[go: up one dir, main page]

JP4341277B2 - Method of forming quartz glass - Google Patents

Method of forming quartz glass Download PDF

Info

Publication number
JP4341277B2
JP4341277B2 JP2003103363A JP2003103363A JP4341277B2 JP 4341277 B2 JP4341277 B2 JP 4341277B2 JP 2003103363 A JP2003103363 A JP 2003103363A JP 2003103363 A JP2003103363 A JP 2003103363A JP 4341277 B2 JP4341277 B2 JP 4341277B2
Authority
JP
Japan
Prior art keywords
quartz glass
molding
temperature
mold
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003103363A
Other languages
Japanese (ja)
Other versions
JP2004307264A (en
Inventor
誠志 藤原
哲也 阿邊
昭司 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003103363A priority Critical patent/JP4341277B2/en
Publication of JP2004307264A publication Critical patent/JP2004307264A/en
Application granted granted Critical
Publication of JP4341277B2 publication Critical patent/JP4341277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、モールド内に石英ガラスを収容して加熱しつつ加圧して、石英ガラスを所定形状に均質に成形するための成形方法に関する。
【0002】
【従来の技術】
IC、LSI等の集積回路パターン転写には、主に投影露光装置(または光リソグラフィ装置)が用いられる。この装置に用いられる投影光学系には、集積回路の高集積化に伴い、広い露光領域と、その露光領域全体にわたって、より高い解像力が要求される。投影光学系の解像力の向上については、露光波長をより短くするか、あるいは投影光学系の開口数(NA)を大きくすることが行われる。
【0003】
露光波長については、g線(436nm)からi線(365nm)、KrF(248nm)やArF(193nm)エキシマレーザーへと短波長化が進められている。また、更に高集積化を進めるに当たって、現在、F(157nm)エキシマレーザ,X線,電子線を光源に用いる方法が検討されている。この中で、これまでの設計思想を生かして作製することが可能なFエキシマレーザを用いた縮小投影露光装置がにわかに脚光を浴びてきている。
【0004】
一般に、i線より長波長の光源を用いた縮小投影露光装置の照明光学系あるいは投影光学系のレンズ部材として用いられる光学ガラスは、i線よりも短い波長領域では光透過率が急激に低下し、特に250nm以下の波長領域ではほとんどの光学ガラスでは透過しなくなる。そのため、エキシマレーザを光源とした縮小投影露光装置の光学系を構成するレンズの材料には、石英ガラスとフッ化カルシウム結晶のみが使用可能である。この2つの材料はエキシマレーザの結像光学系で色収差補正を行う上で不可欠な材料である。
【0005】
縮小投影露光装置でウェハー上に回路を焼き付けるためのもう一つの重要な要素としてレチクルが挙げられる。このレチクルに用いられる材料としては、エキシマレーザ耐久性はもとより、基板の発熱による熱膨張が大きな問題になるため、耐久性が良好でなおかつ熱膨張係数の小さい、直接法と呼ばれる方法(火炎加水分解により透明石英ガラスを製造する方法)で合成された石英ガラスが用いられている。
【0006】
直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば酸素ガス)及び可燃性ガス(水素含有ガス、例えば水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば四塩化ケイ素ガス)をキャリアガス(通常酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転および揺動および引き下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。
【0007】
この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状,大きさの光学部材を製造することができる。
【0008】
また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。
【0009】
この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧板により加圧することにより成形を行い、その後モールド内で徐冷したり、更にアニール処理を行い、1対向面の面積が拡大された所定形状の成形体を得ることができる。
【0010】
このような加熱加圧成形を行うものとして、例えば、グラファイト製のモールド内で、絶対圧が 0.1Torr以上大気圧以下のヘリウムガス雰囲気下に、1700℃以上の温度に加熱加圧成形し、ついで1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照。)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照。)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照。)も知られている。
【0011】
【特許文献1】
特公平4−54626号公報。
【0012】
【特許文献2】
特開昭56−129621号公報。
【0013】
【特許文献3】
特開昭57−67031号公報。
【0014】
【特許文献4】
特開2002−22020号公報。
【0015】
【発明が解決しようとする課題】
しかしながら、従来の加熱加圧成形では、モールド内に収容された石英ガラスを十分に軟化させて加圧していたため、石英ガラスが高温に曝される時間が長くなり易く、特に大型の成形体ほど、高温に曝される時間も長くなり易かった。
【0016】
例えば、上記特許文献2、3では、1700℃以上の高温で加圧されるため、昇降温時及び成形時に長時間高温に曝され易かった。
【0017】
また、上記特許文献1、4では、前記よりも低い温度で成形するものの、石英ガラスの流動性が低く、加圧して石英ガラスを変形させるのに長時間を要するため、結局、成形時に石英ガラスが高温に曝される時間は長くなり易かった。
【0018】
このように石英ガラスが長時間高温に曝される成形方法では、石英ガラス中に溶存している水素分子が低減してレーザ耐久性が低下し易くなり、また、モールドを透過して石英ガラスに不純物が混入されて純度が低下し易くなるなどの問題点があった。更に、石英ガラスとモールドのグラファイトとが反応して炭化珪素が生成されることにより表面に凹凸が形成され、これが亀裂等の原因となって歩留まりを低下し易く、また、石英ガラスとモールドとの線膨張係数の相違に基づいて生じる冷却時の応力が大きくなり、石英ガラスやモールドの破損を生じて歩留まりが低下し易く、更に、昇温及び降温にも時間を要するなど、生産性を向上し難いなどの問題点があった。
【0019】
この発明は、このような問題点を解決するため、石英ガラスが高温に曝される時間を低減して、レーザ耐久性に優れるともに高純度の石英ガラスを、生産性よく、しかも、均質に石英ガラスを成形することができる方法を提供することを課題とする。
【0020】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の発明は、石英ガラスをモールド内に収容して加熱し、該石英ガラスを加圧部により加圧して所定形状に成形する方法において、前記石英ガラスを結晶化温度以上軟化点以下の温度範囲に加熱し、前記加圧部の加圧力を増加させつつ、最大圧力が2〜50Kg/cmとなるように制御して前記石英ガラスを加圧することにより、前記石英ガラスを所定形状に成形し、その後、前記石英ガラスを強制的に冷却することを特徴とする。
【0021】
また、請求項2に記載の発明は、請求項1に記載の構成に加え、前記石英ガラスを1300℃〜1100℃の温度範囲で強制的に冷却することを特徴とする。
【0026】
【発明の実施の形態】
以下、この発明の実施の形態について説明する。
【0027】
図1はこの実施の形態の製造方法に用いる成形装置を示す。
【0028】
この成形装置10では、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられた加熱手段としてのカーボンヒータ13とが設けられ、更に、真空チャンバー11内部の略中央部に中空部21を有するモールド15が収容されている。
【0029】
モールド15は、底板16及び受板17を備えた底部18と、底部18の上部に筒状に形成された側壁部20とを備え、この筒状の側壁部20と底部18とにより中空部21が形成されている。
【0030】
この中空部21には、中空部21の形状に対応する形状の加圧部としての天板23が配置され、天板23の押圧面23b(上面)を、真空チャンバー11の外部に配設されたプレス装置としての油圧シリンダのシリンダロッド26で押圧することにより、モールド15の底部18側に移動可能となっている。
【0031】
なお、このシリンダロッド26を備えた油圧シリンダは、外部から供給する油圧を調整することにより加圧されて移動するように構成されているが、詳細な図示は省略されている。
【0032】
これらのモールド15及び天板23は、塊状の石英ガラス25の成形時の温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に塊状の石英ガラス25と接触しても不純物を混入し難い材料から形成されており、ここでは全てグラファイトにより形成されている。
【0033】
次に、このような成形装置10を用いて、石英ガラス25を成形する方法について説明する。
【0034】
まず、この成形方法により成形される石英ガラスは、各種の光学部材、好ましくは250nm以下の波長のレーザが照射されるレンズ、ミラー、レチクル用基板などを製造するために用いられる素材であり、特に、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系の大型のレンズ材料などに用いられる広い面を有する板状体やその他の大型ガラスブロックであるのが好適である。
【0035】
このような石英ガラスは、予め各種の製造方法により合成された合成石英ガラス、好ましくは、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料として合成された合成石英ガラスのインゴットやその一部、または、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラス塊を用いて成形される。特に、屈折率を変化させる成分を混入した石英ガラスは、熱膨張係数や粘性が他の石英ガラスと異なるため、成形時に高温で気泡が発生したり、成形後の収縮が大きく、この成形方法を適用することにより成形するのが好ましい。
【0036】
まず、真空チャンバー11内に底板16、受板17、側壁部20を組合わせてモールド15を形成し、そして、モールド15の中空部21内に塊状の石英ガラス25を配置する。
【0037】
ここでは、モールド15内に収容する塊状の石英ガラス25を、予め図示しない加温手段により加温することにより、内部まで略均一に200℃〜300℃の温度範囲まで加温しておくのが好ましい。モールド15内において加熱する時間を短縮するためである。しかも、温度が200℃〜300℃であれば、加温時に石英ガラス25中の水素分子が低減しにくい。
