[go: up one dir, main page]

JPH0226175B2 - - Google Patents

Info

Publication number
JPH0226175B2
JPH0226175B2 JP54027567A JP2756779A JPH0226175B2 JP H0226175 B2 JPH0226175 B2 JP H0226175B2 JP 54027567 A JP54027567 A JP 54027567A JP 2756779 A JP2756779 A JP 2756779A JP H0226175 B2 JPH0226175 B2 JP H0226175B2
Authority
JP
Japan
Prior art keywords
counting
circuit
pore
sample
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54027567A
Other languages
Japanese (ja)
Other versions
JPS55119043A (en
Inventor
Masayoshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2756779A priority Critical patent/JPS55119043A/en
Publication of JPS55119043A publication Critical patent/JPS55119043A/en
Publication of JPH0226175B2 publication Critical patent/JPH0226175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/131Details
    • G01N15/132Circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 この発明は、液中に懸濁する個々の粒子、殊に
血液中の個々の血球を、各種の測定、検査のため
に計数する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for counting individual particles suspended in a liquid, particularly individual blood cells in blood, for various measurements and tests.

この種の装置において、粒子検出動作中に起る
異常事態として、検出用の細孔の周辺に粒子や塵
埃等が附着して検出信号の波高や波形が変化した
り、または検出用細孔が全く詰つて検出動作が行
われなくなつたりすること、及び試料の事前処理
の不完全により目的とする種類の粒子に対する検
出動作が正確に行われなくなることなどが挙げら
れる。
In this type of device, abnormal situations that may occur during particle detection operation include particles or dust adhering to the vicinity of the detection pore, changing the wave height or waveform of the detection signal, or For example, the detection operation may not be performed due to complete blockage, or the detection operation may not be performed accurately for the target type of particle due to incomplete pre-treatment of the sample.

従来、検出用細孔の周辺に粒子等が附着したの
を検出する方法としては、(1)細孔を所定体積の試
料が流れるに要する時間が予定より長くなるのを
検出する方法、(2)細孔を粒子が通過していないと
きの電流が途中で変化するのを検出する方法、(3)
粒子検出出力を含む出力信号波形を解析して波形
の変化を検出する方法、(4)粒子検出出力のパルス
間隔が設定値より長くなるのを検出する方法など
がある。
Conventionally, methods for detecting particles adhering to the vicinity of a detection pore include (1) a method of detecting when the time required for a predetermined volume of sample to flow through the pore is longer than expected; ) A method for detecting changes in the current when no particles are passing through the pore, (3)
There are methods such as (4) detecting a change in the waveform by analyzing the output signal waveform including the particle detection output, and (4) detecting when the pulse interval of the particle detection output becomes longer than a set value.

このうち(1)の方法は、粒子検出動作の開始から
終了までの所要時間を計るだけの簡単な構成で足
りるが、その反面に、軽度の試料通過障害や、一
時的に通過障害が起つた後に自然回復したような
場合検出できない欠点がある。(2)の方法は、粒子
検出信号と粒子検出信号との間の定常電流をサン
プリングしなければならないため、信号間隔が短
かかつたり、多数の雑音が混入していたり、粒子
検出信号の振幅が大きいために長い尾を引いてい
るような場合には実現が困難で、かつ装置の構成
も複雑になる欠点がある。また、(3)の方法は、正
常な粒子検出信号のパターンを記憶させておき、
新に現われた粒子検出信号のパターンとこれと比
較してずれを検出する方法で、雑音や他種粒子と
の弁別もできる長所を有してはいるが、装置の構
成は著るしく複雑になる欠点がある。更に、(4)の
方法は、粒子検出出力はランダムに現われるため
に正常動作時でもパルス間隔がかなり長くなる場
合があることに加え、貧血症患者の血液では血球
数が数分の1に減少するために粒子検出出力のパ
ルス間隔が更にその数倍になることを考慮すれ
ば、正常動作時に誤警報を発生しないように設定
しておくと、異常事態の発生を十分捕捉できなく
なる欠点がある。
Among these methods, method (1) requires a simple configuration that only measures the time required from the start to the end of the particle detection operation, but on the other hand, it may cause slight sample passage obstruction or temporary passage obstruction. There is a drawback that it cannot be detected in cases where spontaneous recovery occurs later. Method (2) requires sampling the steady current between the particle detection signals, so the signal interval may be short, a lot of noise may be mixed in, or the amplitude of the particle detection signal may be affected. This method is difficult to implement in cases where a large number of particles has a long tail, and the device has the drawback of becoming complicated. In addition, method (3) memorizes the pattern of the normal particle detection signal,
This method detects deviations by comparing the pattern of the newly appeared particle detection signal, and has the advantage of being able to distinguish between noise and other types of particles, but the configuration of the device is significantly more complicated. There is a drawback. Furthermore, in method (4), the particle detection output appears randomly, so the pulse interval may be quite long even during normal operation, and in addition, the number of blood cells in the blood of an anemic patient decreases to a fraction of that. Considering that the pulse interval of the particle detection output will be several times larger due to this, if the setting is set so that false alarms will not occur during normal operation, there is a drawback that it will not be possible to sufficiently detect the occurrence of abnormal situations. .

