JPH01239800A - Microtron - Google Patents
MicrotronInfo
- Publication number
- JPH01239800A JPH01239800A JP6356588A JP6356588A JPH01239800A JP H01239800 A JPH01239800 A JP H01239800A JP 6356588 A JP6356588 A JP 6356588A JP 6356588 A JP6356588 A JP 6356588A JP H01239800 A JPH01239800 A JP H01239800A
- Authority
- JP
- Japan
- Prior art keywords
- punch
- particles
- energy
- wave form
- orbit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は同時憂こ複数の異なるエネルギーの荷電粒子を
取り出せるマイクロトロンに関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a microtron capable of simultaneously extracting a plurality of charged particles of different energies.
(従来の技4)
従来の装置の構成例を、第39擾こホす。銃1より出た
粒子は加速管2によりてD0速され、偏向磁石3Iこよ
りて軌道を曲げられ再びυ口速管2でυ口速される。こ
の様に複数回加速管を通過して高エネルギーを得た粒子
は一番外の軌道4を1mつ、装置外部へとり出される。(Conventional Technique 4) An example of the configuration of a conventional device is shown in the 39th section. Particles emitted from the gun 1 are accelerated to D0 speed by the accelerating tube 2, their trajectory is bent by the deflection magnet 3I, and the particles are again accelerated to υ speed by the υ velocity tube 2. Particles that have obtained high energy by passing through the acceleration tube multiple times in this way are taken out of the apparatus along the outermost trajectory 4 by 1 m.
この間特に取り出し機構はないので、同時にとり出され
る荷!粒子のエネルギーは一種類である。During this time, there is no special mechanism for taking out the items, so the items are taken out at the same time! Particles have only one type of energy.
(清明が解決しよりとする課坦)
上述の如く、従来の装置では複数カエネルギー直を持つ
粒子を取り出すことは困難であつrこ。そこで本宅明は
上述した間毬点を解消できるマイクロトロンを提供する
ことを目的としている。(Issues that Seimei would like to solve) As mentioned above, it is difficult to extract particles with multiple energy directivity using conventional devices. Therefore, Akira Motoyaku's objective is to provide a microtron that can eliminate the above-mentioned intermittent points.
(課電を解決する為の手段)
゛本発明(こ乃1つ)るマイクロトロンに於ては、箕な
るエネルギーに相当する軌道上にRFセパレータヲ設ケ
、ビームのバ/チタリカうちの自然数個おきのバンチを
取り出すようにしている。(Means for solving the problem of charging) ``In the microtron according to the present invention, an RF separator is installed on the orbit corresponding to the energy of the beam, which is a natural number of the beam's energy. I try to take out every other bunch.
(作用)
RFセパレータを途中の軌道上に設けることにより、複
数のエネルギーの荷?I!粒子を同時に取り出すことが
可能となる。(Function) By installing an RF separator on the orbit, multiple energy loads can be carried out. I! It becomes possible to take out particles at the same time.
(実施例)
以下図面合参照しなから実施例を説明する。基本的には
従来例と同じ構成であるが、41図に示す如く、異なる
エネルギーに相当する軌道上にRFセパレータ7.8が
設けられている。RFセパレータの劾きを第2図と付せ
て説明する。第2図中の波形fa)は、初めにυ口速管
を通過したパンチ列である。エネルギー(まgaである
。υ口速固期(こ応じfこバッチ間隔T −C,11E
んでいる。縦軸がエネルギーを表すとすると従来例では
、 Va速゛gを通過するごとに波形[b) 、 fc
Hこ示す如<、gb・Ecとエネルギーが高くなってい
く。ここで第1図の軌道5上のRF七パレータ7をf杉
(d)9如く動ρ)せると波形tblでのエネルギーの
粒子の一部が軌道を曲げられ、偏向磁石9によりて更曇
こ1鵬同されて装置外部にとり出され、41L道6に相
当するパンチ列は波形ielの如くなる。欠1こ軌道6
上のRFセパレータ8を波形ば)の如く働かせると、波
形fe)でのエネルギーの粒子の一部が取り出される。(Example) An example will be described below with reference to the drawings. Basically, the configuration is the same as that of the conventional example, but as shown in FIG. 41, RF separators 7.8 are provided on orbits corresponding to different energies. The formation of the RF separator will be explained with reference to FIG. The waveform fa) in FIG. 2 is the punch row that first passed through the υ mouth velocity tube. Energy (maga. υ fast solidification period (according to f)
I'm reading. Assuming that the vertical axis represents energy, in the conventional example, the waveform [b), fc
As shown by H, the energy increases as gb and Ec. Here, when the RF 7 palator 7 on the orbit 5 in FIG. This is combined and taken out from the apparatus, and the punch row corresponding to path 41L 6 has a waveform like iel. missing 1ko orbit 6
When the upper RF separator 8 is operated as in waveform fe), a part of the energy particles in waveform fe) are extracted.