【0038】
そして、中空部21内に収容した塊状の石英ガラス25の上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。そして、真空チャンバー11内を不活性ガスで置換する。
【0039】
次に、カーボンヒータ13により、モールド15及びその中空部21に収容された塊状の石英ガラス25を加熱する。この加熱時には、カーボンヒータ13を発熱させ、前記加温温度から下記成形温度までの間を600〜800℃/hrの昇温速度で昇温し、所定温度で、塊状の石英ガラス25の内部まで十分に加熱される時間、例えば15〜60分間保持する。そして、これにより、塊状の石英ガラス25の全体の温度を、結晶化温度以上軟化点以下、例えば、1570℃〜1670℃の成形温度に昇温する。
【0040】
この昇温では、塊状の石英ガラス25の頂部25a付近を加圧する時点で、少なくとも頂部25a側がこの成形温度に到達していれば成形を開始することができる。
【0041】
また、この昇温では、塊状の石英ガラス25に加圧方向の温度分布を形成することが好ましく、天板23側の頂部25aとモールド15の底部18側の底面部25bとの温度差を、例えば5℃以上50℃以下とする。頂部25aの温度が高ければ、頂部25a側が底面部25b側より成形され易くなり、頂部25a側から順に成形することができて、成形途中で石英ガラス25に座屈が生じにくくなるからである。
【0042】
次に、このように塊状の石英ガラス25を加熱した状態で、油圧シリンダへの油圧を制御調整することにより、シリンダロッド26を下方へ移動させて、シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23がモールド15の底部18側の加圧方向へ移動し、天板23の加圧面23a底部18との間で塊状の石英ガラス25が加圧される。
【0043】
このとき、天板23から加える圧力を、成形初期の段階で小さくし、その後、好ましくは最終段階で最大加圧力となるように増加させつつ、加圧を行う。ここでは、例えば、天板23の下降に伴って徐々に加圧を増加したり、所定量の成形が進行するまで初期段階の小さい加圧力で加圧し、その後、所定の加圧力に増加するようにしてもよく、更に、多段階に加圧力を増加することも可能である。その場合、成形前の石英ガラス25の頂部25aの高さ方向位置(即ち、天板23の加圧面23aの位置)を変位0%、石英ガラス25が成形後に余すところなく正常に成形された場合の頂部25aの高さ方向位置を変位100%とすると、例えば塊状の石英ガラス25の高さの変位が0%〜70%の高さまでは成形初期の小さい加圧力で加圧することができる。
【0044】
成形初期、即ち、石英ガラス25に天板23の加圧面23aが石英ガラス25の頂部25aに接触する段階では、天板23に接触する面積が小さく、加圧により変形させる体積が小さく、小さい加圧力で加圧することができる。この加圧時の圧力の好ましい範囲は、石英ガラス25の状態によって変動するものであるため、成形時に適宜選択するのが好ましいが、例えば、天板23の下降速度を5〜15cm/minとなるように、押圧力を調整することにより行うことも可能である。
【0045】
この成形初期の段階では、石英ガラス25が変形し易くて、頂部25a側の変位量が多いため、大きな加圧力を負荷すると、軟化点以下の温度で流動性が低い石英ガラス25を無理に変形させることになり、石英ガラス25が不均一に成形され易いからである。
【0046】
そして、天板23の加圧を続け、成形が進行した段階では、石英ガラス25がモールド15の中空部21内に広がり、天板23の加圧面23aの広い部分で加圧することになる。この段階では、石英ガラス25の変形が小さくなるが、石英ガラス25を変形させるのに要する力が大きくなる。特に、軟化点以下の温度の石英ガラス25であるため流動性が小さくて変形に要する力が大きくなり易い。そのため、この実施の形態では、天板23の加圧面23aから石英ガラス25へ負荷する加圧力を大きくし、好ましくは3Kg/cm以上にする。これにより、石英ガラス25をより短時間で変形させることができ、成形時間の短縮化が図れる。
【0047】
更に、成形の最終段階では、石英ガラス25がモールド15の中空部21内の断面方向略全体に広がり、天板23の加圧面23aの略全体で加圧することになる。この段階では、天板23の加圧面23aから負荷する加圧力を、石英ガラス25やモールド15の破損を防止できる範囲内で、できるだけ大きくするのが好ましく、この状態で最大圧力が2Kg/cm以上、好ましくは5〜50Kg/cmとなるように加圧する。これにより、石英ガラス25を確実に所望の形状に成形でき、また、石英ガラス25の成形時間を最終段階まで短縮化させることが可能となる。
【0048】
そして、石英ガラス25が所定の板状体に成形された段階で、天板23による加圧を終了する。その後、成形された石英ガラス25を、モールド15内に配置した状態のままで冷却する。
【0049】
この冷却では、石英ガラス25が高温に曝される時間をできるだけ短縮することが好ましく、この実施の形態では、石英ガラス25を強制的に冷却する。
【0050】
ここで、強制的な冷却は、モールド15内でカーボンヒータ13による加熱を停止して自然放冷する際の冷却速度より速い冷却速度で冷却することであり、真空チャンバー11内に設けられた図示しない冷却媒体用の通路に冷却媒体を通液することにより行うことができる。
【0051】
この冷却過程において、1300℃〜1100℃の温度範囲では、強制的に冷却するのが好ましく、石英ガラス25の結晶化を防止することができる。
【0052】
また、この冷却では、軟化点以下の低い温度で2〜50Kg/cmの最大圧力を負荷して成形された石英ガラス25の歪みを低減するために、1100℃から500℃まで冷却していく過程の任意の温度範囲内を、5〜20℃/hrの冷却速度で徐冷するのが好ましい。ここでは、任意の温度範囲を広くすれば、より歪みを低減し易いが、高温に曝される時間が長くなり易いため、各種成形条件に応じて温度範囲を調整するのが好ましい。
【0053】
そして、このような冷却により石英ガラス25の温度が十分に低下した段階で、真空チャンバ11から板状体を取り出す。
【0054】
以上のようにして、塊状の石英ガラス25を成形すれば、軟化点以下の低い温度で、しかも、2〜50Kg/cmの高い圧力で短時間に成形するため、石英ガラス25が高温に曝される時間を短縮することができる。そのため、石英ガラス中の水素分子が低減され難くてレーザ耐久性を維持し易く、また、石英ガラスに不純物が混入され難くて純度が低下し難い。
【0055】
さらに、この成形時の温度が軟化温度以下の低温であるため、石英ガラス25とモールド15のグラファイトとの反応を抑制でき、成形体の表面に凹凸が形成されにくい。また、石英ガラス25とモールド15との線膨張係数の相違に基づいて、生じる冷却時の熱収縮の差が、成形温度が低い分だけ少なくなり、モールド15により石英ガラス25を圧縮する応力を少なくできる。そのため、大型の成形品であっても、歩留まりを低下し易く、生産性を向上できる。しかも、成形温度が低い分、昇温及び降温に要する時間を短縮できるため、生産性を相乗的に向上することができる。
【0056】
そして、このような成形方法では、天板23の加圧力を増加させつつ成形するので、石英ガラス25の変位量が大きい成形初期には低い圧力で加圧でき、軟化点以下の流動性が低い状態の石英ガラス25を不均一に変形させることを防止し易い。
【0057】
また、石英ガラス25を板状体に成形した後、石英ガラス25を強制的に冷却するため、石英ガラス25を高温に曝す時間をより短縮して、石英ガラス25中の水素分子の低減や不純物の混入をより防止し易いとともに、降温に要する時間を短縮でき、更に生産性を向上することが可能である。
【0058】
更に、1100℃から500℃まで冷却していく過程の任意の温度範囲内を、5〜20℃/hrの冷却速度で徐冷するので、成形により生じた歪みを低減して、石英ガラス25の均質化をより図り易い。
【0059】
また、石英ガラス25をモールド15内に収容する前に予め加温するため、モールド15内の加熱時間を短縮して、生産性を向上し易く、しかも、その加温を200℃〜300℃で行うため、加温時に石英ガラス25中の水素分子が低減することも抑制できる。
【0060】
【実施例】
以下、この発明の実施例について説明する。
【0061】
参考例1
図1に示すような成形装置を用い、直径50cmで高さが70cmの合成石英ガラスインゴットからなる塊状の石英ガラス25から、一辺が100cmの正方形形状で厚さが13.7cmの板状の石英ガラス25を成形した。
【0062】
この成形では、真空ポンプにて、真空チャンバー11内の圧力を50Paまで減圧した後、純粋な窒素ガスを圧力3×10Paまで充填した。600℃/hrの昇温速度で昇温し、表1に示すような保持温度にして45分間保持して石英ガラス25を前記保持温度にした。
【0063】
次に、シリンダロッド26により天板23を加圧し、成形初期の高さ方向の変位0〜50%の段階では天板23を加圧する加圧力を2Kg/cmとし、その後、同変位50〜80%では加圧力を4Kg/cmとし、更に同変位80〜100%では7〜50Kg/cmと加圧力を増加し、表1に示す最大圧力で石英ガラス25を加圧することにより成形を行った。
【0064】
成形後、カーボンヒータ13の発熱を停止し、20時間放置して自然放冷を行って、石英ガラス25の板状体を得た。
【0065】
この板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した。
【0066】
得られた結果を表2に示す。
【0067】
参考例2
参考例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、その後、表1に示す成形条件で成形する他は参考例1と同様にして板状体を得た。
【0068】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0069】
実施例
参考例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、表1の成形条件で成形を行い、成形後に表1に示す徐冷を行うとともに、400℃/hrの冷却速度で強制冷却を行う他は、参考例1と同様にして板状体を得た。
【0070】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0071】
実施例
参考例1と同様の成形装置を用い、表1の成形条件で成形を行い、成形後に実施例と同様の強制冷却を行う他は、参考例1と同様にして板状体を得た。
【0072】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0073】
参考例3
参考例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、表1の成形条件で成形を行い、成形後に表1に示す徐冷を行う他は、参考例1と同様にして板状体を得た。
【0074】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0075】
比較例1
参考例1と同様の成形装置を用い、表1の成形条件で、一定の加圧力で成形する他は、参考例1と同様に成形を行った。
【0076】
その結果、 加圧の最大圧力が0.1Kg/cmと著しく弱いため、石英ガラス25の変位が十分行なわれず、高さ方向の変位が30%で止まり、板状体が得られなかった。
【0077】
比較例2
参考例1と同様の成形装置を用い、表1の成形条件で成形を行う他は、参考例1と同様にして板状体を得た。
【0078】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0079】
比較例3
参考例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、表1の成形条件で、一定の加圧力で成形し、成形後に400℃/hrの冷却速度で強制冷却を行う他は、参考例1と同様にして板状体を得た。
【0080】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0081】
【表1】