この発明は、比較的簡単な構成で、雑音等に災
されずに正確に通過障害を検出すると共に、試料
の事前処理の不完全等による不正確な測定を検出
するもので、以下、図示の実施例に基いてこれを
説明する。
This invention has a relatively simple configuration and is capable of accurately detecting passage obstacles without being affected by noise, etc., and also detects inaccurate measurements due to incomplete pre-treatment of the sample. This will be explained based on an example.

第1図において、1は例えば血液を生理食塩水
で希釈した試料で、ビーカ2に収容され、その中
に検出用細孔3を有する検出器4が浸漬されてい
る。そして、検出器4内及びビーカ2内の試料中
にはそれぞれ電極5及び6が浸漬され、ビーカ2
内の試料1は、定量吸引装置7により、規定量が
細孔3を通して検出器4内へ吸入される。
In FIG. 1, reference numeral 1 denotes a sample obtained by diluting blood with physiological saline, for example, and is accommodated in a beaker 2, into which a detector 4 having a detection pore 3 is immersed. Electrodes 5 and 6 are immersed in the sample in the detector 4 and the beaker 2, respectively.
A predetermined amount of the sample 1 inside is aspirated into the detector 4 through the pore 3 by the quantitative suction device 7 .

電極5から細孔3を通り電極6に至る試料中の
電流路の抵抗変化は、検出回路8によつて検出さ
れ、必要とする振幅のものだけが閾値回路9を通
過して計数回路10に与えられる。計数回路10
は、定量吸引装置7の発する信号により、規定量
の試料の定量吸引開始時に計数動作を開始し、規
定量の試料の定量吸引を完了したときに計数動作
を停止する。
The resistance change in the current path in the sample from the electrode 5 through the pore 3 to the electrode 6 is detected by the detection circuit 8, and only the one with the required amplitude passes through the threshold circuit 9 and is sent to the counting circuit 10. Given. Counting circuit 10
In response to a signal emitted by the quantitative suction device 7, the counting operation is started when the quantitative suction of a specified amount of the sample is started, and the counting operation is stopped when the quantitative suction of the specified amount of the sample is completed.