最後迄加速される粒子り〕パンチ列は波形[g)の如く
なる。これによって、この実施汐りではI同時φこ3f
′1頌の異なるエネルギーの粒子がとり出せることにな
る。ここで、RFセパV−夕の動作は波形fd) +’
e) ’f) 、20く、デルタ函数的に動かせるこ
とが望ましいが、それには。[Particles accelerated to the end] The punch row has a waveform like [g]. As a result, in this implementation, I simultaneous φ3f
'1 Particles with different energies can be extracted. Here, the operation of the RF separation is shown in the waveform fd) +'
e) 'f) It would be desirable to be able to move like a delta function.
列えは実施例の如くにする為fこは、加速周波数frf
つのモードを同時に励起すれ(ばよい。これ)ユ、ひと
つつRF七パレータ中に励起してもよいし、異なる周波
数で(6)(RFtパレータを複数1固直列lこ並べて
もよい。この場合cos2yrfoN−eos2yrf
lt−l−aOs2πf、t’))波形をhに示す。更
に高次のモード迄加えれば、よりデルタ函数彼杉ζこ近
づくのは周矧である。Since the arrangement is as in the example, the acceleration frequency frf
The two modes can be excited at the same time, or they can be excited one by one into the RF pallet, or a plurality of RF pallets can be arranged in series at different frequencies. In this case, cos2yrfoN-eos2yrf
lt-l-aOs2πf, t')) The waveform is shown in h. If we add even higher-order modes, the delta function will become even closer to this.
以上詳述した舊2図の各V杉について、まとめて説明す
ると1次のようになる。A summary of each V-cedar in Fig. 2, detailed above, is as follows.
波形fa)従来型マイクロトロンに於いて軌道5を通る
パンチ列、
波形ib)従来型・マイクロトロン暑こ於いて軌道6を
通るパンチ列
波形忙)従来型マイクロトロンに於いて軌道4を通るパ
ンチ列
波形+dl RFセパレータ7の偏向強度波形[e)不
活間の$、4列に於いて軌道6を通るパンチ列
波形(f) RFセパレータ8の偏向強度、波形(g1
本発明の実施例に於いて軌道4を通るバンテタ1j
′e、形(bl cos2πfo t+cos2πfl
t+cos2πf、t O)波形
また、セパレータの立置や、取り出し用の偏向低石力立
置(ま”実施列(ζ限らない。婿1図の例では。Waveform fa) Punch train passing through orbit 5 in a conventional microtron Waveform ib) Punch train passing through orbit 6 in a conventional microtron Waveform waveform) Punch train passing through orbit 4 in a conventional microtron Row waveform + dl Deflection strength waveform of RF separator 7 [e] $ between inactive, punch row waveform passing through trajectory 6 in 4 rows (f) Deflection strength of RF separator 8, waveform (g1
In the embodiment of the present invention, vanteta 1j ′e passing through orbit 4 has the form (bl cos2πfo t+cos2πfl
t+cos2πf, tO) Waveform Also, when the separator is placed vertically or the deflection for taking out is placed vertically with a low force (ma''' implementation row (ζ is not limited. In the example shown in Figure 1).
υ口逮管を出でυめの偏向磁石の陵番こ、RF−!/ぐ
し一部を設け、v口速管ζこ入る直前の偏向磁石の削に
、取り出し用ハ偏1gl磁石を設けてもよい。まfこ、
RFtパレータは、ひとつの空胴でなく幾つもの空胴を
直列番こしrこものでも、、に、いのは明らρ)である
。RF-! It is also possible to provide a part of the comb and a 1gl magnet for take-out in the cut of the deflection magnet just before entering the v mouth speed tube ζ. Mafko,
Even though the RFt parator has not one cavity but several cavities in series, it is clear that ρ).
さら蚤こ、ビーム0)収り出し方向も実施例に限定され
ない。The beam 0) direction of extraction is also not limited to the example.
上述し1こ如く、不活間によれば、1つの装はで。 As mentioned above, according to Fukkama, there is only one outfit.
異なるエネルギーの粒子を収り出すことができろ。Be able to collect particles of different energies.