Figure 0004341277
【0082】
【表2】
Figure 0004341277
【0083】
表2の結果から明らかなように、実施例1、2、参考例1〜3では、何れも比較例2、3に比べて石英ガラス25が高温に曝される時間が短く、レーザ耐久性及び透過率がよいとともに変質層の厚さが薄くなっていた。
【0084】
また、予め加温を行った実施例1、参考例2、3は、何れも昇温時間が実施例2、参考例1や比較例1、2に比べて短かった。
【0085】
更に、徐冷を行った実施例は、参考例1に比べて屈折率分布が小さかった。
【0086】
そして、成形時に天板23により石英ガラス25を加圧する際の最大圧力が2Kg/cmより低すぎる比較例1では、板状体が成形できず、また、最大圧力が十分ではなく成形時間が長い比較例3、保持温度が高くて、強制冷却も行わない比較例2では、石英ガラス25が高温に曝される時間が長く、実施例1、2、参考例1〜3に比べて各測定結果が劣っていた。
【0087】
【発明の効果】
以上詳述の通り、請求項1に記載の発明によれば、石英ガラスを結晶化温度以上軟化点以下の温度範囲に加熱して、加圧部の加圧力を増加させつつ、最大圧力が2〜50Kg/cmとなるように加圧するので、成形時の温度を軟化点以下の低い温度にして、2〜50Kg/cmの高い圧力で短時間に成形することにより、石英ガラスが高温に曝される時間を短縮することができる。そのため、石英ガラス中の水素分子が低減され難くてレーザ耐久性を維持し易く、また、石英ガラスに不純物が混入され難くて純度が低下し難くく、同時に生産性も向上し易い。
【0088】
それとともに、加圧部の加圧力を増加させつつ成形するため、石英ガラスの変位量が大きい成形初期に低い圧力で加圧することによって穏やかに変形でき、軟化点以下で流動性が低い状態の石英ガラスが不均一に成形されることを防止し易い。
【0089】
また、石英ガラスを所定形状にした後、石英ガラスを強制的に冷却するので、成形後に石英ガラスを高温に曝す時間を短縮することができ、石英ガラス中の水素分子の低下や不純物の混入をより防止し易いとともに、降温に要する時間を短縮できて生産性も向上し易い。
【0090】
更に、請求項に記載の発明によれば、石英ガラスを1300℃〜1100℃の温度範囲で強制的に冷却するので、石英ガラスを高温に曝す時間を短縮することができるとともに、結晶化を防止することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の成形装置の一部を示す概略縦断面図である。
【符号の説明】
10 成形装置
11 真空チャンバ
13 カーボンヒータ
15 モールド
18 底部
20 側壁部
21 中空部
23 天板(加圧部)
25 石英ガラス
26 シリンダロッド[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding method for containing quartz glass in a mold and applying pressure while heating to uniformly mold the quartz glass into a predetermined shape.
[0002]
[Prior art]
A projection exposure apparatus (or photolithography apparatus) is mainly used for transferring an integrated circuit pattern such as an IC or LSI. The projection optical system used in this apparatus is required to have a higher exposure power over a wide exposure area and the entire exposure area as the integrated circuit is highly integrated. In order to improve the resolution of the projection optical system, the exposure wavelength is shortened or the numerical aperture (NA) of the projection optical system is increased.
[0003]
As for the exposure wavelength, the wavelength is being shortened from g-line (436 nm) to i-line (365 nm), KrF (248 nm), and ArF (193 nm) excimer laser. In order to further increase the integration, a method of using an F 2 (157 nm) excimer laser, an X-ray, and an electron beam as a light source is currently being studied. Among them, a reduction projection exposure apparatus using an F 2 excimer laser that can be manufactured by making use of the design concept so far has been attracting attention.
[0004]
In general, optical glass used as a lens member of an illumination optical system or a projection optical system of a reduction projection exposure apparatus using a light source having a wavelength longer than that of i-line has a light transmittance drastically decreased in a wavelength region shorter than that of i-line. In particular, most optical glasses do not transmit light in the wavelength region of 250 nm or less. Therefore, only quartz glass and calcium fluoride crystals can be used as the material of the lens constituting the optical system of the reduction projection exposure apparatus using an excimer laser as a light source. These two materials are indispensable materials for correcting chromatic aberration in the excimer laser imaging optical system.
[0005]
Another important element for printing a circuit on a wafer with a reduction projection exposure apparatus is a reticle. As a material used for this reticle, not only excimer laser durability but also thermal expansion due to heat generation of the substrate becomes a big problem. Therefore, a method called a direct method (flame hydrolysis, which has good durability and low thermal expansion coefficient). The quartz glass synthesized by the method for producing transparent quartz glass by the above method is used.
[0006]
In the direct method, a combustion supporting gas (oxygen-containing gas, for example, oxygen gas) and a combustible gas (hydrogen-containing gas, for example, hydrogen gas or natural gas) are mixed and burned in a quartz glass burner, and the center of the burner is mixed. A high-purity silicon compound (for example, silicon tetrachloride gas) is diluted as a raw material gas with a carrier gas (usually oxygen gas) and ejected, and the raw material gas is reacted (hydrolyzed) by combustion of the surrounding oxygen gas and hydrogen gas. Reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target made of an opaque quartz glass plate which is disposed below the burner and performs rotation, swinging and lowering movement, and at the same time, the oxygen gas In addition, quartz glass ingots are obtained by melting and vitrification by the combustion heat of hydrogen gas.
[0007]
According to this method, since it is easy to obtain a quartz glass ingot having a relatively large diameter, an optical member having a desired shape and size can be manufactured by cutting out a block from the ingot.
[0008]
In recent years, in order to obtain an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, a quartz glass lump such as a pre-formed ingot is formed into a flat shape by heating and pressing. Therefore, a molding method for expanding the area is used.
[0009]
In this molding method, a quartz glass lump is accommodated in a mold and heated, and then molded by pressing with a pressure plate. Thereafter, the quartz glass lump is gradually cooled in the mold, or further annealed, and subjected to one opposing surface. A molded body having a predetermined shape with an enlarged area can be obtained.
[0010]
As an example of performing such heat-pressure molding, for example, in a graphite mold, heat-pressure molding is performed at a temperature of 1700 ° C. or higher in a helium gas atmosphere having an absolute pressure of 0.1 Torr or more and atmospheric pressure, Next, a method of rapidly cooling to 1100 to 1300 ° C. is known. Also, a method of pressure molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure that relieves stress caused by a difference in thermal expansion coefficient between quartz glass and a mold mold (see Patent Document 1 below). ) And a molding apparatus in which the graphite mold has a vertical structure with two or more divisions (see Patent Documents 2 and 3 below). Furthermore, a method of forming a coating layer made of quartz powder on the inner surface of a graphite mold and performing pressure molding at 1550 ° C. to 1700 ° C. (see Patent Document 4 below) is also known.
[0011]
[Patent Document 1]
Japanese Patent Publication No. 4-54626.
[0012]
[Patent Document 2]
JP-A-56-129621.
[0013]
[Patent Document 3]
JP-A-57-67031.
[0014]
[Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-22020.
[0015]
[Problems to be solved by the invention]
However, in the conventional heat and pressure molding, because the quartz glass contained in the mold was sufficiently softened and pressurized, the time during which the quartz glass is exposed to a high temperature tends to be long. The time exposed to high temperatures was apt to be long.
[0016]
For example, in Patent Documents 2 and 3 described above, since pressurization is performed at a high temperature of 1700 ° C. or higher, it is easy to be exposed to a high temperature for a long time at the time of raising and lowering temperature and molding.
[0017]
Further, in Patent Documents 1 and 4, although the molding is performed at a temperature lower than the above, the flowability of quartz glass is low and it takes a long time to deform the quartz glass by applying pressure. The time during which they were exposed to high temperatures was likely to be long.
[0018]
Thus, in the molding method in which the quartz glass is exposed to high temperature for a long time, the hydrogen molecules dissolved in the quartz glass are reduced, the laser durability is likely to be lowered, and the mold is transmitted to the quartz glass through the mold. There is a problem that the purity is easily lowered due to impurities being mixed. Furthermore, quartz glass reacts with the graphite of the mold to produce silicon carbide, thereby forming irregularities on the surface, which is liable to cause cracks and the like, thereby reducing the yield. The cooling stress generated based on the difference in the linear expansion coefficient increases, the quartz glass and mold are damaged, the yield is likely to decrease, and the time required for temperature increase and decrease is further increased. There were problems such as difficulties.
