JPH0242382A - Moving stage structure - Google Patents
Moving stage structureInfo
- Publication number
- JPH0242382A JPH0242382A JP63192192A JP19219288A JPH0242382A JP H0242382 A JPH0242382 A JP H0242382A JP 63192192 A JP63192192 A JP 63192192A JP 19219288 A JP19219288 A JP 19219288A JP H0242382 A JPH0242382 A JP H0242382A
- Authority
- JP
- Japan
- Prior art keywords
- main frame
- hollow pipe
- moving stage
- wafer
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims description 5
- 239000004576 sand Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims 1
- 230000005489 elastic deformation Effects 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 10
- 238000013016 damping Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/707—Chucks, e.g. chucking or un-chucking operations or structural details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70866—Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Machine Tool Units (AREA)
- Transmission Devices (AREA)
- Vibration Dampers (AREA)
- Electron Beam Exposure (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Details Of Measuring And Other Instruments (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、移動ステージ構造に関し、詳しくは半導体焼
付装置または電子ビーム加工装置等に用いられる移動ス
テージを構成するメインフレームに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a movable stage structure, and more particularly to a main frame constituting a movable stage used in a semiconductor printing device, an electron beam processing device, or the like.
[従来の技術]
第4図は、従来の半導体焼付装置のウェハステージ周辺
部の基本構成図である。同図に示すように従来の半導体
焼付装置では、マスク11に描かれた回路パターンが縮
小投影レンズ12を通して紫外線13によりウェハ1上
のレジスト層に投影され焼き付けられる。ウェハ1は定
盤14の上に取付けられた移動ステージ15上に置かれ
、焼付位置に位置決めされる。従って、ウェハの焼付位
置の位置決め精度は、定盤14および穆勅ステージ15
の剛性、防振性および減衰性等に依存している。また、
半導体集積回路としての集積度の限界は、縮小投影レン
ズ12の光学性能および紫外線の回折等に依存している
。[Prior Art] FIG. 4 is a basic configuration diagram of the periphery of a wafer stage of a conventional semiconductor printing apparatus. As shown in the figure, in the conventional semiconductor printing apparatus, a circuit pattern drawn on a mask 11 is projected onto a resist layer on a wafer 1 by ultraviolet rays 13 through a reduction projection lens 12 and printed. The wafer 1 is placed on a moving stage 15 mounted on a surface plate 14 and positioned at a printing position. Therefore, the positioning accuracy of the wafer printing position is as follows:
It depends on the rigidity, vibration isolation, damping properties, etc. Also,
The limit of the degree of integration as a semiconductor integrated circuit depends on the optical performance of the reduction projection lens 12, the diffraction of ultraviolet rays, and the like.
[発明が解決しようとする課題]
しかしながら、近年では半導体に対して、より一層の集
積度が要求され、回路寸法はより小さく紫外線の回折に
よる解像限界を超えるものが要求されるようになった。[Problem to be solved by the invention] However, in recent years, semiconductors have been required to have a higher degree of integration, and the circuit dimensions have become smaller and are required to exceed the resolution limit due to the diffraction of ultraviolet rays. .
そこで、紫外線よりも解像度の高いX線あるいは電子ビ
ームを用いた半導体焼付装置が考え出されてきた。特に
、X線による焼付装置としては、強度が強く平行性の良
好なシンクロトロン放射光SORを用いたものが有望視
されている。Therefore, semiconductor printing apparatuses have been devised that use X-rays or electron beams, which have higher resolution than ultraviolet rays. In particular, as an X-ray printing device, one using synchrotron radiation SOR, which has high intensity and good parallelism, is considered to be promising.
ところが、SORからのX線は水平方向に放射され、反
射鏡による光路変更を行なうと強度損失が大きいため、
従来のような水平面内での穆勤ステージ構造の焼付装置
を用いることは不利となる。そこで、焼付装置を縦形と
し、鉛直平面内を上下左右に移動し、高速で高精度な位
置決めを行なう移動ステージ構造が必要となる。However, X-rays from SOR are emitted horizontally, and changing the optical path with a reflector causes a large loss in intensity.
It is disadvantageous to use a conventional printing device with a vertical stage structure in a horizontal plane. Therefore, a moving stage structure is required in which the printing device is vertical and can move vertically and horizontally in a vertical plane to perform high-speed and highly accurate positioning.
