[go: up one dir, main page]

JPH02192467A - Production method of aluminum nitride-hexagonal boron nitride sintered body - Google Patents

Production method of aluminum nitride-hexagonal boron nitride sintered body

Info

Publication number
JPH02192467A
JPH02192467A JP1008548A JP854889A JPH02192467A JP H02192467 A JPH02192467 A JP H02192467A JP 1008548 A JP1008548 A JP 1008548A JP 854889 A JP854889 A JP 854889A JP H02192467 A JPH02192467 A JP H02192467A
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
aluminum nitride
hexagonal boron
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1008548A
Other languages
Japanese (ja)
Other versions
JP2642184B2 (en
Inventor
Takao Kanai
隆雄 金井
Hiroshi Tanemoto
種本 啓
Hiroshi Kubo
紘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1008548A priority Critical patent/JP2642184B2/en
Publication of JPH02192467A publication Critical patent/JPH02192467A/en
Application granted granted Critical
Publication of JP2642184B2 publication Critical patent/JP2642184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、IC基板用、ICパッケージ用材料、あるい
は電気絶縁性放熱材料などとして利用可能な、特定平面
内での熱伝導率が高く、かつ電気的に絶縁体である窒化
アルミニウム−六方晶窒化ほう素糸焼結体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a material that has high thermal conductivity in a specific plane and that can be used as an IC substrate material, an IC package material, or an electrically insulating heat dissipating material. The present invention relates to a method for manufacturing an aluminum nitride-hexagonal boron nitride yarn sintered body, which is an insulator.

従来の技術 窒化アルミニウム−六方晶窒化ほう素糸複合焼結体は、
高熱伝導率のマシーナブルセラミックスであるため、電
子材料用、構造材料用セラミックスとして幅広い応用が
考えられ、多数特許出願されている。
Conventional technology Aluminum nitride-hexagonal boron nitride yarn composite sintered body is
Because it is a machinable ceramic with high thermal conductivity, it has a wide range of applications as a ceramic for electronic materials and structural materials, and numerous patent applications have been filed.

例えば特開昭80−195059には、窒化アルミニウ
ム、窒化ほう素、およびIIa族金属、[[[a族金属
化合物からなり、破断面が多角状の窒化アルミニウム粒
子が充填され、その粒界の一部または全部に薄層状の窒
化ほう素が介在する焼結体に関する記載がある。この焼
結体の特徴として、普通工具で高速切削加工ができる。
For example, in JP-A-80-195059, aluminum nitride particles made of aluminum nitride, boron nitride, group IIa metal, [[[group a metal compound] and having polygonal fracture surfaces are filled, and the grain boundaries are filled with aluminum nitride particles. There is a description of a sintered body in which a thin layer of boron nitride is present in part or all of the body. A feature of this sintered body is that it can be cut at high speed using ordinary tools.

いわゆるマシーナブルセラミック複合焼結体であると述
べている。
It states that it is a so-called machinable ceramic composite sintered body.

また、特開昭80−195080には、この複合焼結体
を製造する際の窒化アルミニウム粉末の粒径・純度を、
特開昭81−83572には、焼結時の昇温速度の範囲
について開示されている。
In addition, Japanese Patent Application Laid-Open No. 80-195080 describes the particle size and purity of aluminum nitride powder when manufacturing this composite sintered body.
JP-A-81-83572 discloses the range of temperature increase rate during sintering.

また、特開昭131−3131110には、窒素ガス加
圧下での複合焼結体の製造方法について開示されている
Furthermore, Japanese Patent Laid-Open No. 131-3131110 discloses a method for manufacturing a composite sintered body under nitrogen gas pressure.