[0019]
In order to solve such problems, the present invention reduces the time during which the quartz glass is exposed to high temperature, and has excellent laser durability and high purity quartz glass with high productivity and homogeneous quartz. It is an object of the present invention to provide a method capable of forming glass.
[0020]
[Means for Solving the Problems]
The invention according to claim 1, which solves the above problem, is a method in which quartz glass is housed in a mold and heated, and the quartz glass is formed into a predetermined shape by pressing the quartz glass with a pressurizing unit. By heating to a temperature range not lower than the softening temperature and lower than the softening point, and pressurizing the quartz glass while controlling the maximum pressure to be 2 to 50 kg / cm 2 while increasing the pressurizing force of the pressurizing part , The quartz glass is formed into a predetermined shape, and then the quartz glass is forcibly cooled .
[0021]
The invention described in claim 2 is characterized in that, in addition to the structure described in claim 1, the quartz glass is forcibly cooled in a temperature range of 1300 ° C to 1100 ° C.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0027]
FIG. 1 shows a molding apparatus used in the manufacturing method of this embodiment.
[0028]
In this molding apparatus 10, a heat insulating material 12 provided over the entire surface and a carbon heater 13 as a heating means provided in the vertical wall of the heat insulating material 12 are provided on the inner wall of a metal vacuum chamber 11, and A mold 15 having a hollow portion 21 is accommodated in a substantially central portion inside the vacuum chamber 11.
[0029]
The mold 15 includes a bottom portion 18 having a bottom plate 16 and a receiving plate 17, and a side wall portion 20 formed in a cylindrical shape on the top of the bottom portion 18, and a hollow portion 21 is formed by the cylindrical side wall portion 20 and the bottom portion 18. Is formed.
[0030]
The hollow portion 21 is provided with a top plate 23 as a pressurizing portion having a shape corresponding to the shape of the hollow portion 21, and a pressing surface 23 b (upper surface) of the top plate 23 is disposed outside the vacuum chamber 11. By pressing with a cylinder rod 26 of a hydraulic cylinder as a pressing device, it can move to the bottom 18 side of the mold 15.
[0031]
The hydraulic cylinder provided with the cylinder rod 26 is configured to move by being pressurized by adjusting the hydraulic pressure supplied from the outside, but the detailed illustration is omitted.
[0032]
The mold 15 and the top plate 23 have heat resistance and strength against the temperature and pressure at the time of forming the massive quartz glass 25, and hardly contaminate impurities even if they contact the massive quartz glass 25 at the time of molding. It is made of a material, here all made of graphite.
[0033]
Next, a method for forming the quartz glass 25 using such a forming apparatus 10 will be described.
[0034]
First, quartz glass formed by this forming method is a material used for manufacturing various optical members, preferably lenses, mirrors, reticle substrates, etc., which are irradiated with a laser having a wavelength of 250 nm or less, A large-sized liquid crystal mask, a substrate for a reticle (photomask) such as a semiconductor mask, a plate having a wide surface used for a large lens material for an imaging optical system, and other large glass blocks. Is preferred.
[0035]
Such a quartz glass is a synthetic quartz glass synthesized by various production methods in advance, preferably an ingot of a synthetic quartz glass synthesized using a silicon compound such as silicon tetrachloride, silane, or organic silicon as a raw material or a part thereof. Alternatively, it is formed using a quartz glass lump such as an ingot of synthetic quartz glass to which a component that changes the refractive index, such as Ge, Ti, B, F, or Al, or a part thereof is added. In particular, quartz glass mixed with a component that changes the refractive index has a different coefficient of thermal expansion and viscosity from other quartz glasses, so bubbles are generated at high temperatures during molding and shrinkage after molding is large. It is preferable to form by applying.
[0036]
First, the mold 15 is formed by combining the bottom plate 16, the receiving plate 17, and the side wall portion 20 in the vacuum chamber 11, and the massive quartz glass 25 is disposed in the hollow portion 21 of the mold 15.
[0037]
Here, the massive quartz glass 25 accommodated in the mold 15 is preliminarily heated to a temperature range of 200 ° C. to 300 ° C. by heating by a heating means (not shown) in advance. preferable. This is to shorten the heating time in the mold 15. Moreover, if the temperature is 200 ° C. to 300 ° C., hydrogen molecules in the quartz glass 25 are difficult to be reduced during heating.
[0038]
Then, the top plate 23 is disposed on the top of the massive quartz glass 25 accommodated in the hollow portion 21, and the pressing portion 26 a of the cylinder rod 26 of the hydraulic cylinder is brought into contact with the pressing surface 23 b of the top plate 23. To do. Then, the inside of the vacuum chamber 11 is replaced with an inert gas.
[0039]
Next, the massive quartz glass 25 accommodated in the mold 15 and the hollow portion 21 thereof is heated by the carbon heater 13. During this heating, the carbon heater 13 is caused to generate heat, and the temperature from the heating temperature to the following molding temperature is increased at a temperature increase rate of 600 to 800 ° C./hr to reach the inside of the massive quartz glass 25 at a predetermined temperature. Hold for a sufficiently heated time, for example 15-60 minutes. And thereby, the temperature of the whole of the massive quartz glass 25 is raised to a molding temperature of not less than the crystallization temperature and not more than the softening point, for example, 1570 ° C to 1670 ° C.
[0040]
With this temperature increase, when the vicinity of the top portion 25a of the massive quartz glass 25 is pressurized, molding can be started if at least the top portion 25a side has reached this molding temperature.
[0041]
In this temperature increase, it is preferable to form a temperature distribution in the pressurizing direction in the massive quartz glass 25, and the temperature difference between the top portion 25 a on the top plate 23 side and the bottom surface portion 25 b on the bottom portion 18 side of the mold 15 is For example, it is set to 5 ° C. or more and 50 ° C. or less. This is because if the temperature of the top portion 25a is high, the top portion 25a side is easier to be formed than the bottom surface portion 25b side, and the top portion 25a side can be formed in order, and buckling is unlikely to occur in the quartz glass 25 during the forming.
[0042]
Next, in a state where the massive quartz glass 25 is heated as described above, the cylinder rod 26 is moved downward by controlling and adjusting the hydraulic pressure to the hydraulic cylinder, and the top plate 23 is moved at the pressing portion 26 a of the cylinder rod 26. The pressing surface 23b is pressed. As a result, the top plate 23 moves in the pressing direction on the bottom 18 side of the mold 15, and the massive quartz glass 25 is pressed between the pressing surface 23 a of the top plate 23 and the bottom 18.
[0043]
At this time, the pressure applied from the top plate 23 is reduced at the initial stage of molding, and thereafter, pressurization is preferably performed while increasing the maximum applied pressure at the final stage. Here, for example, the pressure is gradually increased as the top plate 23 is lowered, or the pressure is increased with a small initial pressure until a predetermined amount of molding progresses, and then the pressure is increased to the predetermined pressure. In addition, the pressing force can be increased in multiple stages. In that case, the height direction position of the top portion 25a of the quartz glass 25 before molding (that is, the position of the pressing surface 23a of the top plate 23) is displaced by 0%, and the quartz glass 25 is molded normally without any residue after molding. If the position in the height direction of the top portion 25a is 100% displacement, for example, when the height displacement of the massive quartz glass 25 is as high as 0% to 70%, pressurization can be performed with a small applied pressure at the initial stage of molding.
