[go: up one dir, main page]

JPH01102980A - Semiconductor laser controller - Google Patents

Semiconductor laser controller

Info

Publication number
JPH01102980A
JPH01102980A JP25980687A JP25980687A JPH01102980A JP H01102980 A JPH01102980 A JP H01102980A JP 25980687 A JP25980687 A JP 25980687A JP 25980687 A JP25980687 A JP 25980687A JP H01102980 A JPH01102980 A JP H01102980A
Authority
JP
Japan
Prior art keywords
semiconductor laser
current
drive current
light emitting
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25980687A
Other languages
Japanese (ja)
Inventor
Kouji Nishitoku
西徳 幸次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP25980687A priority Critical patent/JPH01102980A/en
Publication of JPH01102980A publication Critical patent/JPH01102980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To accurately maintain an emission light intensity constant by varying a drive current and a drive current range in response to the temperature characteristic of a semiconductor laser light emitting element. CONSTITUTION:When an emission light intensity is reduced to a drive current Id, it is detected by a photodiode PD, an I/V converter 5 and a comparator 6, and data Dc counted up from reference data is supplied to a D/A converter 2. Thus, since an output current IR decreases, the base potential of a transistor Tr is reduced, the current Id is increased, and a reference emission light intensity is maintained. On the other hand, when the emission light intensity is increased to the current Id, the output current IR is increased. Accordingly, the base potential of the transistor Tr is raised, the current Id is decreased, and the reference emission light intensity is maintained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザ制御装置に関し、半導体レーザ素
子の発光強度を周囲温度に依存すること無く常に一定に
保持させるように制御する半導体レーザ制御装置に関す
る・。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor laser control device, and more particularly, a semiconductor laser control device that controls the emission intensity of a semiconductor laser element so as to always maintain it constant without depending on the ambient temperature. Regarding.

(従来技術) 従来、半導体レーザ制御装置は基本的に第4図に示す構
成となっていた。同装置は、一定値の駆動電流I、を発
生するための電圧/電流変換装置(V/I変換器)と、
該駆動電流1dの半導体レーザ素子LDへの供給を制御
して発光又は非発光を行わせる変調回路を備えている。
(Prior Art) Conventionally, a semiconductor laser control device has basically had the configuration shown in FIG. The device includes a voltage/current converter (V/I converter) for generating a constant drive current I;
A modulation circuit is provided that controls the supply of the drive current 1d to the semiconductor laser element LD to cause it to emit or not emit light.

例えばV/I変換器は同図中の基準電圧源V r @f
とその出力電圧に比例した駆動電流■、を発生するトラ
ンジスタロ1等から成り、変調回路は半導体レーザ素子
LDの両端間に並列接続し映像信号Svoの論理値レベ
ルに応じて高/低のいずれかのインピーダンスに変化す
ることにより半導体レーザ素子LDへの駆動電流■、の
供給を制御するトランジスタQ2等からなっている。即
ち、半導体レーザ素子LDの発光強度は常に7定にして
おき、量子化ステップを矩形波の時間幅で設定する映像
信号5VIIにより半導体レーザ素子LDの発光量(発
光強度と発光時間の積に相当する)を制御して所望の量
子化ステップ数の制御を行うようにしている。
For example, the V/I converter uses the reference voltage source V r @f in the same figure.
The modulation circuit is connected in parallel between both ends of the semiconductor laser element LD, and is set to either high or low depending on the logic level of the video signal Svo. The transistor Q2 and the like control the supply of the drive current (2) to the semiconductor laser element LD by changing its impedance. That is, the light emission intensity of the semiconductor laser device LD is always kept at 7 constant, and the light emission amount of the semiconductor laser device LD (corresponding to the product of the light emission intensity and the light emission time ) to control the desired number of quantization steps.