さらに、本発明者らの発明になる特願昭82−3298
28には、窒化ほう素40〜95重量部、窒化アルミニ
ウムと酸窒化アルミニウムの合計量5〜80重量部、お
よびカルシウム化合物、イツトリウム化合物のうちの少
なくとも1種の0.01〜5重量部よりなる複合焼結体
、およびその加圧加熱法による製造方法に関する記載が
ある。該焼結体の特徴としては、熱伝導率、電気絶縁性
、低熱膨張率、低誘電率で機械加工性に優れることなど
をあげている。これらの焼結体の熱伝導率として40〜
135W/鳳・K程度の値を報告している。
Furthermore, patent application No. 82-3298, which is an invention of the present inventors,
28 contains 40 to 95 parts by weight of boron nitride, 5 to 80 parts by weight in total of aluminum nitride and aluminum oxynitride, and 0.01 to 5 parts by weight of at least one of a calcium compound and a yttrium compound. There is a description regarding a composite sintered body and a method for manufacturing the same using a pressure heating method. The characteristics of the sintered body include thermal conductivity, electrical insulation, low coefficient of thermal expansion, low dielectric constant, and excellent machinability. The thermal conductivity of these sintered bodies is 40~
A value of about 135W/Otori/K has been reported.

一方、該焼結体の特定平面における熱伝導率を改善した
例として、本発明者らの発明による特願昭f13−13
55132がある。該明細書中には、六方晶窒化ほう素
20〜80重量部、窒化アルミニウム80〜20重量部
、および焼結助剤0.2〜5重量部よりなり、熱伝導率
の異方度が2以上あり、かつ高7い方の熱伝導率の値が
150 W/m・に以上である異方性、を有する焼結体
、および1700〜2200℃、5〜50MPaでホッ
トプレスすることによる該焼結体の製造方法についての
記載がある。
On the other hand, as an example of improving the thermal conductivity in a specific plane of the sintered body, there is a
There are 55132. In the specification, the anisotropy of thermal conductivity is 20 to 80 parts by weight of hexagonal boron nitride, 80 to 20 parts by weight of aluminum nitride, and 0.2 to 5 parts by weight of a sintering aid. and anisotropy in which the higher thermal conductivity value is 150 W/m or more, and the anisotropy obtained by hot pressing at 1700 to 2200 ° C. There is a description of the method for manufacturing the sintered body.

熱伝導率の値としては、高い方が153〜258W/l
111K、低い法が16〜80W/IIIIKと報告し
ており、その他の特徴として、良好な被切削加工性をあ
げている。しかしながらIC基板、ICパッケージ用と
しての利用を考えた場合、半導体チップからの放熱効率
を高めるために、より熱伝導率の高い材料が求められて
いることは言うまでもない。
The higher value of thermal conductivity is 153 to 258 W/l.
111K, low method is reported to be 16-80W/IIIK, and other features include good machinability. However, when considering the use for IC substrates and IC packages, it goes without saying that materials with higher thermal conductivity are required in order to improve the efficiency of heat dissipation from semiconductor chips.

発明が解決しようとする課題 本発明はこれら問題点に鑑み、ある特定平面内ではより
熱伝導率の高い窒化アルミニウム−窒化ほう素糸複合焼
結体の製造方法を提供することを目的とする。
Problems to be Solved by the Invention In view of these problems, an object of the present invention is to provide a method for manufacturing an aluminum nitride-boron nitride yarn composite sintered body that has higher thermal conductivity within a certain plane.

課題を解決するための手段 すなわち、本発明は、(1)窒化アルミニウム95〜5
重量部、六方晶窒化ほう素5〜95重量部、および焼結
助剤0.2〜5重量部よりなる混合粉末を5 MPa以
上の圧力で一軸成形した後、一軸成形の加圧軸方向がホ
ットプレス焼結の加圧軸方向と一致する様に成形体をダ
イスに充填し、ホットプレス焼結することを特徴とする
窒化アルミニウム−六方晶窒化ほう素糸焼結体の製造方
法に関する。
Means for solving the problems, that is, the present invention provides (1) aluminum nitride 95-5
After uniaxially molding a mixed powder consisting of 5 to 95 parts by weight of hexagonal boron nitride, and 0.2 to 5 parts by weight of a sintering aid at a pressure of 5 MPa or more, the axial direction of the uniaxial molding was The present invention relates to a method for producing an aluminum nitride-hexagonal boron nitride yarn sintered body, which comprises filling a die with a molded body so as to match the pressing axis direction of hot press sintering and hot press sintering.

また(2)原料として用いる六方晶窒化ほう素粉束の平
均粒子径がIILm以上である前記の窒化アルミニウム
−六方晶窒化ほう素糸焼結体の製造方法に関する。
Further, (2) the present invention relates to a method for producing the aluminum nitride-hexagonal boron nitride yarn sintered body, wherein the average particle size of the hexagonal boron nitride powder bundle used as a raw material is IILm or more.