しかしながら、従来の移動ステージ構造をそのまま縦形
にしたのでは、高剛性および高減衰性を実現する定盤が
重量物であるため、焼付装置全体の支持構造が著しく大
型となる欠点があった。However, if the conventional movable stage structure was made vertical as it is, the surface plate that achieves high rigidity and high damping performance would be heavy, so the support structure for the entire printing apparatus would be significantly large.
一方、小形軽量化のために、ステージやガイドや駆動機
構を取付ける移動ステージ構造としてフレーム構造を用
いることが考えられる。しかし、フレーム構造を用いた
場合には、ステージ移動および停止に伴なうフレーム構
造の変形や振動が発生しやすく、高速および高精度な半
導体焼付プロセスを実現することが困難となるという問
題点があった。On the other hand, in order to reduce size and weight, it is conceivable to use a frame structure as a movable stage structure to which a stage, a guide, and a drive mechanism are attached. However, when using a frame structure, the frame structure tends to deform and vibrate as the stage moves and stops, making it difficult to achieve a high-speed and high-precision semiconductor baking process. there were.
本発明の目的は、上述の従来形における問題点に鑑み、
高剛性および高減衰性の特性を有する鉛直面内移動ステ
ージを実現し、位置決めの高速、高精度化を実現する移
動ステージ構造を提供することにある。The purpose of the present invention is to solve the above-mentioned problems in the conventional type.
It is an object of the present invention to provide a moving stage structure that realizes a vertical plane moving stage having characteristics of high rigidity and high damping, and achieves high-speed and high-precision positioning.
[課題を解決するための手段および作用]上記の目的を
達成するため、本発明では、移動ステージを取付けるメ
インフレームとして、内部に節を設けた中空パイプで構
成されるフレーム構造を用い、さらにこの中空パイプの
内側に減衰性を増すための物質を封入したことを特徴と
する。[Means and effects for solving the problem] In order to achieve the above object, the present invention uses a frame structure composed of a hollow pipe with internal knots as the main frame on which the moving stage is attached, and furthermore, this invention It is characterized by a substance sealed inside the hollow pipe to increase damping properties.
内部に節を設けた中空パイプによりフレームを構成した
ことにより十分な剛性が得られ、また中空パイプの内側
に減衰性を増すための物質を封入したことにより、ステ
ージの移動停止等の動作に伴なう振動が速やかに減衰さ
れる。Sufficient rigidity is obtained by constructing the frame from a hollow pipe with internal knots, and a material is sealed inside the hollow pipe to increase damping properties, so that it can be used easily even when the stage stops moving. The resulting vibrations are quickly damped.
[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.
第1図は、本発明の一実施例に係る移動ステージ構造の
外観を示す。同図において、1はウェハ、2は移動ステ
ージ、3.4はガイドバー5.6はステージ駆動用モー
タ、7はメインフレームである。ウェハ1を固定しであ
る穆勤ステージ2は、2対のガイドバー3.4および2
個のステージ駆動用モータ5.6により鉛直平面内を移
動し、所定の焼付位置にウェハ1が置かれるように位置
決めされる。移動ステージ2は移動重量および移動距離
とも大きいため、特にガイドバー4に対してはその平行
度および剛性とも高い精度が要求される。そこで本実施
例の移動ステージ構造では、ガイドバー4は中空パイプ
で構成されたメインフレーム7に精度よく取り付けられ
ている。FIG. 1 shows the external appearance of a moving stage structure according to an embodiment of the present invention. In the figure, 1 is a wafer, 2 is a moving stage, 3.4 is a guide bar 5.6 is a motor for driving the stage, and 7 is a main frame. The stage 2, which fixes the wafer 1, has two pairs of guide bars 3.4 and 2.
The wafer 1 is moved in a vertical plane by stage drive motors 5.6 and positioned so that the wafer 1 is placed at a predetermined printing position. Since the movable stage 2 has a large moving weight and a large moving distance, the guide bar 4 is particularly required to have high accuracy in terms of its parallelism and rigidity. Therefore, in the movable stage structure of this embodiment, the guide bar 4 is accurately attached to the main frame 7 made of a hollow pipe.