(発明が解決しようとする問題点) しかしながら、半導体レーザ素子LDは温度依存性を有
し、第5図に示すように、半導体レーザ素子LDへの駆
動電流の闇値lT14(素子LDがレーザ発振を開始す
る電流)および、駆動電流の変化に対する発光強度の変
化率(I/L特性と言う)が周囲温度T4に応じて大き
く変動するため、温度に関係無く常に一定の発光強度に
設定して高精度の分解能を得ることが極めて困難であっ
た。
(Problems to be Solved by the Invention) However, the semiconductor laser device LD has temperature dependence, and as shown in FIG. Since the rate of change in the light emission intensity (current to start) and the change in the drive current (referred to as the I/L characteristic) varies greatly depending on the ambient temperature T4, the light emission intensity should always be set to a constant value regardless of the temperature. It has been extremely difficult to obtain high-precision resolution.

問題点を同図に基づいて更に具体的に述べれば、周囲温
度T、が0℃の時は駆動電流■、が約40mA (閾値
ITHに相当する)から55mAにおいて発光し、周囲
温度T、が25℃の時は駆動電流■。
To explain the problem more concretely based on the figure, when the ambient temperature T is 0°C, the drive current 2, emits light at approximately 40 mA (corresponding to the threshold value ITH) to 55 mA, and when the ambient temperature T, At 25°C, drive current ■.

が約50mAから70mAにおいて発光し、周囲温度T
2が50℃の時は駆動電流I、が約60mAから85m
Aにおいて発光する。したがって、予め特定の周囲温度
T6における駆動電流■、を設定でも、温度によって閾
値■7や、I/L特性のカーブの傾きが変動するので、
高温時と低温時とで光出力制御における精度のバラツキ
を生じ、半導体レーザを光源として画像を再生する所謂
ファクシミリやプリンタ等にあっては、色ムラや所定の
諧調が得られない等の問題を生じる。
emits light at approximately 50mA to 70mA, and the ambient temperature T
When 2 is 50℃, the drive current I is about 60mA to 85mA.
Light is emitted at A. Therefore, even if the drive current (■) at a specific ambient temperature T6 is set in advance, the threshold value (7) and the slope of the I/L characteristic curve will vary depending on the temperature.
There is variation in the precision of optical output control at high and low temperatures, and problems such as color unevenness and the inability to obtain the desired gradation occur in so-called facsimile machines and printers that reproduce images using semiconductor lasers as light sources. arise.

(問題点を解決するための手段) 本発明はこのような問題点に鑑みて成されたものであり
、温度依存性を低減して高精度で直線性の優れた発光特
性を得ることができる半導体レーザ制御装置を提供する
ことを目的とする。
(Means for Solving the Problems) The present invention has been made in view of the above problems, and it is possible to reduce temperature dependence and obtain light emission characteristics with high precision and excellent linearity. The purpose of the present invention is to provide a semiconductor laser control device.

この目的を達成するために本発明は、半導体レーザ発光
素子と、該半導体レーデ発光素子へ駆動電流を供給する
電流供給手段とを有する半導体レーザ制御装置において
、上記電流供給手段は、上記半導体レーザ発光素子の発
光強度を検出する光検出手段と、該検出手段の出力信号
と設定基準信号との誤差を検出して該誤差を零に近づけ
るように駆動電流を増加又は減少させる制御手段と、周
囲温度を検出して温度変化に伴って該誤差値を所定比率
で変更する温度補償手段とを具備し、温度変化に応じて
変化する半導体レーザ発光素子の特性を駆動電流制御範
囲を制御することで温度補償するようにして、常に半導
体レーザ発光素子の発光強度を高精度で一定にするよう
にしたものである。
To achieve this object, the present invention provides a semiconductor laser control device comprising a semiconductor laser light emitting element and a current supply means for supplying a drive current to the semiconductor laser light emitting element, wherein the current supply means a light detection means for detecting the light emission intensity of the element; a control means for detecting an error between the output signal of the detection means and a set reference signal and increasing or decreasing the drive current so as to bring the error closer to zero; and an ambient temperature. and a temperature compensation means for detecting the error value and changing the error value at a predetermined ratio in accordance with temperature changes. By compensating, the emission intensity of the semiconductor laser light emitting element is always kept constant with high precision.

