傷を複数本入れ前記基
板裏面から力を加えて第2のへき開面を作製し 基板裏
面に付けられた前記第1のへき開面に平行な前言己けが
き傷に対する前記基板表面の位置に力を加えて分割し
くさび形結晶を作製することを特徴とする等厚干渉縞測
定用試料の作製方法を提供し 前記方法で作製したくさ
び形試料を補強リングの所定の位置に前記補強リングの
内径の1/2以下の幅及び所定の高さを有うする固定台
の前記補強リングに接している面に垂直な面に所定の角
度で前記くさび形結晶を固定する際に前記くさび形結晶
の先端部を前記面の近傍に固定して等厚干渉縞を観察す
ム
作用
埃やへき開により生じる粉は 一般にへき開により作製
したくさび形結晶の先端部およびその周辺に付着する傾
向がある力(本発明による方法でくさび形結晶を作製す
ると、被測定部のくさび形結晶の先端部に全く埃やへき
開により生じる粉等は付着せず再現性よくくさび形結晶
を作製することができも
また 測定スペースの狭いTEM装置に対してでも試料
を固定ホルダーに固定でき、測定が可能なよう圏 例え
ば0. 7xO,7mm”以下の大きさに試料をへき関
し 測定試料を既存の断面TEM試料固定リング(補強
リング たとえば応用技術研究新製)に固定する方法を
提供するものであム この発明により既存のTEM装置
の精度を損なうことなく測定が可能となった
さらく へき関された試料を45°の傾きを有するホル
ダーに固定する場合、第1のへき開面と第2のへき開面
を90°の角度で交差させてくさび型結晶の先端部を形
成し ホルダーに固定する力交 例えgiGaAsの場
合、 (001)面上のエピタキシャル膜にしか応用で
きなしも本発明では上述ようなホルダーを用いないので
くさび型結晶の先端部は90゛に限定する必要はな(−
従って、例え4;LGaAsの場合、 (111)面上
のエピタキシャル膜をへき関したときになすくさび型結
晶の先端部は60°もしくは120°であるが本発明に
より観察できるようになつ九
実施例
以下に実施例を用いて本発明を説明すも第1図は本発明
により作製された試料の観察方法を示す図である。
これ(よ 例えば 日本電子製JEOL4000FX、
日立製作新製あるいは明石ビーム製透過型電子顕微鏡に
全く改造することなく用いることができも
1は通常の断面TEMの観察に用いられている補強リン
グで例えば 応用技術研究新製723゜あるいは同等の
轍 2はn型半導体例えばn−GaAs台、3は測定す
べき試料である。n−GaAs台2は測定試料3を精度
よく固定する台に用いるもので試料固定面としてGaA
s台2のへき開面を用いると平坦性がよくまた導電性が
あり都合がよ(−なお台2は必ずしもn−GaAs台2
でなくてもよいが半導体以外で非常に小さな非磁性体を
半導体のへき開面と同等の仕上げをするのは難しいだけ
でなくコストアップにつながるの六GaAs等の半導体
基板が望ましく℃
4は観察用の電子線であ翫 まt 本発明の一実施例の
試料のへき開方法について詳細に述べも簡単のために(
001)面GaAs基板上にエピタキシャル膜が結晶成
長されたエビ膜を試料とする場合について述べも
第2図(a)
エビ膜15の形成された(001)面GaAs基板14
の裏面を機械研磨して厚さを0.2〜0゜4mm程度に
して、へき関しやすいようにすムこの時裏面は鏡面でな
い方がへき開しやす(〜これ以上薄くするとへき開はし
やすくはなるが取扱いが難しくなるとともにへき関され
た先端部にへき開による小さな粉やほこりが付着しゃす
くな第2図(b)
試料基板の一部をビンセット20等で押さえてスクライ
バ−19を用いて(110)もしくは(110)へき開
面を出させるためのけがき傷21Aを表面に一箇所入れ
も げかき傷21Aの長さは1mm程度で浅くてよ−〜
裏面でなく表面にけかき傷をいれるのはへき開を裏面
から力を加えて行い平坦性のよいけき開面を得るためで
ある。Problems to be Solved by the Invention However, since the inclination angle of the sample holder in the sample prepared by the above method is limited to 45°, the angle of the tip of the wedge-shaped crystal sample 105 is 90''. For example, (fl, in the case of a GaAs sample, (110)
It can be cleaved at (110) and the tip becomes 90° (00
1) In the case of an epitaxial film on a plane, the force with which a sample for observation can be prepared by the above method (not only cannot it be applied to an epitaxial film on a (111) plane where the tip after cleavage is 60° or 1206, but also As the sample is relatively large, it requires a large sample space within the TEM device - it also requires a special holder for fixing the sample, and cannot be used in existing TEM devices with limited measurement space. When fixing the sample! If you just insert it into the 0.2mm width groove, the sample may fall inside the TEM equipment, which may cause contamination inside the TEM equipment.
