JP4483510B2 - A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting - Google Patents
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Download PDFInfo
- Publication number
- JP4483510B2 JP4483510B2 JP2004290049A JP2004290049A JP4483510B2 JP 4483510 B2 JP4483510 B2 JP 4483510B2 JP 2004290049 A JP2004290049 A JP 2004290049A JP 2004290049 A JP2004290049 A JP 2004290049A JP 4483510 B2 JP4483510 B2 JP 4483510B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- inclination angle
- degrees
- hard coating
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005520 cutting process Methods 0.000 title claims description 52
- 239000011195 cermet Substances 0.000 title claims description 40
- 239000011247 coating layer Substances 0.000 title claims description 31
- 239000010410 layer Substances 0.000 claims description 141
- 238000009826 distribution Methods 0.000 claims description 30
- 239000010936 titanium Substances 0.000 claims description 24
- 239000012298 atmosphere Substances 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 16
- 238000005229 chemical vapour deposition Methods 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 239000012495 reaction gas Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 239000011295 pitch Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 239000000843 powder Substances 0.000 description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910001018 Cast iron Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 102220005308 rs33960931 Human genes 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、特に鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed intermittent cutting of steel or cast iron.
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム(以下、Al2O3で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的衝撃の加わる高速断続切削に用いた場合、これを構成する硬質被覆層は下部層のTi化合物層による高温強度、同上部層のAl2O3層による高温硬さおよび耐熱性を具備するものの、前記Ti化合物層による高温強度が不十分であるために、機械的衝撃に対して満足に対応することができず、この結果硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, cutting has been on the trend of higher speed. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. When it is used for high-speed intermittent cutting with repeated mechanical impacts at extremely short pitches, the hard coating layer that composes this is the high-temperature strength of the lower Ti compound layer and the high-temperature hardness of the upper Al 2 O 3 layer. However, since the high-temperature strength of the Ti compound layer is insufficient, it cannot respond satisfactorily to mechanical impacts. Since the ping (small chipping) tends to occur, at present, leading to a relatively short time service life.
そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の耐チッピング性向上をはかるべく、これの下部層であるTi化合物層に着目し、研究を行った結果、
上記の被覆サーメット工具の硬質被覆層の下部層であるTi化合物層のうちのTiCN層(以下、従来TiCN層という)は、通常の化学蒸着装置にて、
反応ガス組成−体積%で、TiCl4:2〜10%、CH3CN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件で形成されるが、上記従来TiCN層の形成に先だって、
反応ガス組成−体積%で、TiCl4:0.69〜1%、CH4:1〜5%、H2:20〜40%、N2:5〜15%、Ar:残り、
反応雰囲気温度:780〜820℃、
反応雰囲気圧力:4〜8kPa、
成膜時間:0.8〜2.0時間、
の条件で、望ましくは0.8〜1.2μmの平均層厚で種薄膜としてのTiCN薄膜(以下、TiCN種薄膜という)を形成し、このTiCN種薄膜の上に上記の従来TiCN層の形成条件と同じ条件でTiCN層を形成すると、形成時の前記TiCN層は、前記TiCN種薄膜の結晶配列に著しく影響を受け、これを十分に履歴するようになり、しかもこの結果形成されたTiCN層(以下、履歴TiCN層という)は、上記の従来TiCN層に比して、一段とすぐれた高温強度を有し、すぐれた耐機械的衝撃性を具備するようになるので、硬質被覆層の上部層が前記Al2O3層、下部層が上記Ti化合物層で構成され、かつ前記Ti化合物層のうちの1層が前記履歴TiCN層からなる被覆サーメット工具は、特に激しい機械的衝撃を伴なう高速断続切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
In view of the above, the present inventors conducted research by paying attention to the Ti compound layer, which is the lower layer, in order to improve the chipping resistance of the hard coating layer of the above-described coated cermet tool. result,
Of the Ti compound layer that is the lower layer of the hard coating layer of the above coated cermet tool, the TiCN layer (hereinafter referred to as the conventional TiCN layer) is a normal chemical vapor deposition apparatus.