(実施例) 以下、本発明による半導体レーザ制御装置の一実施例を
第1図に基づいて説明する。
(Example) Hereinafter, an example of a semiconductor laser control device according to the present invention will be described based on FIG.

まず構成を説明すると、第1図において、LDは半導体
レーデ発光素子、PDは半導体レーザ発光素子LDより
出力されたレーザ光の一部を受光して発光強度に比例し
た電流■、を出力するフォト・ダイオードである。
First, to explain the configuration, in FIG. 1, LD is a semiconductor laser light emitting device, and PD is a semiconductor laser light emitting device.・It is a diode.

T、はpnp)ランジスタであり、そのエミッタが抵抗
R1を介して電源VCCに接続し、コレクタが半導体レ
ーザ発光素子LDのアノードに接続している。
T is a pnp transistor whose emitter is connected to the power supply VCC via a resistor R1, and whose collector is connected to the anode of the semiconductor laser light emitting device LD.

1は差動増幅器であり、抵抗R2を介してトランジスタ
Trのベースに接続すると共に帰還抵抗R3を介して反
転入力端子に接続する出力端子を有し、非反転入力端子
は電源電源VCCとアース接点との間に直列接続した抵
抗R=、Rsの接続接点Pに接続し、抵抗R3の両端に
は負の温度特性を有するサーミスタ素子Th+が並列に
接続している。
1 is a differential amplifier, which has an output terminal connected to the base of the transistor Tr via a resistor R2 and an inverting input terminal via a feedback resistor R3, and a non-inverting input terminal connected to a power supply VCC and a ground contact. A thermistor element Th+ having a negative temperature characteristic is connected in parallel to both ends of the resistor R3.

2はD/A変換器であり、差動増幅器1の反転入力端子
に接続する出力端子を有すると共に、出力電流Iiの可
変範囲(スパン)を設定するための設定端子RBFと電
源V。Cとの間に相互に並列接続する抵抗R6と負の温
度特性を有するサーミスタ素子Th2が接続している。
2 is a D/A converter, which has an output terminal connected to the inverting input terminal of the differential amplifier 1, and a setting terminal RBF and a power supply V for setting the variable range (span) of the output current Ii. A resistor R6 and a thermistor element Th2 having negative temperature characteristics are connected in parallel with each other.

そして、後述する微調整制御回路7よりの制御データD
、に基づいて出力電流I、を調節しトランジスタT、の
ベース電位を設定することにより半導体レーザ発光素子
LDへの駆動電流■、を微調整する。
Then, control data D from the fine adjustment control circuit 7, which will be described later.
, by adjusting the output current I, and setting the base potential of the transistor T, finely adjusting the drive current I to the semiconductor laser light emitting device LD.

3はNOR回路であり、映像信号svnと同期信号S。3 is a NOR circuit, which receives the video signal svn and the synchronization signal S.

つが供給される。ここで、映像信号svnは量子化ステ
ップに応じた時間幅の矩形信号からなり、例えば量子化
ステップ数を256段階(=28)とする場合、256
種の異なった時間幅の矩形信号となる。
will be supplied. Here, the video signal svn consists of a rectangular signal with a time width corresponding to the quantization step. For example, when the number of quantization steps is 256 (=28), 256
This results in rectangular signals with different time widths.

4は変調回路であり、NOR回路3よりの信号が“L”
レベルの時に出力が高インピーダンスとなってトランジ
スタT、からの駆動電流I、を半導体レーザ発光素子L
Dへ供給させることにより発光させ、NOR回路3より
の信号が“H”レベルの時に出力が低インピーダンスと
なって駆動電流Idを吸い込むことにより半導体レーザ
発光素子LDへの駆動電流I、の供給を停止しその期間
半導体レーザ発光素子LDを非発光状態にする。
4 is a modulation circuit, and the signal from NOR circuit 3 is “L”
level, the output becomes high impedance and the drive current I from the transistor T is transferred to the semiconductor laser light emitting element L.
When the signal from the NOR circuit 3 is at the "H" level, the output becomes low impedance and the drive current Id is sucked, thereby supplying the drive current I to the semiconductor laser light emitting element LD. During this period, the semiconductor laser light emitting device LD is in a non-emitting state.