作用 以下、本発明について詳述する。action The present invention will be explained in detail below.

本発明の製造方法によれば、原料混合粉末を5にPa以
上の圧力で一軸成形した後、一軸成形の加圧軸方向がホ
ットプレス焼結の加圧軸方向と一致する様にダイスに充
填し、ホットプレス焼結を行う。
According to the manufacturing method of the present invention, after uniaxially molding the raw material mixed powder at a pressure of 5 Pa or higher, it is filled into a die so that the pressing axis direction of the uniaxial molding matches the pressing axis direction of hot press sintering. Then hot press sintering is performed.

ホットプレス焼結の前工程として、5 MPa以上の圧
力の一軸成形を行うことにより、この一軸成形の際に窒
化ほう素粒子の配向・積層を起こさせることができ、そ
の後、該一軸成形の加圧軸方向が、ホットプレス焼結の
加圧軸方向と一致するように一軸成形体を黒鉛製ダイス
に充填し、ホットプレス焼結することにより、一軸成形
時に起こった窒化ほう素粒子の配向・積層を助長するこ
とができる。
By performing uniaxial forming at a pressure of 5 MPa or more as a pre-process of hot press sintering, it is possible to orient and stack the boron nitride particles during this uniaxial forming, and after that, the processing of the uniaxial forming By filling the uniaxial compact into a graphite die and hot press sintering so that the pressure axis direction matches the pressure axis direction of hot press sintering, the orientation of boron nitride particles that occurred during uniaxial forming It can promote lamination.

その結果として、粉体をそのまま黒鉛製ダイスに充填す
るか、あるいは5 )lPa未渦0圧力で一軸成形した
後、ホットプレス焼結した場合と比較して、より異方性
の大きな焼結体となり、ホットプレス圧力軸(一軸成形
の圧力軸)と垂直方向の熱伝導率が顕著に向上する。一
方、ホットプレス圧力軸(一軸成形の圧力軸)と平行方
向の熱伝導率は若干低下するもののほとんど変化しない
As a result, a sintered compact with greater anisotropy is obtained compared to the case where the powder is directly filled into a graphite die or uniaxially formed at 5) lPa without vortex and then hot press sintered. Therefore, the thermal conductivity in the direction perpendicular to the hot press pressure axis (uniaxial molding pressure axis) is significantly improved. On the other hand, the thermal conductivity in the direction parallel to the hot press pressure axis (uniaxial molding pressure axis) slightly decreases but hardly changes.

一軸成形の成形圧は5 MPa以上が好ましい。5MP
a未満では、一軸成形の際の窒化ほう素粒子の配向・積
層がほとんど起こらず、一軸成形を行ったことによる熱
伝導率の増大の効果がはとなど認められない。また成形
圧は高ければ高いほど窒化ほう素粒子の配向・積層が顕
著となるため好ましいが、ある圧力以上では、圧力の増
加に伴う窒化ほう素粒子の配向・積層の程度が顕著でな
くなるため、必要以上の高圧力を用いることは得策では
ない、窒化ほう素粒子の粒径がlpm程度で、100M
Pa程度が成形圧の上限のひとつの目安である。
The molding pressure for uniaxial molding is preferably 5 MPa or more. 5MP
If it is less than a, orientation and stacking of boron nitride particles during uniaxial molding will hardly occur, and the effect of increasing thermal conductivity due to uniaxial molding will not be recognized. In addition, the higher the molding pressure is, the more pronounced the orientation and stacking of boron nitride particles is, which is preferable, but above a certain pressure, the degree of orientation and stacking of boron nitride particles becomes less noticeable as the pressure increases. It is not a good idea to use a higher pressure than necessary.If the particle size of boron nitride particles is about lpm,
Approximately Pa is one guideline for the upper limit of the molding pressure.

原料混合粉末は、窒化アルミニウム95〜5重量部、六
方晶窒化ほう素5〜95重量部、および焼結助剤0.2
〜5重量部よりなる。
The raw material mixed powder contains 95 to 5 parts by weight of aluminum nitride, 5 to 95 parts by weight of hexagonal boron nitride, and 0.2 parts by weight of a sintering aid.
~5 parts by weight.