11は計数回路10に供給されるパルスの計数
速度(パルスレート)に比例した電圧に得る変換
回路で、例えば第2図に示すように、入力パルス
を一定の振幅及び時間幅のパルスに整形する単安
定マルチバイブレータ12と、この整形されたパ
ルスの計数速度に比例した電圧を得る常時放電型
積分回路13とからなる。単安定マルチバイブレ
ータ12としては、出力パルス幅が10〜50μS程
度のものが望ましい。また、績分回路13におい
て抵抗R及びコンデンサCによつて決定される時
定数は、上記の幅の出力パルスが300μS程度の間
隔で入来しても出力電圧にリツプルを生じない程
度であることが望ましい。
Reference numeral 11 denotes a conversion circuit that obtains a voltage proportional to the pulse counting rate (pulse rate) of the pulses supplied to the counting circuit 10, which shapes input pulses into pulses with a constant amplitude and time width, as shown in FIG. 2, for example. It consists of a monostable multivibrator 12 and a constantly discharge type integrating circuit 13 that obtains a voltage proportional to the counting rate of the shaped pulses. The monostable multivibrator 12 preferably has an output pulse width of about 10 to 50 μS. In addition, the time constant determined by the resistor R and capacitor C in the performance distribution circuit 13 must be such that even if output pulses of the above width are input at intervals of about 300 μS, no ripples will occur in the output voltage. is desirable.

変換回路11の出力電圧は、切換スイツチ14
のa側を経て電圧保持回路15に記憶され、他方
では切換スイツチ14のb側を経て比較回路16
に供給され、ここで電圧保持回路15の記憶電圧
と常に比較される。切換スイツチ14は、常時は
b側に接続されているが、定量吸引装置7の発す
る計数開始信号によつて一時的にa側に切換わ
り、そのときの被計数パルス計数速度を電圧保持
回路15に記憶させる。
The output voltage of the conversion circuit 11 is determined by the changeover switch 14.
is stored in the voltage holding circuit 15 via the a side of the switch 14, and is stored in the comparator circuit 16 via the b side of the changeover switch 14.
Here, the voltage is constantly compared with the storage voltage of the voltage holding circuit 15. The changeover switch 14 is normally connected to the b side, but is temporarily switched to the a side by the counting start signal issued by the quantitative suction device 7, and the voltage holding circuit 15 changes the pulse counting speed to be counted at that time. to be memorized.

比較回路16は、入力電圧が電圧保持回路15
の記憶電圧に較べて或る限度以上変化したときに
出力を生じ、この出力は警報回路17に与えられ
て警報音発生器18から警報音を発生させる。ま
た、比較回路16の出力は、計数回路10の計数
値を表示する表示器19にも与えられ、異常事態
の発生を表示する。なお、20は被計数パルスを
観察するためのモニタブラウン管回路である。
The comparator circuit 16 is connected to the input voltage of the voltage holding circuit 15.
When the voltage changes by more than a certain limit compared to the stored voltage, an output is generated, and this output is given to the alarm circuit 17 and causes the alarm sound generator 18 to generate an alarm sound. The output of the comparator circuit 16 is also applied to a display 19 that displays the count value of the counting circuit 10 to indicate the occurrence of an abnormal situation. Note that 20 is a monitor cathode ray tube circuit for observing the pulses to be counted.

上述の装置において、定量吸引装置7を始動す
ると、ビーカ1内の試料が細孔3を通して検出器
4内へ吸込まれ始める。そして、粒子が細孔3を
通過する都度、電極5,6間にパルス状のインピ
ーダンス変化を生じ、その変化が検出回路8によ
り検出され、閾値回路9を経て、或る波高以上の
被計数パルスだけが計数回路10へ向う。この被
計数パルスは、モニタブラウン管回路20により
観察することができる。
In the above-described apparatus, when the quantitative suction device 7 is started, the sample in the beaker 1 begins to be sucked into the detector 4 through the pore 3. Each time a particle passes through the pore 3, a pulse-like impedance change occurs between the electrodes 5 and 6, and this change is detected by the detection circuit 8, and then passed through the threshold circuit 9 to generate a counted pulse of a certain wave height or higher. Only the second one goes to the counting circuit 10. The pulses to be counted can be observed by the monitor cathode ray tube circuit 20.

定量吸引装置7が計数開始信号を発すると、被
計数パルスは計数回路10において計数される。
そして、計数開始信号を発した時点からの定量吸
引装置7の吸込量が所定量に達すると計数終了信
号が発せられて、その時の計数回路10の計数値
が表示器19で表示される。
When the quantitative suction device 7 issues a counting start signal, the pulses to be counted are counted in the counting circuit 10.
Then, when the suction amount of the metered suction device 7 reaches a predetermined amount from the time when the counting start signal is issued, a counting end signal is issued, and the count value of the counting circuit 10 at that time is displayed on the display 19.