As the wedge-shaped sample becomes larger, the measurement space must be enlarged, which may reduce the measurement accuracy, so it is better to make the measurement sample as small as possible. When preparing a sample in which the first cleavage plane and the second cleavage plane intersect, an electron beam is incident on the tip of a wedge-shaped crystal to observe equal-thickness interference fringes.
After making a scratch on a part of the surface of the substrate and applying force from the back side of the substrate to create the first cleavage plane, make a scratch at a predetermined position on the back side of the substrate parallel to the first cleavage plane. and make a plurality of scratches on the surface of the substrate so as to vertically cut a part of the plane parallel to the first cleavage plane, and apply force from the back side of the substrate to create a second cleavage plane. The substrate surface is divided by applying force to the position of the first cleavage plane parallel to the first cleavage plane made on the back surface of the substrate.
Provided is a method for preparing a sample for measurement of interference fringes of equal thickness, characterized by producing a wedge-shaped crystal, and the wedge-shaped sample prepared by the method is placed at a predetermined position of a reinforcing ring with a diameter of 1/2 or less of the inner diameter of the reinforcing ring. When fixing the wedge-shaped crystal at a predetermined angle to a plane perpendicular to the plane in contact with the reinforcing ring of a fixing base having a width and a predetermined height, the tip of the wedge-shaped crystal is Dust and powder generated by cleavage generally tend to adhere to the tips and surrounding areas of wedge-shaped crystals prepared by cleavage (the wedge-shaped crystals produced by the method of the present invention By making a wedge-shaped crystal, no dust or powder generated by cleavage will adhere to the tip of the wedge-shaped crystal in the measurement area, making it possible to produce a wedge-shaped crystal with good reproducibility. For example, the sample can be fixed to a fixed holder even when the sample is in a fixed holder, and the sample can be separated into a size smaller than 0.7xO, 7 mm. This invention provides a method for fixing a sample to a holder tilted at 45 degrees. For example, in the case of giGaAs, the epitaxial crystal on the (001) plane is Although it can only be applied to films, the present invention does not use the above-mentioned holder, so there is no need to limit the tip of the wedge-shaped crystal to 90° (-
Therefore, for example 4: In the case of LGaAs, when the epitaxial film on the (111) plane is separated, the tip of the wedge-shaped crystal is 60° or 120°, but it can be observed by the present invention. The present invention will be explained below using examples, and FIG. 1 is a diagram showing a method for observing a sample prepared according to the present invention.
This (for example, JEOL JEOL4000FX,
It can be used without any modification to transmission electron microscopes manufactured by Hitachi or Akashi Beam. 1 is a reinforcing ring used for normal cross-sectional TEM observation, for example, 723° manufactured by Applied Technology Research or equivalent. Track 2 is an n-type semiconductor, for example, n-GaAs, and track 3 is a sample to be measured. The n-GaAs stand 2 is used as a stand for fixing the measurement sample 3 with high precision, and is used as a sample fixing surface.
It is convenient to use the cleavage plane of the s-base 2 because it has good flatness and conductivity (-Note that the cleavage plane of the s-base 2 is not necessarily the n-GaAs base 2).