窒化アルミニウムが95重量部付近の組成においては、
窒化ほう素の配向・積層による熱伝導率向上の効果はそ
れほど大きくないものの、曲げ強さ、ビッカース硬度等
が比較的大きく、また熱膨張係数の比較的大きな焼結体
が得られる。
In a composition where aluminum nitride is around 95 parts by weight,
Although the effect of improving thermal conductivity due to orientation and lamination of boron nitride is not so great, a sintered body with relatively high bending strength, Vickers hardness, etc., and a relatively high coefficient of thermal expansion can be obtained.

また窒化アルミニウムが5重量部近傍の組成においては
、窒化ほう素の配向・積層による顕著な熱伝導率向上の
効果が認められる。
Furthermore, in a composition in which aluminum nitride is around 5 parts by weight, a remarkable effect of improving thermal conductivity is observed due to the orientation and lamination of boron nitride.

また、この組成の焼結体は、曲げ強さはそれほど大きく
ないものの切削加工性が極めて良好な焼結体が得られる
Further, a sintered body having this composition has a not so great bending strength, but a sintered body having extremely good cutting workability.

原料粉末の配合割合がこれらの範囲を越えて窒化アルミ
ニウムの含有量が95重量部超の場合、含有する六方晶
窒化ほう素の量が少ないため窒化ほう素粒子の配向−積
層による効果が期待できない、また窒化アルミニウムの
含有量が5重量部未満の場合には、窒化ほう素粒子の配
向春積層による熱伝導率の向上は認められるものの、緻
密な焼結体を得るために多量の焼結助剤が必要であり、
このため熱伝導率の高い焼結体が得られにくく、IC基
板用、パッケージ用材料などとしての使用には適さない
If the mixing ratio of the raw material powder exceeds these ranges and the content of aluminum nitride exceeds 95 parts by weight, the effect of orientation and stacking of boron nitride particles cannot be expected because the amount of hexagonal boron nitride contained is small. In addition, when the content of aluminum nitride is less than 5 parts by weight, although an improvement in thermal conductivity is observed due to the oriented spring lamination of boron nitride particles, a large amount of sintering aid is required to obtain a dense sintered body. agent is required,
For this reason, it is difficult to obtain a sintered body with high thermal conductivity, making it unsuitable for use as IC substrates, packaging materials, and the like.

原料として用いる窒化ほう素粒子の粒径は、IBm以上
が好ましい0粒径が1gm未満の粉末を用いた場合、一
軸成形およびホットプレス焼結における窒化ほう素粒子
の配向Φ積層が顕著にはおこらず、焼結体がより等方的
なものとなる。とりわけ本発明の一軸成形による窒化ほ
う素粒子の配向・積層という効果がほとんど発現しない
、なお、ここで述べた窒化ほう素粒子の粒径とは、薄片
状の窒化ほう素粒子の平面方向の大きさであり、厚さ方
向の大きさではない。
The particle size of the boron nitride particles used as a raw material is preferably IBm or more.If powder with a zero particle size of less than 1 gm is used, oriented Φ stacking of boron nitride particles during uniaxial molding and hot press sintering will not occur significantly. First, the sintered body becomes more isotropic. In particular, the effect of orientation and stacking of boron nitride particles by the uniaxial molding of the present invention is hardly realized.The particle size of the boron nitride particles mentioned here refers to the size of the flaky boron nitride particles in the plane direction. It is not the size in the thickness direction.

原料混合粉末は、窒化アルミニウム、窒化ほう素の他に
焼結助剤を0.2〜5重量部含有する。
The raw material mixed powder contains 0.2 to 5 parts by weight of a sintering aid in addition to aluminum nitride and boron nitride.

0.2重量部より少ない場合は、焼結助剤としての効果
が期待できず、5重量部より多い場合には、焼結体の熱
伝導率の低下が起るため好ましくない、また、熱伝導率
、とりわけ高い方の値は、焼結助剤の添加量に敏感であ
るため、熱伝導率の高い焼結体を製造しようとする場合
には、注意して添加量を決定する必要がある。
If it is less than 0.2 parts by weight, no effect as a sintering aid can be expected, and if it is more than 5 parts by weight, the thermal conductivity of the sintered body will decrease, which is undesirable. The conductivity, especially the higher value, is sensitive to the amount of sintering aid added, so when trying to produce a sintered body with high thermal conductivity, the amount added must be determined carefully. be.