第2図は、第1図のメインフレーム7の詳細図である。FIG. 2 is a detailed diagram of the main frame 7 of FIG.
中空パイプの内部を説明するため、パイプの一部を取除
いて図示している。同図において、メインフレーム7は
中空の角柱パイプを組合せた構成であり、各角柱パイプ
は節8を内部に設けることにより、十分な剛性が得られ
るようになっている。さらに、節8によって仕切られた
メインフレーム7の内部の小部屋9には、砂等の高減衰
率の物質10を封入してあり、移動ステージの移動およ
び停止に伴なうメインフレーム7の弾性変形撮動を速や
かに減衰させる効果をもたせている。In order to explain the inside of the hollow pipe, a part of the pipe is removed from the drawing. In the figure, the main frame 7 has a structure in which hollow prismatic pipes are combined, and each prismatic pipe is provided with nodes 8 inside to obtain sufficient rigidity. Further, a small chamber 9 inside the main frame 7 partitioned by the nodes 8 is filled with a substance 10 having a high attenuation rate such as sand, so that the elasticity of the main frame 7 as the moving stage moves and stops. This has the effect of quickly attenuating deformed imaging.
なお、上記実施例においてメインフレーム7の重量を小
さくする必要がある場合、あるいは角柱パイプに貫通穴
を設けて機器等を付加する必要がある場合には、節8で
仕切られた小部屋9のうちの一部に高減衰性物質10を
封入することとすればよい。In the above embodiment, if it is necessary to reduce the weight of the main frame 7, or if it is necessary to provide a through hole in the prismatic pipe to add equipment, etc., the small room 9 partitioned by the joints 8 may be The highly attenuating substance 10 may be enclosed in a part of it.
また、高減衰性物質10としては砂のほか、金属粒およ
び高粘性の高分子化合物等を用いることができる。Further, as the highly attenuating material 10, in addition to sand, metal particles, a highly viscous polymer compound, and the like can be used.
さらに、上記実施例において、メインフレーム7を構成
する中空パイプは角柱パイプのほか、円柱パイプまたは
長円柱パイプ等を用いてもよく、同様の効果が得られる
。第3図は、円柱パイプを用いた実施例に係る移動ステ
ージ構造の外観を示す。Furthermore, in the above embodiment, the hollow pipe constituting the main frame 7 may be a cylindrical pipe, a long cylindrical pipe, or the like instead of a prismatic pipe, and the same effect can be obtained. FIG. 3 shows the appearance of a moving stage structure according to an embodiment using a cylindrical pipe.
[発明の効果]
以上説明したように、本発明によれば、半導体焼付装置
のウェハ移動ステージ等に適用する穆勤ステージ構造に
おいて、フレーム構造を中空パイプで構成し、さらに中
空パイプ内に節を設けそれにより仕切られた小部屋に高
減衰性物質を封入しているので、高剛性および高減衰性
の鉛直面内移動ステージを実現することができ、位置決
めの高速および高精度化を実現することができる。[Effects of the Invention] As explained above, according to the present invention, in the stage structure applied to the wafer moving stage of a semiconductor printing apparatus, the frame structure is composed of a hollow pipe, and a knot is formed in the hollow pipe. Since a highly attenuating substance is sealed in the small room partitioned by the space provided, it is possible to realize a vertically moving stage with high rigidity and high attenuation, realizing high-speed and high-precision positioning. Can be done.
第1図は、本発明の一実施例に係る半導体焼付装置のウ
ェハ移動ステージの構成図、
第2図は、第1図のメインフレーム部分の詳細図、
第3図は、円柱パイプを用いた実施例に係る移動ステー
ジの構成図、
第4図は、従来の半導体焼付装置のウェハステージ周辺
部の外観図である。
1:ウェハ、
2:移動ステージ、
3.4=ガイドバー
5.6:ステージ駆動用モータ、
7:メインフレーム、
8:節、
9:小部屋、
10:高減衰性の物質。FIG. 1 is a configuration diagram of a wafer moving stage of a semiconductor printing apparatus according to an embodiment of the present invention, FIG. 2 is a detailed diagram of the main frame portion of FIG. 1, and FIG. FIG. 4 is an external view of the periphery of a wafer stage of a conventional semiconductor printing apparatus. 1: Wafer, 2: Moving stage, 3.4 = Guide bar 5.6: Stage drive motor, 7: Main frame, 8: Node, 9: Small room, 10: Highly attenuating material.