5は電流/電圧変換器(1/V変換器)であり、フォト
・ダイオードPDより出力された電流工。
5 is a current/voltage converter (1/V converter), and the current output from the photodiode PD.

をそれに反比例した電圧Vつに変換する。即ち、電流工
、が減少するとそれに反比例して電圧VWが増加し、逆
に電流■つが増加した場合は電圧V。
is converted into V voltages that are inversely proportional to it. That is, when the current decreases, the voltage VW increases in inverse proportion to it, and conversely, when the current increases, the voltage V increases.

は減少する。decreases.

6は比較器であり、設定基準電圧V REF とI/V
変換器5の出力電圧V、とを比較し、電圧V。
6 is a comparator, which compares the set reference voltage V REF and I/V
The output voltage V of the converter 5 is compared with the voltage V.

が基準電圧VREF以下となる時に“H′″レベル、逆
の時に“L”レベルとなる比較信号S、Hを出力する。
Comparison signals S and H are output, which are at the "H'" level when the voltage is less than the reference voltage VREF, and which are at the "L" level when vice versa.

即ち、基準電圧V□、は成る特定の周囲温度T、におけ
る駆動電流■、でもって発光が行われた時のI/V変換
器5より出力する出力電圧V。
That is, the output voltage V output from the I/V converter 5 when light is emitted with the reference voltage V□ and the drive current ■ at a specific ambient temperature T.

に等しくしてあり、よってこの温度と駆動電流の時を基
準条件として設定するものである。
Therefore, this temperature and drive current are set as the reference conditions.

7は微調整制御回路でありマイクロ・プロセッサ等を内
蔵する。これは、同期信号S。Kに同期して入力される
比較信号STHが“H”レベルのときは内部レジスタに
格納しである8ビツト長のデジタル・データD。を1カ
ウント・ダウンし、逆の時は1カウント・アップし、該
デジタル・データDoを同期信号ScKに同期してD/
A変換器2に供給する。即ち、上記基準条件のときを示
す基準データD。を予め内部レジスタに記憶しておき、
微調整制御回路7よりの比較信号STHが“H”レベル
のときは該データDCを1カウント・ダウンしてD/A
変換器2に供給することにより半導体レーザ発光素子L
Dの発光強度を抑制し、一方、半導体レーザ発光素子L
Dの発光強度が設定値より減少すると比較器6よりの比
較信号STI+が“L″レベルなるので、この減少を阻
止するために1カウント・アップしたデジタル・データ
DcをD/A変換器2に供給する。
7 is a fine adjustment control circuit which includes a microprocessor and the like. This is the synchronization signal S. When the comparison signal STH input in synchronization with K is at the "H" level, 8-bit digital data D is stored in the internal register. is counted down by 1, and in the opposite case is counted up by 1, and the digital data Do is sent to D/D in synchronization with the synchronization signal ScK.
Supplied to A converter 2. That is, the reference data D indicates when the above reference conditions are met. is stored in an internal register in advance,
When the comparison signal STH from the fine adjustment control circuit 7 is at “H” level, the data DC is counted down by 1 and the D/A
By supplying the converter 2, the semiconductor laser light emitting device L
The emission intensity of D is suppressed, while the semiconductor laser light emitting device L
When the light emission intensity of D decreases below the set value, the comparison signal STI+ from the comparator 6 becomes "L" level, so in order to prevent this decrease, the digital data Dc counted up by 1 is sent to the D/A converter 2. supply

次に、かかる実施例の作動を説明する。Next, the operation of this embodiment will be explained.

駆動電流I、に対して発光強度が減少すると、この発光
強度の減少はフォト・ダイオードPD。
When the emission intensity decreases with respect to the drive current I, this decrease in emission intensity is caused by the photodiode PD.