However, it is not only difficult to finish a very small non-magnetic material other than a semiconductor to the same level as the cleavage plane of a semiconductor, but it also increases the cost. 6 A semiconductor substrate such as GaAs is preferable. 4 is for observation. For the sake of brevity, we will describe in detail the method of cleaving a sample according to an embodiment of the present invention using an electron beam.
The case where a sample is a shrimp film on which an epitaxial film is crystal-grown on a (001) plane GaAs substrate is also described in FIG. 2(a).
Machine polish the back side to a thickness of about 0.2 to 0.4 mm to make it easier to cleave.At this time, it is easier to cleave if the back side is not a mirror surface (~If it is made thinner than this, cleavage will be easier. However, it becomes difficult to handle, and small particles and dust from the cleavage tend to adhere to the cleaved tip. 110) Or (110) Make one scratch 21A on the surface to expose the cleavage plane.The length of the scratch 21A is about 1 mm and shallow.
The reason for making the scratches on the front surface rather than the back surface is to perform the cleavage by applying force from the back surface to obtain a cleaved surface with good flatness.
第2図(c)
けがき傷21Aのある表面を下にして、例えばペンコツ
トン22の上に置き、裏面から先端の平らなピンセット
20等でけがき傷21Aの直上を軽(押してへき開すも
この時ビンセット10を通して指先に直接波ひき開半導
体基板の固さ等が伝わってくるので力加減が調整しやす
(を
第2図(d)
(c)で作製したへき開面50から4〜5mm離れた位
置の表面にへき開面50と平行にけがき傷21.8を入
れも
第2図(e)
、I(b)と同様にしてへき開してへき開面51を得も
ここで、 (b)もしくは(e)のへき開」面”5
0または51のきれいな方を観察に用いも第2図(f)
試料をクリーンペーパー12上に裏面を上にして置き、
被測定へき開面51から0.7mm程度離れれた位置に
両端1rnm程度残してへき開面51 (第1のへき
開面)と平行に薄くけがき線21cを入れも 端から端
までけがき線21cを入れると試料がへき関されたり、
けがき線を入れるときに生じた粉が被測定へき開面を汚
染する可能性があるので注意を要する。Fig. 2(c) Place the surface with the scratch 21A facing down, for example, on the penkotsuton 22, and from the back, use flat-tipped tweezers 20 or the like to gently (push and cleave) just above the scratch 21A. At the time, the hardness of the wave-cleaved semiconductor substrate is directly transmitted to the fingertips through the bottle set 10, making it easy to adjust the force. A score 21.8 is made parallel to the cleavage plane 50 on the surface at the position where the cleavage plane 51 is obtained. Or (e) cleavage” plane “5”
Use the clean one of 0 or 51 for observation.Place the sample on the clean paper 12 with the back side facing up, as shown in Figure 2(f).
Insert a thin scribe line 21c parallel to the cleavage plane 51 (first cleavage plane) at a position about 0.7 mm away from the cleavage plane 51 to be measured, leaving about 1 nm at both ends.Insert the scribe line 21c from end to end. and the sample is separated,
Care must be taken as the powder generated when marking lines may contaminate the cleavage surface to be measured.
第2図(g)
試料の表面を上にして、被測定へき開面の反対側に 適
当な位置から0.7mm毎にけがき傷2IDを入れてい
く。Figure 2 (g) With the surface of the sample facing up, make scratches 2ID every 0.7 mm from appropriate positions on the opposite side of the cleavage plane to be measured.