焼結助剤としては、酸化カルシウム、炭化カルシウム、
カルシウムシアナミド、酸化イツトリウム、炭化イツト
リウムなどの公知のものが使用できる。しかしながら、
窒化ほう素粒子の配向・積層を起こさせることを考えた
場合、窒化アルミニウム粉末や窒化ほう素粉末の表面に
不可避的に生成している酸化物と反応し、より低温で液
相を生成する可能性から考えてカルシウム系の化合物が
より好ましいと言える。
Sintering aids include calcium oxide, calcium carbide,
Known materials such as calcium cyanamide, yttrium oxide, and yttrium carbide can be used. however,
When considering the orientation and stacking of boron nitride particles, it is possible to react with the oxides that are inevitably generated on the surface of aluminum nitride powder or boron nitride powder and generate a liquid phase at a lower temperature. Calcium-based compounds are more preferable in terms of their properties.

これらの粉末の混合には、ボールミルなどの公知の方法
による乾式混合、湿式混合が使用可能であるが、好まし
くは湿式混合である。湿式混合に用いられる分散媒体は
特に限定されず、アルコール類、炭化水素類、ケトン類
が公的に用いられる。水は窒化物粉末と反応してアンモ
ニアを発生させる可能性があるため、特に必要がある場
合を除き、用いない方がよい。
For mixing these powders, dry mixing or wet mixing using a known method such as a ball mill can be used, but wet mixing is preferable. The dispersion medium used for wet mixing is not particularly limited, and alcohols, hydrocarbons, and ketones are commonly used. Since water may react with the nitride powder to generate ammonia, it is better not to use it unless it is particularly necessary.

原料混合粉末は、前述の如く一軸成形した後、一軸成形
の加圧軸方向が、ホットプレス焼結の加圧軸方向と一致
する様に黒鉛製のダイスに充填し、ホットプレス焼結を
行う、ホットプレス焼結は窒化ほう素−窒化アルミニウ
ム系焼結体の製造方法としては公知の1700〜220
0℃、5〜50)IPa程度の条件で行う。
After the raw material mixed powder is uniaxially molded as described above, it is filled into a graphite die so that the pressing axis direction of the uniaxial molding matches the pressing axis direction of hot press sintering, and hot press sintering is performed. , hot press sintering is a well-known method for producing boron nitride-aluminum nitride sintered bodies.
It is carried out under conditions of 0° C. and about 5 to 50) IPa.

1700℃未満では所望の物性値、特に熱伝導率の高い
焼結体が得られないためであり、2200℃超では経済
的でない、また加圧の圧力が5 NPa未満では焼結体
の緻密化や窒化ほう素粒子の配向を起こすのに不十分な
場合があり、50MPa超ではホットプレスの際に使用
できるダイスが限定される。最高温度における保持時間
は4時間までの間で選択することができる、保持時間が
4時間超の場合、焼結体の特性には顕著な影響は及ぼさ
ないものの経済的でない。
If the temperature is lower than 1700°C, a sintered body with desired physical properties, especially high thermal conductivity, cannot be obtained, and if it exceeds 2200°C, it is not economical, and if the pressure is lower than 5 NPa, the sintered body becomes densified. If the pressure exceeds 50 MPa, the dies that can be used during hot pressing are limited. The holding time at the maximum temperature can be selected to be up to 4 hours; holding times longer than 4 hours are not economical, although the properties of the sintered body are not significantly affected.

焼結の際の雰囲気は、窒化物の酸化を防ぐため、窒素ガ
スなどの不活性ガス雰囲気とすることが好ましい、しか
しながら、ある特定の焼結助剤を用いた場合には真空中
で焼結を行うことにより、これらの焼結助剤ないしは焼
結助剤と他成分との反応生成物が比較的すみやかに系外
に放出され、結果として焼結体の熱伝導率が向上する場
合があり、この様な場合には真空中で焼結することが好
ましい。
The atmosphere during sintering is preferably an inert gas atmosphere such as nitrogen gas to prevent oxidation of the nitride. However, if certain sintering aids are used, sintering in a vacuum may not be possible. By doing this, these sintering aids or reaction products between the sintering aid and other components may be released out of the system relatively quickly, and as a result, the thermal conductivity of the sintered body may be improved. In such cases, it is preferable to sinter in vacuum.