[0044]
In the initial stage of molding, that is, at the stage where the pressing surface 23a of the top plate 23 contacts the quartz glass 25 with the top 25a of the quartz glass 25, the area in contact with the top plate 23 is small, and the volume deformed by pressurization is small. It can be pressurized with pressure. Since the preferable range of the pressure at the time of pressurization varies depending on the state of the quartz glass 25, it is preferably selected as appropriate at the time of molding. For example, the descending speed of the top plate 23 is 5 to 15 cm / min. As described above, it is also possible to adjust the pressing force.
[0045]
At the initial stage of molding, the quartz glass 25 is easily deformed and the displacement amount on the top 25a side is large. Therefore, when a large pressure is applied, the quartz glass 25 having low fluidity at a temperature below the softening point is forcibly deformed. This is because the quartz glass 25 is easily formed non-uniformly.
[0046]
Then, when the top plate 23 is continuously pressed and the molding progresses, the quartz glass 25 spreads into the hollow portion 21 of the mold 15 and is pressed at a wide portion of the pressing surface 23 a of the top plate 23. At this stage, the deformation of the quartz glass 25 is reduced, but the force required to deform the quartz glass 25 is increased. In particular, since the quartz glass 25 has a temperature equal to or lower than the softening point, the fluidity is low and the force required for deformation tends to increase. Therefore, in this embodiment, the pressure applied to the quartz glass 25 from the pressing surface 23a of the top plate 23 is increased, and preferably 3 Kg / cm 2 or more. Accordingly, the quartz glass 25 can be deformed in a shorter time, and the molding time can be shortened.
[0047]
Further, in the final stage of molding, the quartz glass 25 spreads over substantially the entire cross-sectional direction in the hollow portion 21 of the mold 15 and is pressurized with substantially the entire pressing surface 23 a of the top plate 23. At this stage, it is preferable to increase the pressure applied from the pressing surface 23a of the top plate 23 as much as possible within a range in which the quartz glass 25 and the mold 15 can be prevented from being damaged. In this state, the maximum pressure is 2 kg / cm 2. As mentioned above, it pressurizes so that it may become 5-50 kg / cm < 2 > preferably. Thereby, the quartz glass 25 can be reliably molded into a desired shape, and the molding time of the quartz glass 25 can be shortened to the final stage.
[0048]
Then, when the quartz glass 25 is formed into a predetermined plate-like body, the pressurization by the top plate 23 is finished. Thereafter, the molded quartz glass 25 is cooled while being placed in the mold 15.
[0049]
In this cooling, it is preferable to shorten the time during which the quartz glass 25 is exposed to a high temperature as much as possible. In this embodiment, the quartz glass 25 is forcibly cooled.
[0050]
Here, the forced cooling is to cool at a cooling rate faster than the cooling rate when the heating by the carbon heater 13 is stopped in the mold 15 and allowed to cool naturally, and is illustrated in the vacuum chamber 11. This can be done by passing the cooling medium through a passage for the cooling medium that is not.
[0051]
In this cooling process, it is preferable to forcibly cool in the temperature range of 1300 ° C. to 1100 ° C., and the crystallization of the quartz glass 25 can be prevented.
[0052]
Moreover, in this cooling, in order to reduce the distortion of the quartz glass 25 formed by applying a maximum pressure of 2 to 50 kg / cm 2 at a low temperature below the softening point, cooling is performed from 1100 ° C. to 500 ° C. It is preferable to gradually cool within an arbitrary temperature range of the process at a cooling rate of 5 to 20 ° C./hr. Here, if the arbitrary temperature range is widened, the distortion is more easily reduced, but the time of exposure to high temperature tends to be longer, and therefore it is preferable to adjust the temperature range according to various molding conditions.
[0053]
Then, when the temperature of the quartz glass 25 is sufficiently lowered by such cooling, the plate-like body is taken out from the vacuum chamber 11.
[0054]
If the massive quartz glass 25 is molded as described above, the quartz glass 25 is exposed to a high temperature at a low temperature below the softening point and at a high pressure of 2 to 50 kg / cm 2 in a short time. Can be shortened. For this reason, hydrogen molecules in the quartz glass are difficult to be reduced and the laser durability is easily maintained, and impurities are hardly mixed in the quartz glass and the purity is hardly lowered.
[0055]
Furthermore, since the temperature at the time of molding is a low temperature equal to or lower than the softening temperature, the reaction between the quartz glass 25 and the graphite of the mold 15 can be suppressed, and unevenness is hardly formed on the surface of the molded body. Further, based on the difference in linear expansion coefficient between the quartz glass 25 and the mold 15, the difference in thermal shrinkage that occurs during cooling is reduced by the lower molding temperature, and the stress that compresses the quartz glass 25 by the mold 15 is reduced. it can. Therefore, even in the case of a large molded product, the yield can be easily reduced and the productivity can be improved. In addition, because the molding temperature is low, the time required for temperature increase and decrease can be shortened, so that productivity can be improved synergistically.
[0056]
And in such a shaping | molding method, since it shape | molds while increasing the pressurizing force of the top plate 23, it can pressurize with a low pressure at the early stage of a shaping | molding with the large displacement amount of the quartz glass 25, and the fluidity | liquidity below a softening point is low. It is easy to prevent the quartz glass 25 in the state from being deformed unevenly.
[0057]
Further, since the quartz glass 25 is forcibly cooled after the quartz glass 25 is formed into a plate-like body, the time during which the quartz glass 25 is exposed to a high temperature is further shortened, thereby reducing hydrogen molecules in the quartz glass 25 and impurities. It is easier to prevent the contamination, and the time required for temperature reduction can be shortened, and the productivity can be further improved.
[0058]
Furthermore, since it is gradually cooled at a cooling rate of 5 to 20 ° C./hr within an arbitrary temperature range in the process of cooling from 1100 ° C. to 500 ° C., the distortion caused by the molding is reduced, and the quartz glass 25 Homogenization is easier.
[0059]
In addition, since the quartz glass 25 is preheated before being housed in the mold 15, the heating time in the mold 15 is shortened, the productivity is easily improved, and the heating is performed at 200 ° C to 300 ° C. Therefore, the reduction of hydrogen molecules in the quartz glass 25 during heating can be suppressed.
[0060]
【Example】
Examples of the present invention will be described below.
[0061]
Reference example 1
Using a molding apparatus as shown in FIG. 1, from a massive quartz glass 25 made of a synthetic quartz glass ingot having a diameter of 50 cm and a height of 70 cm, a plate-like quartz having a square shape of 100 cm on a side and a thickness of 13.7 cm Glass 25 was molded.
[0062]
In this molding, the pressure in the vacuum chamber 11 was reduced to 50 Pa with a vacuum pump, and then pure nitrogen gas was filled to a pressure of 3 × 10 4 Pa. The temperature was raised at a rate of 600 ° C./hr and the holding temperature as shown in Table 1 was maintained for 45 minutes to bring the quartz glass 25 to the holding temperature.
[0063]