第2図(h、)
試料を裏にして(b)もしくは(e)と同じ要領で傷2
1Dでへき関して短冊状の直方体試料3を作製す4 こ
のときのへき開面500が第2のへき開面とすも
第2図(i)
試料3を表にして、ペンコツトン23等を上に乗せて、
裏面のけがき傷21Cの直上を先端の平らなピンセット
20等で押してへき開し 観察測定用試料3を作成すも
以上の方法でへき関すると0. 7XO,7mm角の測
定用試料のへき開面がほとんど欠けたり、へき開時に生
じる粉等に汚染されることなく再現性よく作製すること
ができも
また 上記方法からも分かるようにへき開にはスフライ
バー−& 先端部の平らなピンセット−木 先端部の
尖ったビンセット−末 クリーンペーパー1収 ペンコ
ツトン2枚あればよく、特殊な治具を必要としなt〜
さらく 上記方法ではクリーンペーパーの代わりにテフ
ロン板を用いてもよい力(はこり等の付着のないことに
注意しなければならな(℃ また(i)の工程で透明
ラップを使用せず薄いペンコツトンを用いたの1よ 測
定用試料の表面に透明ラップが密着するた八 透明ラッ
プのコーティング材料が測定用試料の被測定へき開面上
に付着したり、へき開後試料が透明ラップに付着して取
扱いが不便なことなどがあるためであも
次く 上記の如く作製されたくさび形結晶よりなる試料
3を固定する台(n−GaAs2)および固定する方法
を詳細に述べる。Figure 2 (h,) Turn the sample upside down and make scratch 2 in the same way as (b) or (e).
A rectangular parallelepiped sample 3 is made in the form of a rectangular parallelepiped by cleaving at 1D.4 The cleavage plane 500 at this time is the second cleavage plane. hand,
Press and cleave the area just above the scribing scratch 21C on the back side with a flat-tipped tweezers 20, etc. to create a sample 3 for observation and measurement. 7XO, 7 mm square measurement samples can be prepared with good reproducibility without most of the cleaved planes being chipped or contaminated by powder generated during cleavage. & Tweezers with a flat tip - wood A bottle set with a sharp tip - end 1 piece of clean paper You only need 2 sheets of penkotsuton, no special jig is required~ In the above method, Teflon is used instead of clean paper. You can also use a plate (you must be careful not to have any lumps or other adhesion). This is because the coating material of the transparent wrap may adhere to the cleaved surface of the measurement sample, or the sample may adhere to the transparent wrap after cleavage, making handling inconvenient. Next, the table (n-GaAs2) for fixing the sample 3 made of the wedge-shaped crystal produced as described above and the method for fixing it will be described in detail.
たとえば台2として表面が(OOl)面で厚さ350μ
m程度のGaAsを用い4 台2をへき開で作る方法
は被測定試料の作製と同様であるが大きさは用いる補強
リング1の大きさに合わせも
たとえば 台2は応用技術研究所の7320もしくは7
420を用いる場合2mmX0. 5mmxQ、 3
5m、mの直方体とすると都合がよt、%第1図に示す
ように補強リング1上に作製したn−GaAs台2を接
着剤7で表面5が上になるように固定すム 測定試料3
は台2のへき開面6上にその被測定先端部が図の如くな
るように固定されも この時試料3はn−GaAs台2
の裏面5Aとへき開面6が作る線に測定試料3の先端部
がくるように基板側が接着され且つ試料3の先端部の作
る角度が2等分されるように接着される。For example, as a stand 2, the surface is (OOl) plane and the thickness is 350μ.
The method for making the 4-piece 2 by cleavage using GaAs with a diameter of approximately
When using 420, 2mm x 0. 5mmxQ, 3
It is convenient to use a rectangular parallelepiped with dimensions of 5m and m.As shown in Figure 1, the n-GaAs stand 2 fabricated on the reinforcing ring 1 is fixed with adhesive 7 with the surface 5 facing upward.Measurement sample 3
At this time, the sample 3 is fixed on the cleavage surface 6 of the n-GaAs stand 2 with its tip to be measured as shown in the figure.
The substrate side is bonded so that the tip of the measurement sample 3 is aligned with the line formed by the back surface 5A and the cleavage surface 6, and the sample 3 is bonded so that the angle formed by the tip of the sample 3 is divided into two equal parts.