以下、本発明を実施例を用いて説明する。The present invention will be explained below using examples.

実施例1 平均粒子径6ILmの六方晶窒化ほう素粉束、平均粒子
径1.8μm以下の窒化アルミニウム粉末、および焼結
助剤として炭化カルシウムを第1表に示した割合で配合
し、ボールミル中で24時間、アセトンを溶媒として湿
式混合を行った。
Example 1 A hexagonal boron nitride powder bundle with an average particle size of 6 ILm, aluminum nitride powder with an average particle size of 1.8 μm or less, and calcium carbide as a sintering aid were mixed in the proportions shown in Table 1, and the mixture was mixed in a ball mill. Wet mixing was performed using acetone as a solvent for 24 hours.

得られた粉末を乾燥した後、第1表に示した条件で一軸
成形を行い、一軸成形の加圧軸方向がホットプレスの加
圧軸方向と一致する様に黒鉛製ダイスに充填し、毎分2
文の窒素気流中、1800℃で2時間、40MPaの圧
力でホットプレス焼結を行った。冷却速度は10℃/s
inとした。
After drying the obtained powder, uniaxial molding was performed under the conditions shown in Table 1, and it was filled into a graphite die so that the pressing axis direction of the uniaxial molding coincided with the pressing axis direction of the hot press. minute 2
Hot press sintering was performed at 1800° C. for 2 hours under a pressure of 40 MPa in a nitrogen stream. Cooling rate is 10℃/s
It was set as in.

得られた焼結体の嵩密度、熱伝導率の値を測定した。焼
結体には異方性が存在するため熱伝導率については、ホ
ットプレス圧力軸に垂直方向、平行方向の値を併記した
。嵩密度は、水を用いたアルキメデス法により、熱伝導
率はレーザーフラッシュ法により測定した。なお表中に
は比較のため、低圧力で一軸成形を行った場合、および
一軸成形を行わなかった場合の焼結体の値についても記
した。
The bulk density and thermal conductivity of the obtained sintered body were measured. Since the sintered body has anisotropy, the thermal conductivity values are also shown in the direction perpendicular to and parallel to the hot press pressure axis. The bulk density was measured by the Archimedes method using water, and the thermal conductivity was measured by the laser flash method. For comparison, the table also shows the values of the sintered bodies when uniaxial molding was performed at low pressure and when uniaxial molding was not performed.

結果を第1表に示す、第1表かられかる様に窒化アルミ
ニウムの含有量が95〜5重量部のいずれの組成におい
ても、5 MPa以上の圧力で一軸成形を行った焼結体
において、一軸成形をしなかったか、あるいは5 MP
a未満で一軸成形を行った焼結体と比較して、ホットプ
レスの圧力軸と垂直方向の熱伝導率の値(高い方の値)
が5〜50W/m−に向上していることがわかる。一方
、ホットプレスの圧力軸と平行方向の値(低い方の値)
については若干低くなる場合があるもののほとんど変化
していない、ない、嵩密度の値は両者でほとんど差異が
認められなかった。
The results are shown in Table 1. As shown in Table 1, in any composition with an aluminum nitride content of 95 to 5 parts by weight, in a sintered body uniaxially formed at a pressure of 5 MPa or more, No uniaxial molding or 5 MP
Thermal conductivity value in the direction perpendicular to the hot press pressure axis (higher value) compared to the sintered body uniaxially formed at less than a
It can be seen that the power is improved to 5 to 50 W/m-. On the other hand, the value in the direction parallel to the pressure axis of the hot press (lower value)
Although it may be slightly lower, there is almost no change in the bulk density value, and there is almost no difference in the bulk density value between the two.

実施例2 大方晶窒化ほう素原料を平均粒径10gmの粉末とし、
また焼結助剤として酸化イツトリウムを添加し、実施例
1と同様の方法によりホットプレス焼結を行った。
Example 2 Orthogonal boron nitride raw material was made into powder with an average particle size of 10 gm,
In addition, yttrium oxide was added as a sintering aid, and hot press sintering was performed in the same manner as in Example 1.