Next, the top plate 23 is pressurized by the cylinder rod 26. At the stage of 0 to 50% of the displacement in the height direction at the initial stage of molding, the pressing force to press the top plate 23 is set to 2 kg / cm 2, and then the displacement 50 to At 80%, the applied pressure is 4 kg / cm 2 , and when the displacement is 80-100%, the applied pressure is increased to 7-50 kg / cm 2, and molding is performed by pressing the quartz glass 25 at the maximum pressure shown in Table 1. went.
[0064]
After molding, the heat generation of the carbon heater 13 was stopped, and it was left to stand for 20 hours for natural cooling, whereby a plate-like body of quartz glass 25 was obtained.
[0065]
The transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to the mixing of impurities were measured.
[0066]
The obtained results are shown in Table 2.
[0067]
Reference example 2
Using the same molding apparatus as in Reference Example 1, heating is performed as shown in Table 1 before being housed in the mold 15, and thereafter molding is performed in the same manner as in Reference Example 1 except that molding is performed under the molding conditions shown in Table 1. Got.
[0068]
Table 2 shows the results obtained by measuring the transmittance distribution (Δn), birefringence, transmittance, laser durability, and thickness of the deteriorated layer due to the mixing of impurities.
[0069]
Example 1
Using the same molding apparatus as in Reference Example 1, heating is performed as shown in Table 1 before being housed in the mold 15, molding is performed under the molding conditions in Table 1, and annealing is performed as shown in Table 1 after molding. A plate-like body was obtained in the same manner as in Reference Example 1 except that forced cooling was performed at a cooling rate of ° C / hr.
[0070]
Table 2 shows the results obtained by measuring the transmittance distribution (Δn), birefringence, transmittance, laser durability, and thickness of the deteriorated layer due to the mixing of impurities.
[0071]
Example 2
A plate-like body was obtained in the same manner as in Reference Example 1 except that molding was performed under the molding conditions shown in Table 1 using the same molding apparatus as in Reference Example 1, and forced cooling similar to that in Example 1 was performed after molding.
[0072]
Table 2 shows the results obtained by measuring the transmittance distribution (Δn), birefringence, transmittance, laser durability, and thickness of the deteriorated layer due to the mixing of impurities.
[0073]
Reference example 3
Using the same molding apparatus as in Reference Example 1, performing the heating shown in Table 1 before being housed in the mold 15, performing molding under the molding conditions in Table 1, and performing the slow cooling shown in Table 1 after molding, A plate-like body was obtained in the same manner as in Reference Example 1.
[0074]
Table 2 shows the results obtained by measuring the transmittance distribution (Δn), birefringence, transmittance, laser durability, and thickness of the deteriorated layer due to the mixing of impurities.
[0075]
Comparative Example 1
Using the same molding apparatus as in Reference Example 1, the molding conditions shown in Table 1, addition to molding at a constant pressure, molding was conducted in the same manner as in Reference Example 1.
[0076]
As a result, since the maximum pressure of pressurization was extremely weak at 0.1 kg / cm 2 , the quartz glass 25 was not sufficiently displaced, the displacement in the height direction was stopped at 30%, and a plate-like body was not obtained.
[0077]
Comparative Example 2
A plate-like body was obtained in the same manner as in Reference Example 1 except that molding was performed under the molding conditions shown in Table 1 using the same molding apparatus as in Reference Example 1.
[0078]
Table 2 shows the results obtained by measuring the transmittance distribution (Δn), birefringence, transmittance, laser durability, and thickness of the deteriorated layer due to the mixing of impurities.
[0079]
Comparative Example 3
Using the same molding apparatus as in Reference Example 1, heating is performed as shown in Table 1 before being housed in the mold 15, molding is performed at a constant pressure under the molding conditions shown in Table 1, and cooling is performed at 400 ° C./hr after molding. A plate-like body was obtained in the same manner as in Reference Example 1 except that forced cooling was performed at a speed.
[0080]
Table 2 shows the results obtained by measuring the transmittance distribution (Δn), birefringence, transmittance, laser durability, and thickness of the deteriorated layer due to the mixing of impurities.
[0081]
[Table 1]
Figure 0004341277
[0082]
[Table 2]
Figure 0004341277
[0083]
As is clear from the results in Table 2, in Examples 1 and 2 and Reference Examples 1 to 3 , the time during which the quartz glass 25 was exposed to a high temperature was shorter than in Comparative Examples 2 and 3, and laser durability and The transmittance was good and the thickness of the altered layer was thin.
[0084]
Further, in Example 1 and Reference Examples 2 and 3 in which heating was performed in advance, the temperature rising time was shorter than that in Example 2, Reference Example 1 and Comparative Examples 1 and 2.
[0085]
Furthermore, Example 1 was subjected to slow cooling, the refractive index distribution was small as compared with Reference Example 1.
[0086]
And in the comparative example 1 in which the maximum pressure at the time of pressurizing the quartz glass 25 with the top plate 23 at the time of shaping | molding is too lower than 2 Kg / cm <2>, a plate-shaped body cannot be shape | molded, and the maximum pressure is not enough and shaping | molding time. In the comparative example 3 which is long and the holding temperature is high and the forced cooling is not performed, the time during which the quartz glass 25 is exposed to a high temperature is long, and each measurement is performed as compared with Examples 1 and 2 and Reference Examples 1 to 3. The result was inferior.
[0087]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, the quartz glass is heated to a temperature range not less than the crystallization temperature and not more than the softening point, and the maximum pressure is 2 while increasing the pressurizing force of the pressurizing part. Since pressurization is performed so that the pressure becomes ˜50 kg / cm 2 , the temperature during molding is set to a low temperature below the softening point, and the quartz glass is heated to a high temperature by molding in a short time at a high pressure of 2 to 50 kg / cm 2. Exposure time can be reduced. For this reason, hydrogen molecules in the quartz glass are hardly reduced and laser durability is easily maintained. Impurities are not easily mixed into the quartz glass and the purity is hardly lowered. At the same time, productivity is easily improved.
[0088]
At the same time, because it is molded while increasing the pressing force of the pressurizing part, it can be deformed gently by applying a low pressure at the initial stage of molding with a large displacement of quartz glass, and it has a low fluidity below the softening point. It is easy to prevent the glass from being unevenly formed.
[0089]
Further, after the quartz glass into a predetermined shape, since the forcibly cooled quartz glass, it is possible to shorten the time of exposing the silica glass to a high temperature after molding, contamination and a decrease in impurities in the hydrogen molecules in the quartz glass Is easier to prevent, and the time required for temperature reduction can be shortened to improve productivity.
[0090]
Furthermore, according to the invention described in claim 2 , since the quartz glass is forcibly cooled in the temperature range of 1300 ° C. to 1100 ° C., the time for exposing the quartz glass to a high temperature can be shortened, and the crystallization can be performed. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a part of a molding apparatus according to Embodiment 1 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Molding apparatus 11 Vacuum chamber 13 Carbon heater 15 Mold 18 Bottom part 20 Side wall part 21 Hollow part 23 Top plate (pressurizing part)
25 Quartz glass 26 Cylinder rod