(001)面上にエビ膜が形成された試料3の場合その
先端部3Aの角度は90°となるため接着するときは4
5°となるようにする力<、 (111)面上にエビ
膜が形成された試料ではその先端部が60°もしくは1
20°となるので接着するときは30°もしくは60°
となるようにす4これらの角度はだいたい2等分するぐ
らいでよ<TEM装置内で調整できるので精度はあまり
厳密でなくてよいのが本方法の利点の一つであもまt、
n−GaAs2を用いるのは 測定用試料のチャージア
ップを防ぐとともへ へき開が利用できるため断面が直
角である直方体が容易に形成でき、へき開面上に測定用
試料を固定できるので電子線に対するあおり角のばらつ
きが小さいので、試料間の電子線の調整をほとんど必要
としなl、%以上述べた方法では固定治具として補強リ
ング1とn−GaAs台2を用いた力<、n−GaAs
台2の代わりに非磁性体導電材料でもよく、また補強リ
ングと一体物でもよl、%
また 補強リングとn−GaAs台もしくは補強リング
と非磁性導電材料の組み合わせを用いる場合、補強リン
グ1の形状は必ずしも円である必要はなく、臨機応変に
かつ極めて安価で対応することができa 初縁 固定ホ
ルダーに合った補強リング一体物でも良いことはいうま
でもな(−次に 本発明の等厚干渉縞の観察方法につい
て第3図を用いて説明すも たとえi;1(001)面
上にエビされた半導体の等厚干渉縞の観察方法について
のべも 第3図(a)に示すように透過型電子顕微鏡内
にセットしてくさび形結晶3の先端部に電子線4を照射
すると電子線4に垂直な面の回折パターン26が現れる
が(100)面からの菊池バンドがスクリーン中心の近
傍に現れているので容易に(100)面を電子線に対し
て垂直にすることが可能であも 回折パターンの強度が
上下左右同じになるように合わせて(000)のスポッ
ト27のみで結像すると干渉縞28がスクリーン上に現
れてくる(第3図す、c)。In the case of sample 3 with a shrimp membrane formed on the (001) surface, the angle of the tip 3A is 90°, so when bonding, the angle is 4
The force to make the angle <, In the case of a sample with a shrimp membrane formed on the (111) plane, its tip should be at 60° or 1
The angle is 20°, so when gluing, use 30° or 60°.
4 These angles can be roughly divided into two equal parts. One of the advantages of this method is that it can be adjusted within the TEM device, so the accuracy does not have to be very strict.
The purpose of using n-GaAs2 is to prevent charge-up of the measurement sample.Since the cleavage can be used, a rectangular parallelepiped with a right-angled cross section can be easily formed, and the measurement sample can be fixed on the cleavage plane, which prevents the electron beam from tilting. Since the variation in the angle is small, adjustment of the electron beam between samples is hardly required.In the method described above, the force <, n-GaAs is
Instead of the base 2, a non-magnetic conductive material may be used, or it may be integrated with the reinforcing ring. The shape does not necessarily have to be circular, and can be adapted flexibly and at an extremely low cost. The method for observing thick interference fringes will be explained using Fig. 3. However, the method for observing equal thickness interference fringes of a semiconductor formed on the i;1 (001) plane will be explained as shown in Fig. 3 (a). When set in a transmission electron microscope and irradiating the tip of the wedge-shaped crystal 3 with an electron beam 4, a diffraction pattern 26 of a plane perpendicular to the electron beam 4 appears, but the Kikuchi band from the (100) plane is at the center of the screen. Since it appears near the electron beam, it is possible to easily make the (100) plane perpendicular to the electron beam. When the image is formed, interference fringes 28 appear on the screen (Fig. 3, c).
適当に倍率をあげて干渉縞28を観察するとヘテロ界面
の急峻性が原子層のレベルで評価することが可能である
(第3図C)。281よ 試料3のエビ層をあられす等
原子渉砥 29はその格子像を示す。By observing the interference fringes 28 with an appropriate magnification, it is possible to evaluate the steepness of the heterointerface at the atomic layer level (FIG. 3C). 281. The shrimp layer of sample 3 is covered with an isoatomic wafer. 29 shows its lattice image.