I/V変換器5及び比較器6によって検出され、基準の
データよりもカウント・アップされたデータDcがD/
A変換器2に供給される。これにより、出力電流Itが
減少するのでトランジスタT、のベース電位が下がり、
駆動電流I、が増加して基準の発光強度が維持される。
The data Dc detected by the I/V converter 5 and the comparator 6 and counted up from the reference data is
It is supplied to the A converter 2. As a result, the output current It decreases, so the base potential of the transistor T decreases,
The drive current I increases to maintain the reference light emission intensity.

一方、駆動電流Idに対して発光強度が増加すると、こ
の発光強度の増加はフォト・ダイオードPD、I/V変
換器5及び比較器6によって検出され、基準のデータよ
りもカウント・ダウンされたデータDcがD/A変換器
2に供給される。これにより、出力電流T、が増加する
のでトランジスタT、のベース電位が上がり、駆動電流
I、が減少して基準の発光強度が維持される。
On the other hand, when the emission intensity increases with respect to the drive current Id, this increase in emission intensity is detected by the photodiode PD, the I/V converter 5, and the comparator 6, and the data is counted down from the reference data. Dc is supplied to the D/A converter 2. As a result, the output current T increases, the base potential of the transistor T increases, the drive current I decreases, and the reference light emission intensity is maintained.

ここで、半導体レーザ発光素子LDは、第2図に示すよ
うな温度依存性を有するが、サーミスタ素子Thlが温
度の上昇を検出すると抵抗R3とサーミスタ素子Thl
の並列抵抗値が減少し、差動増幅器lの非反転入力端子
Pの電位を下げるので、半導体レーザ素子LDへの駆動
電流の閾値rtoを第2図の右側へ移動させることとな
る。逆に、温度が下降すると抵抗R3とサーミスタ素子
T’h+の並列抵抗値が増加し、差動増幅器1の非反転
入力端子Pの電位が上がり、半導体レーザ発光素子LD
への駆動電流の閾値ITHを第2図の左側へ移動させる
こととなる。
Here, the semiconductor laser light emitting device LD has temperature dependence as shown in FIG. 2, but when the thermistor element Thl detects a rise in temperature, the resistor R3
Since the parallel resistance value of is decreased and the potential of the non-inverting input terminal P of the differential amplifier l is lowered, the threshold value rto of the drive current to the semiconductor laser element LD is moved to the right side in FIG. Conversely, when the temperature decreases, the parallel resistance value of resistor R3 and thermistor element T'h+ increases, the potential of non-inverting input terminal P of differential amplifier 1 rises, and semiconductor laser light emitting element LD
This results in moving the threshold value ITH of the drive current to the left side in FIG.

一方、サーミスタ素子Th□が温度の上昇を検出すると
抵抗R6とサーミスタ素子Th□の並列抵抗値が減少し
、D/A変換器2の端子REFに流れ込む電流が増加す
るので出力電流■、の可変範囲を拡大し、逆に、温度が
下降すると抵抗R6とサーミスタ素子Th□の並列抵抗
値が増加し、D/A変換器2の端子REFに流れ込む電
流が減少するので出力電流IRの可変範囲を狭める。即
ち、サーミスタ素子Th2は半導体レーザ発光素子LD
の工/L特性に応じて出力電流りの可変範囲を設定する
On the other hand, when the thermistor element Th□ detects a rise in temperature, the parallel resistance value of the resistor R6 and thermistor element Th□ decreases, and the current flowing into the terminal REF of the D/A converter 2 increases, so that the output current ■ is variable. Conversely, when the temperature decreases, the parallel resistance value of the resistor R6 and thermistor element Th□ increases, and the current flowing into the terminal REF of the D/A converter 2 decreases, so the variable range of the output current IR is increased. Narrow down. That is, the thermistor element Th2 is the semiconductor laser light emitting element LD.
The variable range of the output current is set according to the power/L characteristics.