Claims (2)

石英ガラスをモールド内に収容して加熱し、該石英ガラスを加圧部により加圧して所定形状に成形する方法において、
前記石英ガラスを結晶化温度以上軟化点以下の温度範囲に加熱し、
前記加圧部の加圧力を増加させつつ、最大圧力が2〜50Kg/cmとなるように制御して前記石英ガラスを加圧することにより、前記石英ガラスを所定形状に成形し、
その後、前記石英ガラスを強制的に冷却することを特徴とする石英ガラスの成形方法。
In a method in which quartz glass is housed in a mold and heated, and the quartz glass is pressed by a pressure unit to be molded into a predetermined shape.
Heating the quartz glass to a temperature range from the crystallization temperature to the softening point,
The quartz glass is molded into a predetermined shape by increasing the pressure of the pressurizing unit and controlling the maximum pressure to be 2 to 50 kg / cm 2 to pressurize the quartz glass.
Thereafter, the quartz glass is forcibly cooled .
前記石英ガラスを1300℃〜1100℃の温度範囲で強制的に冷却することを特徴とする請求項1に記載の石英ガラスの成形方法。The method for molding quartz glass according to claim 1, wherein the quartz glass is forcibly cooled in a temperature range of 1300 ° C to 1100 ° C.
JP2003103363A 2003-04-07 2003-04-07 Method of forming quartz glass Expired - Lifetime JP4341277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103363A JP4341277B2 (en) 2003-04-07 2003-04-07 Method of forming quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103363A JP4341277B2 (en) 2003-04-07 2003-04-07 Method of forming quartz glass