得られた焼結体の嵩密度、熱伝導率の測定結果を第1表
に示す、いずれの組成においても、511[Pa以上の
圧力で 一軸成形した焼結体とそれ以外の焼結体におい
て、実施例とほぼ同様の結果が得られており、高い方の
熱伝導率の値が20〜35W/■・に程度向上している
The bulk density and thermal conductivity measurement results of the obtained sintered bodies are shown in Table 1.For all compositions, for the sintered bodies uniaxially formed at a pressure of 511 [Pa or higher and for the other sintered bodies. , almost the same results as in the example were obtained, and the higher thermal conductivity value was improved to 20 to 35 W/■.

(以下余白) 発明の効果 以上述べた如く1本発明の窒化アルミニウム−窒化ほう
素糸複合セラミックス焼結体の製造方法は、ホットプレ
ス法により焼結体を製造する際に、その前段階として5
 )!Pa以上の圧力で一軸成形した後、成形時の圧力
軸がホットプレス焼結の圧力軸と一致する様に成形体を
ダイスに充填し、ホットプレス焼結をする方法であり、
これによりホー2ドブレス圧力軸と垂直方向の熱伝導率
を向上させることができる。
(Left below) Effects of the Invention As stated above, the method for producing an aluminum nitride-boron nitride thread composite ceramic sintered body of the present invention involves the following steps:
)! After uniaxial forming at a pressure of Pa or more, the molded body is filled into a die so that the pressure axis during forming coincides with the pressure axis of hot press sintering, and hot press sintering is performed.
This makes it possible to improve the thermal conductivity in the direction perpendicular to the pressure axis of the hose breath.

したがってIC基板用、ICパッケージ用材料として利
用が可能である高熱伝導率の窒化アルミニウム−窒化ほ
う素糸複合焼結体の製造方法として好適であり、産業上
極めて有用である。
Therefore, it is suitable as a method for manufacturing an aluminum nitride-boron nitride yarn composite sintered body with high thermal conductivity that can be used as a material for IC substrates and IC packages, and is extremely useful industrially.

Claims (2)

【特許請求の範囲】[Claims] 1.窒化アルミニウム95〜5重量部、六方晶窒化ほう
素5〜95重量部、および焼結助剤0.2〜5重量部よ
りなる混合粉末を、5MPa以上の圧力で一軸成形した
後、一軸成形の加圧軸方向がホットプレス焼結の加圧軸
方向と一致する様に成形体をダイスに充填し、ホットプ
レス焼結することを特徴とする窒化アルミニウム−六方
晶窒化ほう素系焼結体の製造方法。
1. A mixed powder consisting of 95 to 5 parts by weight of aluminum nitride, 5 to 95 parts by weight of hexagonal boron nitride, and 0.2 to 5 parts by weight of a sintering aid is uniaxially formed at a pressure of 5 MPa or more, and then An aluminum nitride-hexagonal boron nitride based sintered body characterized by filling a die with a molded body and hot press sintering so that the pressing axis direction coincides with the pressing axis direction of hot press sintering. Production method.
2.原料として用いる六方晶窒化ほう素粉末の平均粒子
径が1μm以上である請求項1記載の窒化アルミニウム
−六方晶窒化ほう素系焼結体の製造方法。
2. The method for producing an aluminum nitride-hexagonal boron nitride sintered body according to claim 1, wherein the hexagonal boron nitride powder used as the raw material has an average particle diameter of 1 μm or more.
JP1008548A 1989-01-19 1989-01-19 Method for producing aluminum nitride-hexagonal boron nitride sintered body Expired - Lifetime JP2642184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008548A JP2642184B2 (en) 1989-01-19 1989-01-19 Method for producing aluminum nitride-hexagonal boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008548A JP2642184B2 (en) 1989-01-19 1989-01-19 Method for producing aluminum nitride-hexagonal boron nitride sintered body

Publications (2)

Publication Number Publication Date
JPH02192467A true JPH02192467A (en) 1990-07-30
JP2642184B2 JP2642184B2 (en) 1997-08-20