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
However, prior to the formation of the conventional TiCN layer,
Reaction gas composition - by volume%, TiCl 4: 0.69 ~1% , CH 4: 1~5%, H 2: 20~40%, N 2: 5~15%, Ar: the remaining,
Reaction atmosphere temperature: 780-820 ° C.
Reaction atmosphere pressure: 4-8 kPa,
Deposition time: 0.8 to 2.0 hours
The TiCN thin film as a seed thin film (hereinafter referred to as a TiCN seed thin film) is preferably formed with an average layer thickness of 0.8 to 1.2 μm under the above conditions, and the above-mentioned conventional TiCN layer is formed on the TiCN seed thin film. When the TiCN layer is formed under the same conditions, the TiCN layer at the time of formation is significantly affected by the crystal arrangement of the TiCN seed thin film, and the TiCN layer is formed as a result. (Hereinafter referred to as a history TiCN layer) has a higher high-temperature strength and superior mechanical impact resistance compared to the above-described conventional TiCN layer. The coated cermet tool in which the Al 2 O 3 layer and the lower layer are composed of the Ti compound layer and one of the Ti compound layers is the hysteresis TiCN layer is accompanied by particularly severe mechanical impact. Even in high-speed intermittent cutting, the hard coating layer exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.
(b)上記の被覆サーメット工具の硬質被覆層の下部層を構成する従来TiCN層と履歴TiCN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記測定範囲を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{013}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図3に例示される通り、{013}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記履歴TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さが上記TiCN種薄膜形成時の反応雰囲気温度および反応雰囲気圧力によって変化し、グラフ横軸の傾斜角区分位置が同じく反応ガスのTiCl4含有量によって変化すること。
(B) About the conventional TiCN layer and the history TiCN layer that constitute the lower layer of the hard coating layer of the above coated cermet tool,
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams of FIGS. 1A and 1B, electron beams are individually applied to crystal grains having a cubic crystal lattice existing within the measurement range of the surface polished surface. Irradiate and use an electron backscatter diffraction image apparatus to measure the measurement range at an interval of 0.1 μm / step with respect to the normal of the surface polished surface of the {013} plane that is the crystal plane of the crystal grain The inclination angle formed by the normal line is measured, and among the measurement inclination angles, the measurement inclination angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, and the frequency existing in each division is determined. In the case of creating the aggregated inclination angle number distribution graph, the conventional TiCN layer is unbiased in the range of the measured inclination angle of the {013} plane within the range of 0 to 45 degrees as illustrated in FIG. While the tilt angle number distribution graph is shown, the history TiCN layer is shown in FIG. As illustrated, a sharp maximum peak appears at a specific position in the tilt angle section, and the sharp maximum peak has a height that appears in the tilt angle section on the horizontal axis of the graph, and the reaction atmosphere temperature and reaction during the formation of the TiCN seed thin film. It changes according to the atmospheric pressure, and the inclination angle division position on the horizontal axis of the graph also changes depending on the TiCl 4 content of the reaction gas.