発明の効果
この様に本発明により、等厚干渉縞が容易に測定できる
ようになっ九 従って、従来の技術では得られなかった
くさび型結晶の先端部が90°以外の試料でも測定でき
るようになっ九
さらに 本発明を用いることにより、GaAs等の化合
物半導体基板上のエビに限定することなく、例えば サ
ファイア基板のC面上のエビやその他2方向からのへき
開の可能な試料であれば等厚干渉縞によるヘテロ界面の
急峻性や組成変動の測定が可能となり、本発明の効果は
犬なるものがある。Effects of the Invention As described above, the present invention has made it possible to easily measure interference fringes of equal thickness.9 Therefore, it has become possible to measure even samples where the tip of the wedge-shaped crystal is at an angle other than 90°, which could not be obtained with conventional techniques. Moreover, by using the present invention, it is not limited to shrimp on a compound semiconductor substrate such as GaAs, but for example, shrimp on the C-plane of a sapphire substrate, or any other sample that can be cleaved from two directions, can be processed to the same thickness. It becomes possible to measure the steepness of a heterointerface and compositional fluctuations using interference fringes, and the present invention has significant effects.
第1図は本発明の一実施例の観察状態を示す斜視医 第
2図は本発明の試料作製方法を示す概略医 第3図は本
発明の等厚干渉縞の観察方法を示す医 第4図は従来の
試料作製方法を示す医 第5図は従来の固定方法を示す
図であa
l・・・補強リング、2・・・n−GaAs台 3・・
・測定試銖 4・・・電子線 5・・・台基板表献 6
・・・へき開砥 7・・・接着前 8・・・接着K
19・・・スクライバ−120・・・ピンセット、 2
1A・・・けがき傷 22・・・ペンコツトン、 15
・・・(100)i 26−・・回折パターン、 2
7・・・(000)スポット、 28・・・等厚干渉縞
慨
代理人の氏名 弁理士 小鍜治 明 ほか2名第
図
4電1時
5りl 晃2のへさ閉園
第
図
(α)
ztA+7aX’34
霞FIG. 1 is a strabismus doctor showing an observation state of an embodiment of the present invention. FIG. 2 is a schematic doctor showing a sample preparation method of the present invention. FIG. 3 is a doctor showing a method of observing equal-thickness interference fringes of the present invention. The figure shows a conventional sample preparation method. Figure 5 shows a conventional fixing method.
・Measurement trial 4... Electron beam 5... Base board display 6
... Cleavage grinding 7 ... Before adhesion 8 ... Adhesion K
19...Scriber-120...Tweezers, 2
1A...Scratch 22...Penkotsuton, 15
...(100)i 26-...diffraction pattern, 2
7... (000) spot, 28... Equal thickness interference fringes Name of agent Patent attorney Akira Okaji and two others Figure 4 1:50pm Kou 2 Hesa closing diagram (α) ztA+7aX'34 Kasumi
Claims (2)
渉縞を観察する試料を第1のへき開面と第2のへき開面
を交差させて作製する際に、基板表面の一部に第1のけ
がき傷を入れ前記基板裏面から力を加えて前記第1のへ
き開面を作製した後、前記基板裏面の所定の位置に前記
第1のへき開面と平行に第2のけがき傷を入れて、前記
第1のへき開面に平行な面の一部を垂直に切るように前
記基板表面に第3のけがき傷を複数本入れ前記基板裏面
から力を加えて前記第2のへき開面を作製し、基板裏面
に付けられた前記第1のへき開面に平行な前記第2のけ
がき傷に対する前記基板表面の位置に力を加えて分割し
、前記くさび形結晶を作製することを特徴とする等厚干
渉縞測定用試料の作製方法。(1) When making a sample by injecting an electron beam into the tip of a wedge-shaped crystal and observing equal-thickness interference fringes by intersecting the first cleavage plane and the second cleavage plane, a part of the substrate surface is After creating the first cleavage surface by applying force from the back surface of the substrate, a second scribe is made at a predetermined position on the back surface of the substrate parallel to the first cleavage surface. A plurality of third scratches are made on the surface of the substrate so as to vertically cut a part of the plane parallel to the first cleavage plane, and force is applied from the back side of the substrate to cut the second cleavage surface. Creating a cleavage plane and applying force to the substrate surface at a position relative to the second scribing scratch parallel to the first cleavage plane made on the back surface of the substrate to divide the substrate to produce the wedge-shaped crystal. A method for preparing a sample for measuring equal thickness interference fringes, characterized by:
の1/2以下の幅及び所定の高さを有する固定台の前記
補強リングに接している面に垂直な面に所定の角度で特
許請求の範囲第(1)項に記載の方法で作製したくさび
形結晶を固定する際に前記くさび形結晶の先端部を前記
面の近傍に固定し、電子線を前記くさび形結晶の先端部