他方、計数開始信号が発せられた時点での被計
数パルスの計数速度が電圧保持回路15に記憶さ
れ、以後の被計数パルスの計数速度は常にこの記
憶値と比較回路16において比較される。ここ
で、細孔3の周辺に粒子等が附着してその有効開
口面積が縮小されると、被計数パルスの計数速度
は低下し、細孔3が完全に塞がれると計数速度は
零になる。また、何らかの原因によつて被計数パ
ルス中に雑音が混入すると、計数速度が増大す
る。従つて、このような事態が起こると、比較回
路16は出力を生じて警報音発生器18から音が
発せられると共に、表示器19に表示がなされ
る。
On the other hand, the counting speed of the pulses to be counted at the time when the counting start signal is issued is stored in the voltage holding circuit 15, and the counting speed of the pulses to be counted thereafter is always compared with this stored value in the comparator circuit 16. Here, when particles etc. adhere to the periphery of the pore 3 and its effective opening area is reduced, the counting speed of the pulses to be counted decreases, and when the pore 3 is completely blocked, the counting speed becomes zero. Become. Furthermore, if noise is mixed into the pulses to be counted for some reason, the counting speed increases. Therefore, when such a situation occurs, the comparator circuit 16 produces an output, the alarm sound generator 18 emits a sound, and the display 19 displays an indication.

また、白血球数を計数しようとする場合は、溶
血剤を加えて赤血球を溶かしたものを試料1とす
る。その際に放置時間が短かかつたり攪拌が不十
分であつたりすると、計数開始当初は残存する赤
血球も白血球も共に計数されるが、時間の経過と
共に計数される赤血球数が変化する。このような
原因による計数速度変化が現われたときも、上述
の警報音発生と表示とがなされる。
When counting the number of white blood cells, sample 1 is prepared by adding a hemolytic agent to dissolve red blood cells. At this time, if the standing time is too short or the stirring is insufficient, both the remaining red blood cells and white blood cells are counted at the beginning of counting, but the number of red blood cells counted changes as time passes. Even when a change in counting speed occurs due to such a cause, the above-mentioned alarm sound is generated and displayed.

以上のように、この発明は構成が簡単であるに
も拘らず、検出用細孔の粒子附着等による障害の
発生や、試料の事前処理の不完全による変化等を
適確に検出でき、従来計数値が正常値と顕著に異
ならないために見過されていたような誤測定を防
ぎ、測定の信頼性を向上することができる。
As described above, although the present invention has a simple configuration, it can accurately detect failures due to particles adhering to the detection pores, changes due to incomplete pre-treatment of the sample, etc. It is possible to prevent erroneous measurements that may have been overlooked because the count value is not significantly different from the normal value, and improve the reliability of the measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例のブロツク図、第2
図は同実施例中の変換回路11の回路図である。 1……試料、2……ビーカ(容器)、3……検
出用細孔、4……検出器(容器)、5及び6……
電極(インピーダンス変化検出手段)、7……定
量吸引装置、10……計数回路、11……変換回
路、15……電圧保持回路、16……比較回路。
Fig. 1 is a block diagram of an embodiment of this invention;
The figure is a circuit diagram of the conversion circuit 11 in the same embodiment. 1... Sample, 2... Beaker (container), 3... Detection pore, 4... Detector (container), 5 and 6...
electrode (impedance change detection means), 7... quantitative suction device, 10... counting circuit, 11... conversion circuit, 15... voltage holding circuit, 16... comparison circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 懸濁液体試料を収容する2個の容器と、これ
ら容器間を連通させる検出用細孔と、一方の容器
から上記細孔を通して他方の容器へ上記試料の所
定量を移動させる手段と、上記細孔における上記
試料のインピーダンスの変化を検出する手段と、
このインピーダンスの変化度数を計数する計数回
路とを有する粒子計数装置において、上記のイン
ピーダンスの変化の計数速度信号を得る変換回路
と、上記計数回路の計数動作開始時の上記計数速
度信号を記憶する回路と、以後に現われる計数速
度信号を上記記憶回路の記憶値と比較してその差
が一定限度以上のときに出力を生ずる比較回路
と、この比較回路の出力に基いて警報または表示
を行う装置とを有することを特徴とする粒子計数
装置における異常警報装置。
1. Two containers containing suspended liquid samples, a detection pore communicating between the containers, means for transferring a predetermined amount of the sample from one container to the other container through the pore, and the above-mentioned means for detecting a change in impedance of the sample in the pore;
In a particle counting device having a counting circuit that counts the frequency of change in impedance, a conversion circuit that obtains a counting speed signal of the change in impedance, and a circuit that stores the counting speed signal at the time when the counting operation of the counting circuit starts. a comparator circuit that compares the counting speed signal that appears thereafter with a value stored in the storage circuit and generates an output when the difference exceeds a certain limit; and a device that issues an alarm or display based on the output of the comparator circuit. An abnormality alarm device in a particle counting device, characterized in that it has the following.
JP2756779A 1979-03-08 1979-03-08 Abnormality alarm device in particle counter Granted JPS55119043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2756779A JPS55119043A (en) 1979-03-08 1979-03-08 Abnormality alarm device in particle counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2756779A JPS55119043A (en) 1979-03-08 1979-03-08 Abnormality alarm device in particle counter