(c)上記の通り、上記TiCN種薄膜形成に際して、上記反応ガスにおけるTiCl4の含有量を0.69〜1%とすることにより、上記履歴TiCN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の20.00〜24.25度の範囲内に現れ、かつ、反応雰囲気温度を780〜820℃、反応雰囲気圧力を4〜8kPaとすることにより、20〜30度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の62〜83%の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、TiCl4の含有量が0.69%未満になると、上記履歴TiCN層の傾斜角度数分布グラフで、最高ピークの傾斜角区分位置が24.25度を越えた位置に現れるようになり、一方その含有量が1%を越えると逆に最高ピークの傾斜角区分位置が20度未満の位置になり、また、反応雰囲気温度および反応雰囲気圧力に関しては、温度が780℃未満になったり、圧力が4kPa未満になると、前記履歴TiCN層の傾斜角度数分布グラフにおける20〜30度の範囲内の傾斜角区分に存在する度数数割合が83%を越えて高くなり過ぎて、高温硬さが急激に低下するようになり、一方温度が820℃を越えたり、圧力が8kPaを越えたりすると、同度数割合が62%未満になってしまい、所望のすぐれた高温強度を確保することができないこと。
以上(a)〜(c)に示される研究結果を得たのである。
(C) As described above, when the TiCN seed thin film is formed, by setting the content of TiCl 4 in the reaction gas to 0.69 to 1%, the gradient angle number distribution graph of the history TiCN layer has a sharp maximum. The peak appears in the range of 20.00 to 24.25 degrees of the tilt angle section, and the reaction atmosphere temperature is 780 to 820 ° C. and the reaction atmosphere pressure is 4 to 8 kPa, so that the peak is within the range of 20 to 30 degrees. In the inclination angle distribution graph, the total of the frequencies existing in the inclination angle section occupies a ratio of 62 to 83 % of the entire frequency in the inclination angle distribution graph. In this case, according to the test result, When the content of TiCl 4 is less than 0.69%, at an inclined angle frequency distribution graph of the history TiCN layer, it appears at a position where the inclination angle division position of the highest peak exceeds 24.25 degrees Uninari, while its content is in a position lower than the inclined angle division position of the highest peak in the opposite 20 degrees exceeds 1%, With respect to the reaction atmosphere temperature and reaction atmosphere pressure, temperature becomes lower than 780 ° C. When the pressure is less than 4 kPa, the frequency ratio existing in the tilt angle section in the range of 20 to 30 degrees in the tilt angle distribution graph of the hysteresis TiCN layer becomes too high exceeding 83 %, and the high temperature hard On the other hand, if the temperature exceeds 820 ° C. or the pressure exceeds 8 kPa, the power ratio will be less than 62 %, and the desired excellent high-temperature strength can be ensured. Things impossible.
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有するAl2O3層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆サーメット製切削工具において、
上記(a)のTi化合物層のうちの1層を、
反応ガス組成−体積%で、TiCl 4 :0.69〜1%、CH 4 :1〜5%、H 2 :20〜40%、N 2 :5〜15%、Ar:残り、
反応雰囲気温度:780〜820℃、
反応雰囲気圧力:4〜8kPa、
成膜時間:0.8〜2.0時間、
の条件で、0.8〜1.2μmの平均層厚に化学蒸着形成されたTiCN種薄膜を介して、
反応ガス組成−体積%で、TiCl 4 :2〜10%、CH 3 CN:0.5〜3%、N 2 :10〜30%、H 2 :残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(従来蒸着条件に相当する条件)で、2.5〜15μmの平均層厚に化学蒸着形成してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記測定範囲を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{013}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、20.00〜24.25度の範囲内の傾斜角区分に最高ピークが存在すると共に、20〜30度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の62〜83%の割合を占める傾斜角度数分布グラフを示す履歴TiCN層、
で構成してなる、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of two or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, all formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. Ti compound layer,
(B) Al 2 O 3 layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition,
In the cutting tool made of surface-coated cermet formed by forming the hard coating layer composed of (a) and (b) above,
One layer of the Ti compound layer of the above (a),
Reaction gas composition - by volume%, TiCl 4: 0.69~1%, CH 4: 1~5%, H 2: 20~40%, N 2: 5~15%, Ar: the remaining,
Reaction atmosphere temperature: 780-820 ° C.