このように、サーミスタ素子Th、、Th2により駆動
電流■、は第2図に示す半導体レーザ発光素子LDの温
度特性に応じた制御が成されるので、例えば、同図中に
示すように、周囲温度T、が0℃の時は約40mAない
し55mAの範囲X1 に、周囲温度T、が25℃の時
は約50mAないし70mAの範囲x2に、周囲温度T
、が50℃の時は約6QmAないし85mAの範囲X、
に設定され、温度が変化しても常に発光強度を一定にす
ることが可能となる。
In this way, the thermistor elements Th, , Th2 control the driving current (2) according to the temperature characteristics of the semiconductor laser light emitting device LD shown in FIG. When the temperature T is 0°C, the range X1 is approximately 40 mA to 55 mA, and when the ambient temperature T is 25°C, the range X2 is approximately 50 mA to 70 mA.
When , is 50℃, the range X is approximately 6QmA to 85mA,
It is possible to keep the luminescence intensity constant even when the temperature changes.

第3図は他の実施例を示すブロック図であり、第1図に
示す実施例との相違点は正の温度特性を有するサーミス
タ素子Th3. Th4を用いた点にある。即ち、サー
ミスタ素子Th3は第1図のサーミスタ素子Thlに相
当し、温度の上昇に伴って差動増幅器1の非反転入力端
子Pの電位を低下させ、サーミスタ素子Th4は第1図
のサーミスタ素子T’h2に相当し、温度の上昇に伴っ
て差動増幅器1の増幅率を低下させることにより第2図
の特性に従って駆動電流I、を制御し、発光強度を一定
に維持する。
FIG. 3 is a block diagram showing another embodiment, and the difference from the embodiment shown in FIG. 1 is that the thermistor element Th3. The point is that Th4 is used. That is, the thermistor element Th3 corresponds to the thermistor element Thl in FIG. 1, and lowers the potential of the non-inverting input terminal P of the differential amplifier 1 as the temperature rises, and the thermistor element Th4 corresponds to the thermistor element Thl in FIG. By lowering the amplification factor of the differential amplifier 1 as the temperature rises, the drive current I is controlled according to the characteristics shown in FIG. 2, and the emission intensity is maintained constant.

(発明の効果) 以上説明したように本発明によれば、半導体レーザ発光
素子の温度特性に応じて駆動電流と駆動電流範囲を変化
させるようにしたので、常に高精度で発光強度を一定に
維持することができ、画像形成装置等のための優れた光
源を提供することが出来る。
(Effects of the Invention) As explained above, according to the present invention, the drive current and drive current range are changed according to the temperature characteristics of the semiconductor laser light emitting device, so that the light emission intensity is always kept constant with high precision. This makes it possible to provide an excellent light source for image forming apparatuses and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体レーザ制御装置の一実施例
を示すブロック図、第2図は該実施例の作動を説明する
ための特性曲線図、第3図は本発明の他の実施例を示す
ブロック図、第4図は従来例を示す回路図、第5図は半
導体レーザ素子の温度依存性を示す特性曲線図である。 1:差動増幅器 2:D/A変換器 3:NOR回路 4:変調回路 5:I/V変換器 6:比較器 7:微調整制御回路 LD:半導体レーザ発光素子 PD:フォト・ダイオード T、:pnp)ランジスタ Thl、  Th2.  Th3.  Th4:サーミ
スタ素子VREF  :基準電圧
FIG. 1 is a block diagram showing one embodiment of a semiconductor laser control device according to the present invention, FIG. 2 is a characteristic curve diagram for explaining the operation of this embodiment, and FIG. 3 is a block diagram showing another embodiment of the present invention. 4 is a circuit diagram showing a conventional example, and FIG. 5 is a characteristic curve diagram showing temperature dependence of a semiconductor laser element. 1: Differential amplifier 2: D/A converter 3: NOR circuit 4: Modulation circuit 5: I/V converter 6: Comparator 7: Fine adjustment control circuit LD: Semiconductor laser light emitting device PD: Photo diode T, :pnp) transistors Thl, Th2. Th3. Th4: Thermistor element VREF: Reference voltage