Publications (2)

Publication Number Publication Date
JPS55119043A JPS55119043A (en) 1980-09-12
JPH0226175B2 true JPH0226175B2 (en) 1990-06-07

Family

ID=12224595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2756779A Granted JPS55119043A (en) 1979-03-08 1979-03-08 Abnormality alarm device in particle counter

Country Status (1)

Country Link
JP (1) JPS55119043A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124850A (en) * 1984-11-21 1986-06-12 Eruma Kogaku Kk Apparatus for measuring impurities in ultra-pure water
CN110857910A (en) * 2018-08-24 2020-03-03 深圳市帝迈生物技术有限公司 Micropore plugging detection device and method, blood cell analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026579A (en) * 1973-07-06 1975-03-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026579A (en) * 1973-07-06 1975-03-19

Also Published As

Publication number Publication date
JPS55119043A (en) 1980-09-12

Similar Documents

Publication Publication Date Title
US5540081A (en) Pipetting apparatus with clot detection
US5184188A (en) Optical blood hemostatic analysis apparatus and method
US5723795A (en) Fluid handler and method of handling a fluid
US4217107A (en) Method of measuring blood clotting time
EP0726466B1 (en) Pipetting apparatus equipped with closure detection function
JPH08170963A (en) Method and circuit for detecting clogging of sample probe
US5197017A (en) Potentiophotometric fibrinogen determination
CN101246113B (en) Monitoring method for hemoglobin test result
KR100285786B1 (en) Method and apparatus for detecting missing pulses from repeatable pulse train
US4014650A (en) Ultrasonic coagulation timer
US20070186624A1 (en) Acoustic method for measuring a signal propagation time in a medical liquid and device for using this method
US11327089B2 (en) Automatic analysis device
US3973194A (en) Particle counter
JPH0226175B2 (en)
JPH02503351A (en) lump detector
JP2721620B2 (en) Dispensing device with blockage detection function
US3780726A (en) Heartbeat rate monitoring
JPH0619362B2 (en) Method for detecting short sample in automatic pipetting device
WO1992001934A1 (en) Blood testing apparatus
JPH0236176B2 (en)
US3812425A (en) Method and apparatus for determination of hematocrit
Guthrie et al. The Ultra‐Flo 100 platelet counter: a new approach to platelet counting
JPS6130707B2 (en)
JPH0239732B2 (en)
JP3120328B2 (en) Particle counter for air filter leak test