Reaction atmosphere pressure: 4-8 kPa,
Deposition time: 0.8 to 2.0 hours
Under the conditions, through a TiCN seed thin film formed by chemical vapor deposition to an average layer thickness of 0.8 to 1.2 μm,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Under the conditions (corresponding to the conventional vapor deposition conditions), chemical vapor deposition with an average layer thickness of 2.5 to 15 μm ,
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the measurement range is set to 0 using an electron backscatter diffraction image apparatus. The inclination angle formed by the normal of the {013} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface polished surface at an interval of 1 μm / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angle within the range of ˜45 degrees into the pitches of 0.25 degrees and totaling the frequencies existing in each division, 20.00 to 24.25 The highest peak is present in the inclination angle section within the range of degrees, and the sum of the frequencies existing in the inclination angle section within the range of 20 to 30 degrees is a ratio of 62 to 83 % of the entire degrees in the inclination angle distribution graph. Shows the distribution graph of the number of inclination angles History TiCN layer,
It is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting.
つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層であるAl2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer itself has high-temperature strength, and the presence of the Ti compound layer makes the hard coating layer have high-temperature strength, and firmly adheres to both the tool base and the upper Al 2 O 3 layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited, while the total average layer thickness is If it exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly by high-speed intermittent cutting accompanied by generation of high heat, which causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm.
(b)履歴TiCN層(下部層)
上記の通り、上記TiCN種薄膜形成に際して、上記反応ガスにおけるTiCl4の含有量を0.69〜1%とすることにより、傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の20.00〜24.25度の範囲内に現れ、かつ、反応雰囲気温度を780〜820℃、反応雰囲気圧力を4〜8kPaとすることにより、20〜30度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の62〜83%の割合を占める傾斜角度数分布グラフを示す履歴TiCN層が形成されるようになり、この結果として前記履歴TiCN層はすぐれた高温強度を具備するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) History TiCN layer (lower layer)
As described above, when the TiCN seed thin film is formed, by setting the content of TiCl 4 in the reaction gas to 0.69 to 1%, the sharpest peak in the tilt angle number distribution graph is 20. The frequency which exists in the range of 20-30 degrees by appearing in the range of 00-24.25 degree | times , and setting the reaction atmosphere temperature to 780-820 degreeC and the reaction atmosphere pressure to 4-8 kPa. The hysteresis TiCN layer showing the inclination angle frequency distribution graph that occupies a ratio of 62 to 83% of the entire frequency in the inclination angle frequency distribution graph is formed, and as a result, the history TiCN layer has an excellent high temperature. However, if the average layer thickness is less than 2.5 μm, the desired excellent high-temperature strength cannot be provided in the hard coating layer, whereas the average If the thickness exceeds 15 [mu] m, easily heat the plastic deformation which causes partial wear is generated, since it becomes worn accelerates, determined the average layer thickness and 2.5~15Myuemu.
(c)Al2O3層(上部層)
Al2O3層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Al 2 O 3 layer (upper layer)
The Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, the hard coating layer has sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm.
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.
この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高い鋼や鋳鉄などの高速断続切削でも、硬質被覆層の下部層のうちの1層である履歴TiCN層がすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。 This invention-coated cermet tool has a high-temperature strength in which the hysteresis TiCN layer, which is one of the lower layers of the hard coating layer, is excellent even in high-speed intermittent cutting such as steel and cast iron with extremely high mechanical and thermal shock, Since it exhibits excellent chipping resistance, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A,D,Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Then, blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. Is vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge is subjected to honing of R: 0.07 mm. -Tool bases A, D, and E made of WC-base cemented carbide having a throwaway tip shape specified in CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体b,c,eを形成した。 Further, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, TaC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm. , And Ni powder, these raw material powders are blended in the blending composition shown in Table 2, wet mixed with a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The powder is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm to achieve ISO standard / CNMG120212. The tool bases b, c and e made of TiCN base cermet having the following chip shape were formed.