に照射することを特徴とする等厚干渉縞の観察方法。(2) At a predetermined position of the reinforcing ring, a fixed base having a width of 1/2 or less of the inner diameter of the reinforcing ring and a predetermined height is placed at a predetermined angle on a plane perpendicular to the plane in contact with the reinforcing ring. When fixing the wedge-shaped crystal produced by the method according to claim (1), the tip of the wedge-shaped crystal is fixed near the surface, and an electron beam is applied to the tip of the wedge-shaped crystal. A method for observing equal-thickness interference fringes characterized by irradiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2264002A JPH04140636A (en) | 1990-10-01 | 1990-10-01 | Manufacture of specimen for measuring equally thick interference fringe and method for observing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2264002A JPH04140636A (en) | 1990-10-01 | 1990-10-01 | Manufacture of specimen for measuring equally thick interference fringe and method for observing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04140636A true JPH04140636A (en) | 1992-05-14 |
Family
ID=17397185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2264002A Pending JPH04140636A (en) | 1990-10-01 | 1990-10-01 | Manufacture of specimen for measuring equally thick interference fringe and method for observing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04140636A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015100453A1 (en) | 2014-01-23 | 2015-07-23 | Denso Corporation | Exhaust gas recirculation control |
-
1990
- 1990-10-01 JP JP2264002A patent/JPH04140636A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015100453A1 (en) | 2014-01-23 | 2015-07-23 | Denso Corporation | Exhaust gas recirculation control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gobeli et al. | Surface measurements on freshly cleaved silicon pn junctions | |
McCaffrey | Small-angle cleavage of semiconductors for transmission electron microscopy | |
US6982429B2 (en) | Transmission electron microscope sample preparation | |
Minenkov et al. | Advanced preparation of plan-view specimens on a MEMS chip for in situ TEM heating experiments | |
US20180315657A1 (en) | Substrate Manufacturing Method | |
Hsu et al. | Atomic and other structures of cleaved GaAs (110) surfaces | |
Zahl et al. | Interplay of surface morphology, strain relief, and surface stress during surfactant mediated epitaxy of Ge on Si | |
US4498451A (en) | Cutting articles along known planes | |
JPH04140636A (en) | Manufacture of specimen for measuring equally thick interference fringe and method for observing the same | |
Walck et al. | The small angle cleavage technique: an update | |
Hunter et al. | Controlling crystal cleavage in focused ion beam shaped specimens for surface spectroscopy | |
Hetherington | Preparation of semiconductor cross sections by cleaving | |
JP2009081285A (en) | Substrate and manufacturing method thereof | |
JPH10302703A (en) | Magnification, tilt angle measurement method | |
Kim et al. | Transmission Electron Microscopy (TEM) Sample Preparation of Si (1-x) Gex in c-Plane Sapphire Substrate | |
JP2004253232A (en) | Sample fixing table | |
Beanland | Rapid cross-section TEM specimen preparation of III-V materials | |
JP3891139B2 (en) | Crystal defect evaluation method and evaluation sample | |
JPH11329325A (en) | Manufacture of mesh and thin piece of sample | |
KR20030045417A (en) | method for manufacturing Transmission Electron Microscope of Specimen for Analyzing | |
KR20150019719A (en) | Method for producing samples for transmission electron microscopy using tripod polishing and focused ion beam | |
Németh-Sallay et al. | Investigation of the surface preparation of GaAs substrates for MBE and VPE with whole sample optical reflection | |
JP4087243B2 (en) | Preparation method for transmission electron microscope sample | |
Su et al. | A detailed procedure for reliable preparation of TEM samples using FIB milling | |
KR970010659B1 (en) | Failure analysis method of semiconductor device |