Claims (2)
に節を設けた中空パイプを用い、該中空パイプ内に減衰
性の高い物質を封入したことを特徴とする移動ステージ
構造。(1) A moving stage structure characterized in that a hollow pipe with internal knots is used as a frame structure constituting the moving stage, and a highly attenuating substance is sealed in the hollow pipe.
もしくは油脂のいずれか、またはこれらを組合せたもの
を用いた特許請求の範囲第1項記載の移動ステージ構造
。(2) The movable stage structure according to claim 1, wherein the highly attenuating material is sand, metal grains, rubber, oil, or a combination thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63192192A JPH0242382A (en) | 1988-08-02 | 1988-08-02 | Moving stage structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63192192A JPH0242382A (en) | 1988-08-02 | 1988-08-02 | Moving stage structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0242382A true JPH0242382A (en) | 1990-02-13 |
Family
ID=16287213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63192192A Pending JPH0242382A (en) | 1988-08-02 | 1988-08-02 | Moving stage structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0242382A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006022200A1 (en) * | 2004-08-24 | 2006-03-02 | Nikon Corporation | Stage apparatus and exposure apparatus |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
JP2014176951A (en) * | 2013-02-14 | 2014-09-25 | Takamatsu Machinery Co Ltd | Machine tool |
JP2015213985A (en) * | 2014-05-09 | 2015-12-03 | 高松機械工業株式会社 | Machine Tools |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
-
1988
- 1988-08-02 JP JP63192192A patent/JPH0242382A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
TWI416264B (en) * | 2004-08-24 | 2013-11-21 | 尼康股份有限公司 | Stage device and exposure device |
WO2006022200A1 (en) * | 2004-08-24 | 2006-03-02 | Nikon Corporation | Stage apparatus and exposure apparatus |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
JP2014176951A (en) * | 2013-02-14 | 2014-09-25 | Takamatsu Machinery Co Ltd | Machine tool |
JP2016106036A (en) * | 2013-02-14 | 2016-06-16 | 高松機械工業株式会社 | Machine tool |
JP2015213985A (en) * | 2014-05-09 | 2015-12-03 | 高松機械工業株式会社 | Machine Tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3947501B2 (en) | Lithographic apparatus and device manufacturing method | |
KR100573669B1 (en) | Balanced positioning system for lithographic apparatus | |
JP4914885B2 (en) | Balanced positioning system for use in a lithographic projection apparatus | |
KR101043356B1 (en) | Lithographic apparatus with active damping subassembly | |
US6987558B2 (en) | Reaction mass for a stage device | |
JPH0242382A (en) | Moving stage structure | |
JP2005064474A (en) | Positioning mechanism, exposure apparatus, and device manufacturing method | |
JP6563600B2 (en) | Vibration isolation device, lithographic apparatus, and method for adjusting a vibration isolation system | |
US7333179B2 (en) | Moving mechanism with high bandwidth response and low force transmissibility | |
US20040057817A1 (en) | Switchable damping mechanism for use in a stage apparatus | |
US20040119964A1 (en) | Double isolation fine stage | |
US20060033043A1 (en) | Stacked six degree-of-freedom table | |
JPH11145041A (en) | Stage unit and pattern exposure system using the same, and device manufacture | |
JP2003167082A (en) | Stage device | |
US5687947A (en) | Mounting method | |
US20070115451A1 (en) | Lithographic System with Separated Isolation Structures | |
JP4011919B2 (en) | Moving apparatus, exposure apparatus, and semiconductor device manufacturing method | |
JPH11297613A (en) | Stage equipment, aligner using the equipment, and device-manufacturing method | |
US7193683B2 (en) | Stage design for reflective optics | |
TW202519994A (en) | Damper, method for damping, and lithographic apparatus including a damper | |
WO2024245662A1 (en) | Damper, method for damping, and apparatus including a damper | |
TW202514279A (en) | Electromotive force braking in a lithographic apparatus | |
JP2715182B2 (en) | Exposure equipment | |
JP2003217998A (en) | Stage apparatus and aligner | |
WO2024199892A1 (en) | System and method for tailoring chuck stiffness |