つぎに、これらの工具基体A,D,Eおよび工具基体b,c,eの表面に、通常の化学蒸着装置を用い、表3に示される条件にて、硬質被覆層の下部層としてTi化合物層を形成し、この場合、前記Ti化合物層のうちの履歴TiCN層を形成するに際しては、まず表4に示される条件、すなわち試験結果に基づいて定められた目標履歴TiCN層に対する種薄膜a〜eの条件でTiCN種薄膜を形成し、引続いて、上記の通り表3に示される従来TiCN層の形成条件と同じ条件で履歴TiCN層を、表5に示される組み合わせおよび目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてAl2O3層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜6をそれぞれ製造した。 Next, on the surfaces of these tool bases A, D, E and tool bases b, c, e, a Ti chemical compound is used as a lower layer of the hard coating layer under the conditions shown in Table 3 using a normal chemical vapor deposition apparatus. forming a layer, this case, in forming the history TiCN layer of said Ti compound layer is first conditions shown in Table 4, i.e. seed film a~ against target history TiCN layer defined on the basis of the test results A TiCN seed thin film is formed under the conditions e , and subsequently, a history TiCN layer is deposited under the same conditions as the conventional TiCN layer formation conditions shown in Table 3 as described above, with the combinations and target layer thicknesses shown in Table 5. formed, then again under the conditions shown in Table 3, the present invention coated cermet tools by also in combination shown in Table 5, and to deposit formed at the target layer thickness of the Al 2 O 3 layer as an upper layer 1-6 It was produced, respectively.
また、比較の目的で、表6に示される通り、硬質被覆層の下部層および上部層として同じく表3に示される条件で、同じく表6に示される目標層厚のTi化合物層およびAl2O3層を蒸着形成することにより従来被覆サーメット工具1〜6をそれぞれ製造した。 For comparison purposes, as shown in Table 6, under the conditions shown in Table 3 as the lower and upper layers of the hard coating layer, the Ti compound layer and Al 2 O having the target layer thickness shown in Table 6 are also used. Conventionally coated cermet tools 1 to 6 were respectively produced by vapor-depositing three layers.
ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する履歴TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の履歴TiCN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{013}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, with respect to the hysteresis TiCN layer and the conventional TiCN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool, the number of tilt angles is measured using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Each distribution graph was created.
That is, the inclination angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the surfaces of the hysteresis TiCN layer and the conventional TiCN layer are polished surfaces, and 70 ° An electron backscatter diffraction image apparatus is used by irradiating an electron beam with an acceleration voltage of 15 kV at an incident angle with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. , Measuring the inclination angle formed by the normal of the {013} plane, which is the crystal plane of the crystal grain, with respect to the normal of the polished surface at an interval of 0.1 μm / step in a region of 30 × 50 μm, Based on the measurement results, the measurement inclination angles within the range of 0 to 45 degrees out of the measurement inclination angles are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are tabulated. Created by.
この結果得られた各種の改質TiCN層および従来TiCNの傾斜角度数分布グラフにおいて、{013}面が最高ピークを示す傾斜角区分、並びに20〜30度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表5,6にそれぞれ示した。 In the graphs of slope angle distribution of various modified TiCN layers and conventional TiCN obtained as a result of this, the {013} plane exists in the slope section where the highest peak is present, and the slope section within the range of 20 to 30 degrees. Tables 5 and 6 show the ratios of the tilt angle numbers to the tilt angle number distribution graph as a whole.
上記の各種の傾斜角度数分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆サーメット工具の履歴TiCN層は、いずれも{013}面の測定傾斜角の分布が20.00〜24.25度の範囲内の傾斜角区分に最高ピークが現れ、かつ20〜30度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が62〜83%である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の従来TiCN層は、いずれも{013}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、20〜30度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具4の履歴TiCN層の傾斜角度数分布グラフ、図3は、従来被覆サーメット工具4の従来TiCN層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle number distribution graphs, as shown in Tables 5 and 6, the history TiCN layer of the coated cermet tool of the present invention has a distribution of measured inclination angles on the {013} plane of 20.00 to 24. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of 25 degrees and the ratio of the inclination angle numbers existing in the inclination angle section within the range of 20 to 30 degrees is 62 to 83%. On the other hand, the conventional TiCN layer of the conventional coated cermet tool is unbiased within the range of 0 to 45 degrees of the measured inclination angle of the {013} plane, and there is no highest peak. The inclination angle number distribution graph in which the ratio of the inclination angle number existing in the inclination angle section within the range of 30 degrees is 30% or less was also shown.