Publications (2)

Publication Number Publication Date
JP2004307264A JP2004307264A (en) 2004-11-04
JP4341277B2 true JP4341277B2 (en) 2009-10-07

Family

ID=33466523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103363A Expired - Lifetime JP4341277B2 (en) 2003-04-07 2003-04-07 Method of forming quartz glass

Country Status (1)

Country Link
JP (1) JP4341277B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484435B1 (en) 2003-04-09 2015-01-19 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
TWI628698B (en) 2003-10-28 2018-07-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TWI512335B (en) 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
TWI614795B (en) 2004-02-06 2018-02-11 Nikon Corporation Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
WO2006003912A1 (en) * 2004-07-02 2006-01-12 Nikon Corporation Method for forming quartz glass
KR101524964B1 (en) 2005-05-12 2015-06-01 가부시키가이샤 니콘 Projection optical system, exposure apparatus and exposure method
JP4655761B2 (en) * 2005-05-27 2011-03-23 株式会社ニコン Pretreatment method of quartz glass and molding method of quartz glass
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP4998403B2 (en) * 2008-07-30 2012-08-15 株式会社ニコン Deterioration judgment method of molding die, quartz glass molding method and molding apparatus
JP5453886B2 (en) * 2009-04-02 2014-03-26 住友電気工業株式会社 Method for thermoforming silica glass
JP5472374B2 (en) * 2012-05-17 2014-04-16 株式会社ニコン Deterioration judgment method of molding die, quartz glass molding method and molding apparatus
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass

Also Published As

Publication number Publication date
JP2004307264A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4341277B2 (en) Method of forming quartz glass
EP2003098B1 (en) Nanoimprint molds made from titania-doped quartz glass
EP2014624B1 (en) Titania-doped quartz glass for nanoimprint molds
JP4288413B2 (en) Quartz glass molding method and molding apparatus
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP4415367B2 (en) Method of forming quartz glass
JP2009530217A (en) Production of large articles with synthetic vitreous silica
US20080006056A1 (en) Process for producing synthetic quartz and synthetic quartz glass for optical member
JP4465974B2 (en) Quartz glass molding equipment
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JP2005097057A (en) Method and apparatus for molding quartz glass
JP4835998B2 (en) Method of forming quartz glass
JP2006169033A (en) Forming method and forming apparatus for quartz glass
JP2000191329A (en) Production of optical quartz glass for excimer laser
JP2985540B2 (en) Manufacturing method of quartz glass
JP4760137B2 (en) Method of forming quartz glass
JP2814795B2 (en) Manufacturing method of quartz glass
JP3163857B2 (en) Method for producing quartz glass and quartz glass member produced thereby
JP2007022847A (en) Molding apparatus of quartz glass and method of molding quartz glass using the same
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
JP6532269B2 (en) Method of manufacturing synthetic quartz glass
JP4744046B2 (en) Method for producing synthetic quartz glass material
JP2003292328A (en) Synthetic quartz glass and heat treatment method therefor
JPH07277755A (en) Method for modifying synthetic quartz glass optical member and synthetic quartz glass optical member
JP2001213689A (en) Crystal manufacturing method and crystal manufacturing apparatus, and exposure apparatus and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term