Family

ID=11696188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008548A Expired - Lifetime JP2642184B2 (en) 1989-01-19 1989-01-19 Method for producing aluminum nitride-hexagonal boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP2642184B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416563A (en) * 1990-05-11 1992-01-21 Nec Corp Ceramics composite material
US20110261535A1 (en) * 2010-01-29 2011-10-27 Nitto Denko Corporation Power module
US8547465B2 (en) 2010-01-29 2013-10-01 Nitto Denko Corporation Imaging device module
US8592844B2 (en) 2010-01-29 2013-11-26 Nitto Denko Corporation Light-emitting diode device
JP2013543834A (en) * 2010-11-10 2013-12-09 イーエスケイ セラミクス ゲーエムベーハー アンド カンパニー カーゲー Boron nitride agglomerates, process for their production and their use
CN113912400A (en) * 2021-08-30 2022-01-11 苏州氮科新材料有限公司 Method for preparing isotropic high-thermal-conductivity composite material based on boron nitride
CN114874019A (en) * 2022-06-21 2022-08-09 厦门理工学院 Cubic boron nitride phase-change enhanced aluminum nitride/boron nitride composite ceramic and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416563A (en) * 1990-05-11 1992-01-21 Nec Corp Ceramics composite material
US20110261535A1 (en) * 2010-01-29 2011-10-27 Nitto Denko Corporation Power module
US8547465B2 (en) 2010-01-29 2013-10-01 Nitto Denko Corporation Imaging device module
US8592844B2 (en) 2010-01-29 2013-11-26 Nitto Denko Corporation Light-emitting diode device
US8749978B2 (en) * 2010-01-29 2014-06-10 Nitto Denko Corporation Power module
JP2013543834A (en) * 2010-11-10 2013-12-09 イーエスケイ セラミクス ゲーエムベーハー アンド カンパニー カーゲー Boron nitride agglomerates, process for their production and their use
US9422200B2 (en) 2010-11-10 2016-08-23 3M Innovative Properties Company Boron nitride agglomerates, method of production thereof and use thereof
US10173931B2 (en) 2010-11-10 2019-01-08 3M Innovative Properties Company Boron nitride agglomerates, method of production and use thereof
US10526250B2 (en) 2010-11-10 2020-01-07 3M Innovative Properties Company Boron nitride agglomerates, method of production thereof and use thereof
CN113912400A (en) * 2021-08-30 2022-01-11 苏州氮科新材料有限公司 Method for preparing isotropic high-thermal-conductivity composite material based on boron nitride
CN114874019A (en) * 2022-06-21 2022-08-09 厦门理工学院 Cubic boron nitride phase-change enhanced aluminum nitride/boron nitride composite ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2642184B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US4960734A (en) Ceramic composite and process for preparation thereof
KR960006248B1 (en) Aluminum nitride sintered body and its manufacturing method
JPH02192467A (en) Production method of aluminum nitride-hexagonal boron nitride sintered body
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JP2002114575A (en) Hexagonal boron nitride plate, method for manufacturing the same and application of the same
JP2778783B2 (en) Method for producing BN-AlN-based sintered body having anisotropy
JP2628510B2 (en) Method for producing BN-AlN-based composite sintered body
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP3106160B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0745344B2 (en) Anisotropic BN-A 1-N sintered body and method for producing the same
JPH01252584A (en) Composite ceramic sintered body and its manufacturing method
JPH04292467A (en) BN-AlN composite sintered body and its manufacturing method
JPH06329474A (en) Sintered aluminum nitride and its production
JPH02113561A (en) Heat dissipation parts
JP2535139B2 (en) Heat dissipation board
JPS5891059A (en) Composite ceramic sintered body and manufacture
JP2778732B2 (en) Boron nitride-aluminum nitride based composite sintered body and method for producing the same
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body
JPS61201669A (en) Aluminum nitride sintered body and manufacture
JPH04144967A (en) Aluminum nitride sintered body and its manufacturing method
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPS63218585A (en) High thermal conductivity aluminum nitride sintered body and its manufacturing method
JPH01115875A (en) Method for manufacturing aluminum nitride sintered body
JPH01179765A (en) Aluminum nitride sintered body and production thereof