FIG. 2 is a graph showing the inclination angle number distribution of the history TiCN layer of the coated cermet tool 4 of the present invention, and FIG. 3 is a graph showing the inclination angle number distribution graph of the conventional TiCN layer of the conventional coated cermet tool 4 .
さらに、上記の本発明被覆サーメット工具1〜6および従来被覆サーメット工具1〜6について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層とAl2O3層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 6 and the conventional coated cermet tools 1 to 6 , the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of a Ti compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜6および従来被覆サーメット工具1〜6について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min、
切り込み:1.5mm、
送り:0.20mm/rev、
切削時間: 分、
の条件(切削条件A)での合金鋼の乾式高速断続切削試験(通常の切削速度は220m/min)、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min、
切り込み:2.0mm、
送り:0.25mm/rev、
切削時間:10分、
の条件(切削条件B)での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min、
切り込み:2.0mm、
送り:0.40mm/rev、
切削時間:10分、
の条件(切削条件C)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は220m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 6 and the conventional coated cermet tools 1 to 6 are as follows:
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 360 m / min,
Incision: 1.5mm,
Feed: 0.20mm / rev,
Cutting time: minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 220 m / min) of alloy steel under the above conditions (cutting condition A),
Work material: JIS / S50C lengthwise equal 4 round grooved round bars,
Cutting speed: 360 m / min,
Cutting depth: 2.0 mm
Feed: 0.25mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (cutting condition B) (normal cutting speed is 250 m / min),
Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 360 m / min,
Cutting depth: 2.0 mm
Feed: 0.40mm / rev,
Cutting time: 10 minutes,
A dry high-speed intermittent cutting test (normal cutting speed is 220 m / min) of ductile cast iron under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.
表5〜7に示される結果から、本発明被覆サーメット工具1〜6は、いずれも硬質被覆層の下部層のうちの1層が、{013}面の傾斜角が20.00〜24.25度の範囲内の傾斜角区分で最高ピークを示すと共に、20〜30度の傾斜角区分範囲内に存在する度数の合計割合が62〜83%を占める傾斜角度数分布グラフを示す履歴TiCN層で構成され、機械的衝撃がきわめて高い鋼や鋳鉄の高速断続切削でも、前記履歴TiCN層がすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの1層が、{013}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層で構成された従来被覆サーメット工具1〜6においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, in the coated cermet tools 1 to 6 of the present invention, one of the lower layers of the hard coating layer has an inclination angle of {013} plane of 20.00 to 24.25. In the history TiCN layer showing an inclination angle distribution graph showing the highest peak in the inclination angle section within the range of degrees and the total ratio of the frequencies existing in the inclination angle section range of 20 to 30 degrees occupying 62 to 83 % Even in high-speed intermittent cutting of steel and cast iron that are configured and have extremely high mechanical impact, the hysteresis TiCN layer has excellent high-temperature strength and excellent chipping resistance, so chipping at the cutting edge is extremely significant. In contrast to being suppressed and exhibiting excellent wear resistance, one of the lower layers of the hard coating layer has an unbiased distribution of measured inclination angles on the {013} plane within the range of 0 to 45 degrees. , Tilt angle several minutes without the highest peak In the conventional coated cermet tools 1 to 6 composed of the conventional TiCN layer showing the fabric graph, the mechanical impact resistance of the hard coating layer is insufficient in high-speed intermittent cutting, so that the cutting edge portion has chipping. It is clear that it occurs and reaches the service life in a relatively short time.
上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高温強度が要求される高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention has excellent chipping resistance not only in continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but also in high-speed intermittent cutting that particularly requires high-temperature strength. Since it exhibits excellent cutting performance over a long period of time, it can sufficiently satisfactorily cope with higher performance of the cutting device, labor saving and energy saving of cutting, and lower cost.