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザ発光素子と、該半導体レーザ発光素
子へ駆動電流を供給する電流供給手段とを有する半導体
レーザ制御装置において、前記電流供給手段は、前記半
導体レーザ発光素子の発光強度を検出する光検出手段と
、該検出手段の出力信号と設定基準信号との誤差を検出
し、該誤差を零に近づけるように駆動電流を増加又は減
少させる制御手段と、周囲温度を検出し、温度変化に伴
って該誤差値を所定比率で変更する温度補償手段とを具
備することを特徴とする半導体レーザ制御装置。
(1) In a semiconductor laser control device having a semiconductor laser light emitting element and a current supply means for supplying a driving current to the semiconductor laser light emitting element, the current supply means is configured to provide a light source for detecting the emission intensity of the semiconductor laser light emitting element. a detection means, a control means for detecting an error between the output signal of the detection means and a set reference signal, and increasing or decreasing the drive current so as to bring the error closer to zero; and temperature compensation means for changing the error value at a predetermined ratio.
(2)前記温度補償手段は、負または正の温度特性を有
するサーミスタを有し、該サーミスタの出力変化に応じ
て前記誤差値を変更することにより温度上昇に伴って該
駆動電流を所定比率で増加させることを特徴とする特許
請求の範囲第1項に記載の半導体レーザ制御装置。
(2) The temperature compensating means has a thermistor having negative or positive temperature characteristics, and by changing the error value according to a change in the output of the thermistor, the drive current is adjusted at a predetermined ratio as the temperature rises. The semiconductor laser control device according to claim 1, wherein the semiconductor laser control device increases the number of semiconductor lasers.
JP25980687A 1987-10-16 1987-10-16 Semiconductor laser controller Pending JPH01102980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25980687A JPH01102980A (en) 1987-10-16 1987-10-16 Semiconductor laser controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25980687A JPH01102980A (en) 1987-10-16 1987-10-16 Semiconductor laser controller

Publications (1)

Publication Number Publication Date
JPH01102980A true JPH01102980A (en) 1989-04-20

Family

ID=17339259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25980687A Pending JPH01102980A (en) 1987-10-16 1987-10-16 Semiconductor laser controller

Country Status (1)

Country Link
JP (1) JPH01102980A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945951B2 (en) * 1980-06-30 1984-11-09 アロカ株式会社 ionization chamber
JPS62124576A (en) * 1985-11-26 1987-06-05 Ricoh Co Ltd Output adjusting device for semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945951B2 (en) * 1980-06-30 1984-11-09 アロカ株式会社 ionization chamber
JPS62124576A (en) * 1985-11-26 1987-06-05 Ricoh Co Ltd Output adjusting device for semiconductor laser

Similar Documents

Publication Publication Date Title
US7061950B2 (en) Drive circuit and drive method of semiconductor laser module provided with electro-absorption type optical modulator
US7352786B2 (en) Apparatus for driving light emitting element and system for driving light emitting element
US6466595B2 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
JP2704133B2 (en) Laser diode drive circuit
US6559995B2 (en) Optical transmission method and optical transmitter with temperature compensation function
JPH07321392A (en) Laser diode automatic temperature control circuit and electric / optical signal conversion unit using the same
JPWO2013140587A1 (en) Optical transmitter
US7180919B2 (en) Light emitting device drive circuit
US7812834B2 (en) DC stabilization circuit for organic electroluminescent display device and power supply using the same
JP4581346B2 (en) Light emitting element driving device and image forming apparatus
JPH01102980A (en) Semiconductor laser controller
JP2744043B2 (en) Semiconductor laser controller
JP3318118B2 (en) Semiconductor laser controller
JPH11298077A (en) Semiconductor laser controller
JP2644722B2 (en) Image forming device
JP2000261090A (en) Laser drive circuit
JP2744044B2 (en) Semiconductor laser controller
JPH05129706A (en) Semiconductor laser driving control circuit
JP2840273B2 (en) Semiconductor laser controller
JPH08162700A (en) Semiconductor laser drive circuit
JPH01149071A (en) Semiconductor laser control device
JP2840275B2 (en) Semiconductor laser controller
KR940004103Y1 (en) Constant light output control circuit
JPS6251279A (en) Semiconductor-laser driving circuit
JP2744045B2 (en) Semiconductor laser controller