第1図は不活間の実瑚列カマイクロトロンの構成図、嬉
2図(ま不活間の実、m ff1Jの動作を説明するタ
イムチャート、第3図は従来型のマイクロトロンを示す
ffl成図である。
l・・・銃、2・・・υ口速L3.9.10・・・偏+
i]磁石。
4.5.6,10,11・・・荷4粒子の軌道、7゜8
・・・RFセパレータ。
代理人 弁理士 則 近 懸 佑
同 松 山 光 之ζ0−)
三
<b) 呵−r=
千
第2図Figure 1 is a configuration diagram of a microtron with an inactive engine, Figure 2 is a time chart explaining the operation of the MFF1J, and Figure 3 shows a conventional microtron. ffl diagram. l...gun, 2...υ mouth speed L3.9.10...biased +
i] Magnet. 4.5.6,10,11...Trajectory of charge 4 particles, 7°8
...RF separator. Agent: Patent Attorney: Yudo Chika Ken, Hikaru Matsuyama ζ0-)
3<b) 呵-r= 1,000th figure
Claims (2)
によって高加速を得るマイクロトロンに於て、異なるエ
ネルギーの粒子が異なる軌道を通る領域に、加速管の加
速周波数の自然数分の1の周波数で動作するRFセパレ
ータを必要なエネルギーに相当する軌道上に有すること
を特徴とするマイクロトロン。(1) In a microtron that obtains high acceleration by passing charged particles multiple times through the same acceleration tube, particles with different energies pass through different trajectories at a frequency that is a natural number fraction of the acceleration frequency of the acceleration tube. A microtron, characterized in that it has an RF separator that operates at an orbit corresponding to the required energy.
合せで動作することを特徴とする請求項1記載のマイク
ロトロン。(2) The microtron according to claim 1, wherein the RF separator operates in a superposition of modes of a plurality of frequencies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6356588A JPH01239800A (en) | 1988-03-18 | 1988-03-18 | Microtron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6356588A JPH01239800A (en) | 1988-03-18 | 1988-03-18 | Microtron |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01239800A true JPH01239800A (en) | 1989-09-25 |
Family
ID=13232888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6356588A Pending JPH01239800A (en) | 1988-03-18 | 1988-03-18 | Microtron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01239800A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016193294A1 (en) * | 2015-06-04 | 2016-12-08 | Ion Beam Applications | Multiple energy electron accelerator |
JP2019133745A (en) * | 2018-01-29 | 2019-08-08 | 株式会社日立製作所 | Circular accelerator, particle beam therapy system with circular accelerator, and method of operating circular accelerator |
-
1988
- 1988-03-18 JP JP6356588A patent/JPH01239800A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016193294A1 (en) * | 2015-06-04 | 2016-12-08 | Ion Beam Applications | Multiple energy electron accelerator |
JP2019133745A (en) * | 2018-01-29 | 2019-08-08 | 株式会社日立製作所 | Circular accelerator, particle beam therapy system with circular accelerator, and method of operating circular accelerator |
CN111279801A (en) * | 2018-01-29 | 2020-06-12 | 株式会社日立制作所 | Circular accelerator, particle beam therapy system provided with circular accelerator, and operation method of circular accelerator |
US11570881B2 (en) | 2018-01-29 | 2023-01-31 | Hitachi, Ltd. | Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator |
US11849533B2 (en) | 2018-01-29 | 2023-12-19 | Hitachi, Ltd. | Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103718270A (en) | Device for manipulating charged particles | |
US4267448A (en) | Ion detector with bipolar accelerating electrode | |
JP2006032282A (en) | Spiral orbit type charged particle accelerator and acceleration method thereof | |
US8946625B2 (en) | Introduction of ions into a magnetic field | |
US6258216B1 (en) | Charged particle separator with drift compensation | |
US5233189A (en) | Time-of-flight mass spectrometer as the second stage for a tandem mass spectrometer | |
JP5258198B2 (en) | Linear ion trap mass spectrometer | |
US2772364A (en) | Mass spectrometry | |
Limbach et al. | An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer | |
US4780682A (en) | Funnel for ion accelerators | |
JP4176532B2 (en) | Reflective ion attachment mass spectrometer | |
JPH01239800A (en) | Microtron | |
US20140326874A1 (en) | Printed circuit board multipole units used for ion transportation | |
US20200294755A1 (en) | Apparatus, system and techniques for mass analyzed ion beam | |
US20230039701A1 (en) | Charge filter arrangement and applications thereof | |
JP3626118B2 (en) | Stochastic cyclotron ion filter | |
JPH0831372A (en) | Detector of time-of-flight mass spectrometer, determination method of polar rate of ion-to-electron conversion face and determination method of voltage of detector | |
EP0239646A1 (en) | Method of introducing charged particles into magnetic resonance type accelerator and magnetic resonance type accelerator based on said method | |
Laune | THE DIAGNOSTICS SYSTEM FOR THE SPIRAL R. LB. FACILITY | |
US2894137A (en) | Calutron receiver | |
JPH01264151A (en) | Multiple beam generator in charged particle beam device | |
KR102202157B1 (en) | Accelerator mass spectrometry system based on a cyclotron | |
US6369384B1 (en) | Time-of-flight mass spectrometer with post-deflector filter assembly | |
Pozwolski | A compact laser-driven accelerator of macroparticles | |
WO2007119538A1 (en) | Perturbation device for charged particle circulation system |