Claims (1)
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆サーメット製切削工具において、
上記(a)のTi化合物層のうちの1層を、
反応ガス組成−体積%で、TiCl 4 :0.69〜1%、CH 4 :1〜5%、H 2 :20〜40%、N 2 :5〜15%、Ar:残り、
反応雰囲気温度:780〜820℃、
反応雰囲気圧力:4〜8kPa、
成膜時間:0.8〜2.0時間、
の条件で、0.8〜1.2μmの平均層厚に化学蒸着形成された種薄膜としての炭窒化チタン薄膜を介して、
反応ガス組成−体積%で、TiCl 4 :2〜10%、CH 3 CN:0.5〜3%、N 2 :10〜30%、H 2 :残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(従来蒸着条件に相当する条件)で、2.5〜15μmの平均層厚に化学蒸着形成してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記測定範囲を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{013}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、20.00〜24.25度の範囲内の傾斜角区分に最高ピークが存在すると共に、20〜30度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の62〜83%の割合を占める傾斜角度数分布グラフを示す炭窒化チタン層、
で構成したことを特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, all formed by chemical vapor deposition, and 3 A Ti compound layer having a total average layer thickness of ˜20 μm,
(B) an aluminum oxide layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
In the cutting tool made of surface-coated cermet formed by forming the hard coating layer composed of (a) and (b) above,
One layer of the Ti compound layer of the above (a),
Reaction gas composition - by volume%, TiCl 4: 0.69~1%, CH 4: 1~5%, H 2: 20~40%, N 2: 5~15%, Ar: the remaining,
Reaction atmosphere temperature: 780-820 ° C.
Reaction atmosphere pressure: 4-8 kPa,
Deposition time: 0.8 to 2.0 hours
Under the conditions, through the titanium carbonitride thin film as a seed thin film formed by chemical vapor deposition to an average layer thickness of 0.8 to 1.2 μm,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Under the conditions (corresponding to the conventional vapor deposition conditions), chemical vapor deposition with an average layer thickness of 2.5 to 15 μm ,
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the measurement range is set to 0 using an electron backscatter diffraction image apparatus. The inclination angle formed by the normal of the {013} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface polished surface at an interval of 1 μm / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angle within the range of ˜45 degrees into the pitches of 0.25 degrees and totaling the frequencies existing in each division, 20.00 to 24.25 The highest peak is present in the inclination angle section within the range of degrees, and the sum of the frequencies existing in the inclination angle section within the range of 20 to 30 degrees is a ratio of 62 to 83 % of the entire degrees in the inclination angle distribution graph. Shows the distribution graph of the number of inclination angles Titanium carbonitride layer,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a high hard coating layer in high-speed intermittent cutting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290049A JP4483510B2 (en) | 2004-10-01 | 2004-10-01 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290049A JP4483510B2 (en) | 2004-10-01 | 2004-10-01 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006102834A JP2006102834A (en) | 2006-04-20 |
JP4483510B2 true JP4483510B2 (en) | 2010-06-16 |
Family
ID=36373119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004290049A Expired - Fee Related JP4483510B2 (en) | 2004-10-01 | 2004-10-01 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4483510B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5023839B2 (en) * | 2007-06-27 | 2012-09-12 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting |
-
2004
- 2004-10-01 JP JP2004290049A patent/JP4483510B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006102834A (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4466841B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4518258B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4534790B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4811781B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4474646B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4466848B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4518259B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5170828B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4811782B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4716250B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP2005279912A (en) | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP5023897B2 (en) | Surface coated cutting tool | |
JP2008080476A (en) | Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work | |
JP4756453B2 (en) | Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting | |
JP4483510B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5088477B2 (en) | Surface coated cutting tool | |
JP4569746B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4474647B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5170829B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP5019258B2 (en) | Surface coated cutting tool | |
JP5088475B2 (en) | Surface coated cutting tool | |
JP4569861B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4756454B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4692065B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100302 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4483510 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |