[go: up one dir, main page]

JP2017064627A - Catalyst for exhaust gas treatment and method of producing the same - Google Patents

Catalyst for exhaust gas treatment and method of producing the same Download PDF

Info

Publication number
JP2017064627A
JP2017064627A JP2015193128A JP2015193128A JP2017064627A JP 2017064627 A JP2017064627 A JP 2017064627A JP 2015193128 A JP2015193128 A JP 2015193128A JP 2015193128 A JP2015193128 A JP 2015193128A JP 2017064627 A JP2017064627 A JP 2017064627A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas treatment
raw material
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015193128A
Other languages
Japanese (ja)
Other versions
JP6592319B2 (en
Inventor
田中 智明
Tomoaki Tanaka
智明 田中
足立 健太郎
Kentaro Adachi
健太郎 足立
内田 浩司
Koji Uchida
浩司 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58490930&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017064627(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2015193128A priority Critical patent/JP6592319B2/en
Priority to CN201610862366.9A priority patent/CN106824168B/en
Publication of JP2017064627A publication Critical patent/JP2017064627A/en
Application granted granted Critical
Publication of JP6592319B2 publication Critical patent/JP6592319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for exhaust gas treatment exhibiting high denitration performance even when used for treatment of low temperature exhaust gas, furthermore is hardly inactivated even when used for treatment of exhaust gas containing many poisoning components including alkali metal or alkali earth metal and including ammonium sulfates.SOLUTION: There is provided the catalyst for exhaust gas treatment that includes a carrier, a structure restricting agent and an active metal component. The carrier satisfies the following condition: a specific surface area A (SA) of a catalyst pore of 5 nm to 5400 nm measured by a mercury intrusion porosimetry method is in the range of 25 to 50 m/g; there is a maximum peak X in the range of 20 to 50 nm in pore diameter distribution; and a specific surface area SAof pores in the range of X×10to X×10nm for pore diameter of the maximum peak X to all specific surface area of the catalyst SAis in the range of SA/SA=0.65 to 0.90. The carrier is composed of at least one or more kind of inorganic single oxide and/or inorganic compound oxide of titanium oxide and/or titanium compound oxide.SELECTED DRAWING: Figure 1

Description

本発明は、排ガス処理用触媒およびその製造方法に関する。   The present invention relates to an exhaust gas treatment catalyst and a method for producing the same.

例えば排ガスで熱回収する場合は、排ガス温度が80℃程度となる場合がある。よって、このような低温(70〜250℃程度)の排ガスを処理した場合にも高い脱硝性能を発揮する触媒の開発が望まれる。   For example, when heat recovery is performed with exhaust gas, the exhaust gas temperature may be about 80 ° C. Therefore, development of a catalyst that exhibits high denitration performance even when such low temperature (about 70 to 250 ° C.) exhaust gas is treated is desired.

また、燃焼排ガス中の窒素酸化物の除去方法としては、還元剤であるアンモニアの存在下に接触分解する方法が知られているが、通常、燃焼排ガス中には二酸化硫黄が含有されているため、分解温度が300℃以下の場合は、アンモニアとの反応により硫酸アンモニウムが触媒表面に析出して触媒性能を低下させる問題がある。   In addition, as a method for removing nitrogen oxides in combustion exhaust gas, a method of catalytic decomposition in the presence of ammonia as a reducing agent is known. However, since combustion exhaust gas normally contains sulfur dioxide. In the case where the decomposition temperature is 300 ° C. or lower, there is a problem that ammonium sulfate is precipitated on the catalyst surface due to the reaction with ammonia and the catalyst performance is lowered.

さらに、排ガス中に排煙処理触媒に対する被毒物質が含まれていると、排煙処理触媒が失活し易い。ここで主な被毒物質としてアルカリ金属やアルカリ土類金属が挙げられる。例えば、セメント製造排ガスに含まれるダストの主成分はカルシウムであることが知られている(特許文献1参照)。   Further, if the exhaust gas contains a poisoning substance for the exhaust gas treatment catalyst, the exhaust gas treatment catalyst tends to be deactivated. Here, alkali metals and alkaline earth metals are listed as main poisoning substances. For example, it is known that the main component of dust contained in cement manufacturing exhaust gas is calcium (see Patent Document 1).

特開2013−49580号公報JP 2013-49580 A

本発明は、低温(70〜250℃程度)の排ガスを処理した場合にも高い脱硝性能を発揮し、さらにアルカリ金属またはアルカリ土類金属(特にカルシウム)を含む被毒成分ならびに硫安類を多く含む排ガスに用いた場合であっても失活し難い、排ガス処理用触媒およびその製造方法を提供することを目的とする。   The present invention exhibits high denitration performance even when exhaust gas at a low temperature (about 70 to 250 ° C.) is treated, and further contains a lot of poisonous components containing alkali metal or alkaline earth metal (especially calcium) and ammonium sulfate. An object of the present invention is to provide a catalyst for exhaust gas treatment that is difficult to deactivate even when used for exhaust gas, and a method for producing the same.

また、例えばLNGを燃料としたガスタービン排ガスのような、300〜600℃の排ガスを処理した場合でも高い脱硝性能と耐熱性を有する触媒の開発が望まれる。   In addition, it is desired to develop a catalyst having high denitration performance and heat resistance even when exhaust gas at 300 to 600 ° C. such as gas turbine exhaust gas using LNG as a fuel is treated.

本発明者は上記の課題を解決するため鋭意検討し、本発明を完成させた。
本発明は、以下の(1)〜(7)である。
(1)(i)水銀圧入ポロシメトリー法による5nmから5400nmの触媒細孔の比表面積A(SAHg)が25〜50m2/gの範囲にある、
(ii)細孔径分布で、20〜50nmの範囲内に最大ピークXを有する、
(iii)最大ピークの細孔径Xに対して、X×10-0.25〜X×10+0.25nmの範囲の細孔径が占める比表面積SAXが、触媒の全比表面積SAtotalに対し、SAX/SAtotal=0.65〜0.90の範囲にある、
上記(i)〜(iii)の条件を満たし、酸化チタンおよび/またはチタン複合酸化物の少なくとも1種類以上の無機単一酸化物および/または無機複合酸化物からなる担体と、構造規制剤と、活性金属成分とを含むことを特徴とする排ガス処理用触媒。
(2)前記担体がTiO2からなる無機単一酸化物、および/またはW、Mo、SiおよびVからなる群から選ばれる少なくとも1つとTiとの無機複合酸化物であることを特徴とする、上記(1)に記載の排ガス処理用触媒。
(3)前記活性金属成分が、バナジウム、モリブデン、マンガン、ランタン、イットリウムおよびセリウムからなる群から選ばれる少なくとも1つであることを特徴とする、上記(1)または(2)に記載の排ガス処理用触媒。
(4)前記構造規制剤は、ケイ素および/またはカルシウムを含む化合物であることを特徴とする、上記(1)〜(3)のいずれかに記載の排ガス処理用触媒。
(5)工程(a):Tiを含むスラリー、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとを含むスラリーを脱水し、焼成して、TiO2からなる無機単一酸化物原料、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとの無機複合酸化物原料を得る工程。
工程(b):工程(a)において得られた無機単一酸化物原料および/または無機複合酸化物原料と、ケイ素および/またはカルシウムを含む化合物と、活性金属成分を含む混合体を、成形し、乾燥、焼成する工程。
を含む、上記(1)〜(4)のいずれかに記載の排ガス処理用触媒の製造方法。
(6)工程(b)の前記混合体の成形加工後、湿度90%以上の環境下から、0.20〜0.97%/hrの範囲の速度で湿度を30%まで減少させた環境下で乾燥させることを特徴とする乾燥工程をさらに含む、上記(5)に記載の排ガス処理用触媒の製造方法。
(7)上記(1)〜(4)のいずれかに記載の排ガス処理用触媒を用いて排ガスを処理する、排ガスの処理方法。
The inventor has intensively studied in order to solve the above problems, and has completed the present invention.
The present invention includes the following (1) to (7).
(1) (i) The specific surface area A (SA Hg ) of catalyst pores of 5 to 5400 nm by mercury porosimetry is in the range of 25 to 50 m 2 / g.
(Ii) pore size distribution with a maximum peak X in the range of 20-50 nm,
Relative pore diameter X of (iii) the maximum peak, X × 10 -0.25 ~X × 10 +0.25 nm specific surface area SA X occupied by pore size in the range of, relative to the total specific surface area SA total catalyst, SA X / SA total = 0.65 to 0.90.
A carrier satisfying the above conditions (i) to (iii) and comprising at least one inorganic single oxide and / or inorganic composite oxide of titanium oxide and / or titanium composite oxide, a structure regulating agent, An exhaust gas treatment catalyst comprising an active metal component.
(2) The carrier is an inorganic single oxide composed of TiO 2 and / or an inorganic composite oxide of Ti and at least one selected from the group consisting of W, Mo, Si and V, The exhaust gas treatment catalyst according to (1) above.
(3) The exhaust gas treatment according to (1) or (2), wherein the active metal component is at least one selected from the group consisting of vanadium, molybdenum, manganese, lanthanum, yttrium, and cerium. Catalyst.
(4) The exhaust gas treatment catalyst according to any one of (1) to (3), wherein the structure regulating agent is a compound containing silicon and / or calcium.
(5) Step (a): A slurry containing Ti, or a slurry containing Ti and at least one selected from the group consisting of W, Mo, Si, and V and dehydrated, fired, and inorganic made of TiO 2 A step of obtaining a single oxide raw material or an inorganic composite oxide raw material of Ti and at least one selected from the group consisting of W, Mo, Si, and V.
Step (b): A mixture containing the inorganic single oxide raw material and / or inorganic composite oxide raw material obtained in step (a), a compound containing silicon and / or calcium, and an active metal component is molded. , Drying and firing.
The manufacturing method of the catalyst for exhaust gas treatment in any one of said (1)-(4) containing this.
(6) After molding the mixture in step (b), in an environment where the humidity is reduced to 30% at a rate in the range of 0.20 to 0.97% / hr from an environment where the humidity is 90% or more. The method for producing an exhaust gas treatment catalyst according to the above (5), further comprising a drying step characterized by drying with a gas.
(7) An exhaust gas treatment method for treating exhaust gas using the exhaust gas treatment catalyst according to any one of (1) to (4) above.

本発明によれば、低温(70〜250℃程度)の排ガスを処理した場合にも高い脱硝性能を発揮し、さらにアルカリ金属またはアルカリ土類金属(特にカルシウム)を含む被毒成分ならびに硫安類を多く含む排ガスに用いた場合であっても失活し難い、排ガス処理用触媒およびその製造方法を提供することができる。   According to the present invention, even when exhaust gas at a low temperature (about 70 to 250 ° C.) is treated, high NOx removal performance is exhibited, and further poisonous components and alkali sulfates containing alkali metal or alkaline earth metal (especially calcium) are provided. It is possible to provide an exhaust gas treatment catalyst and a method for producing the exhaust gas treatment catalyst which are hardly deactivated even when used in a large amount of exhaust gas.

ハニカム構造体の好適例の概略斜視図である。It is a schematic perspective view of the suitable example of a honeycomb structure. 実施例1の触媒の細孔径分布図である。1 is a pore size distribution diagram of a catalyst of Example 1. FIG. 実施例2の触媒の細孔径分布図である。2 is a pore size distribution diagram of a catalyst of Example 2. FIG. 実施例3の触媒の細孔径分布図である。4 is a pore size distribution diagram of the catalyst of Example 3. FIG. 実施例4の触媒の細孔径分布図である。6 is a pore size distribution diagram of the catalyst of Example 4. FIG. 比較例1の触媒の細孔径分布図である。2 is a pore size distribution diagram of a catalyst of Comparative Example 1. FIG.

<本発明の排ガス処理用触媒>
本発明の排ガス処理用触媒について説明する。本発明の排ガス処理用触媒を、以下では「本発明の触媒」または「触媒」ともいう。
<Exhaust gas treatment catalyst of the present invention>
The exhaust gas treatment catalyst of the present invention will be described. The exhaust gas treatment catalyst of the present invention is hereinafter also referred to as “the catalyst of the present invention” or “catalyst”.

<担体>
本発明の触媒における担体について説明する。
本発明の触媒において担体は、TiO2および無機複合酸化物の混合物あるいは、それぞれ単一の担体である。
<Carrier>
The carrier in the catalyst of the present invention will be described.
In the catalyst of the present invention, the support is a mixture of TiO 2 and an inorganic composite oxide, or each is a single support.

無機複合酸化物は、W、Mo、SiおよびVからなる群から選ばれる少なくとも1つとTiとの複合酸化物のいずれかを意味する。
複合酸化物中の、W、Mo、Si、Vの酸化物換算濃度は、これらの合計で0.05〜40質量%であることが好ましく、0.1〜20質量%であることがさらに好ましい。
The inorganic composite oxide means any composite oxide of Ti and at least one selected from the group consisting of W, Mo, Si and V.
The total oxide equivalent concentration of W, Mo, Si, and V in the composite oxide is preferably 0.05 to 40% by mass, and more preferably 0.1 to 20% by mass. .

触媒は、上記のような無機単一酸化物および無機複合酸化物の混合物あるいは、それぞれ単一の担体を50〜95質量%含有することが好ましく、70〜95質量%であることがさらに好ましい。   The catalyst preferably contains 50 to 95% by mass, and more preferably 70 to 95% by mass of the above-mentioned mixture of inorganic single oxide and inorganic composite oxide or a single carrier.

<構造規制剤>
また触媒は、構造規制剤を含む。構造規制剤を使用することで、細孔分布制御性に優れ、細孔分布がシャープであるものを調製することができる。さらには、細孔の形状や方向性等を容易に制御することも可能となる。
さらに構造規制剤としては、無機系構造規制剤が好ましく、炭素繊維、セラミック繊維、ガラス繊維、合成繊維、およびこれらのチョップあるいはウィスカーなどが挙げられる。構造規制剤は、その中でも特に、ケイ素および/またはカルシウムを含む化合物を、上記のような無機単一酸化物および無機複合酸化物の混合物とは別途、3〜20質量%含有することが好ましく、5〜10質量%であることがさらに好ましい。結晶性でも、非結晶性のいずれを用いてもよい。
<Structure regulator>
The catalyst also contains a structure regulating agent. By using a structure-regulating agent, it is possible to prepare a material having excellent pore distribution controllability and a sharp pore distribution. Furthermore, it becomes possible to easily control the shape and directionality of the pores.
Further, as the structure restricting agent, an inorganic structure restricting agent is preferable, and examples thereof include carbon fibers, ceramic fibers, glass fibers, synthetic fibers, and chops or whiskers thereof. In particular, the structure-regulating agent preferably contains 3 to 20% by mass of a compound containing silicon and / or calcium separately from the mixture of the inorganic single oxide and the inorganic composite oxide as described above. More preferably, it is 5-10 mass%. Either crystalline or non-crystalline may be used.

構造規制剤が含んでもよい前記ケイ素および/またはカルシウムを含む化合物としては、MCM−41、48、SBA−15およびSBA−16等の構造を有する化合物、ポーラスシリカ(ミセルテンプレートシリカ)(Langmuir 16(2), 356 (2000)参照)、ガラス繊維の非結晶物やモンモリロナイト系鉱物のような粘土系結晶鉱物であってもよい。   Examples of the compound containing silicon and / or calcium that may be contained in the structure-regulating agent include compounds having a structure such as MCM-41, 48, SBA-15, and SBA-16, porous silica (micelle template silica) (Langmuir 16 ( 2), 356 (2000)), and may be an amorphous glass fiber or a clay-based crystal mineral such as a montmorillonite mineral.

さらに、前記構造規制剤の形状は、繊維状や柱状、紡錘状、板状であってもよい。   Furthermore, the shape of the structure regulating agent may be a fiber shape, a column shape, a spindle shape, or a plate shape.

<活性金属成分>
本発明の触媒における活性金属成分について説明する。
本発明の触媒は、上記のような担体に活性金属成分が担持している。
本発明の触媒において活性金属成分は、タングステン、バナジウム、モリブデン、マンガン、ランタン、イットリウムおよびセリウムからなる群から選ばれる少なくとも1つであることが好ましい。
<Active metal component>
The active metal component in the catalyst of the present invention will be described.
In the catalyst of the present invention, an active metal component is supported on the carrier as described above.
In the catalyst of the present invention, the active metal component is preferably at least one selected from the group consisting of tungsten, vanadium, molybdenum, manganese, lanthanum, yttrium and cerium.

本発明の触媒は、上記のような担体および活性金属成分以外の成分を20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下の割合で含んでもよい。また、本発明の触媒は実質的に前記担体、構造規制剤および前記活性金属成分からなることが好ましい。ここで「実質的になる」とは、原料や製造過程から不可避的に含まれる不純物等は含まれ得るが、それ以外は含まないことを意味する。
上記のような担体、構造規制剤および活性金属成分以外の成分として、例えばCr、Fe、Co、Ni、Cu、Ag、Au、Pd、Nd、In、SnおよびIrが挙げられる。
The catalyst of the present invention contains components other than the carrier and active metal component as described above in a proportion of 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 7% by mass or less. But you can. Moreover, it is preferable that the catalyst of the present invention substantially comprises the carrier, a structure regulating agent, and the active metal component. Here, “substantially” means that impurities and the like that are inevitably contained from the raw material and the production process can be contained, but other than that are not contained.
Examples of the components other than the carrier, the structure regulating agent and the active metal component as described above include Cr, Fe, Co, Ni, Cu, Ag, Au, Pd, Nd, In, Sn, and Ir.

<触媒>
本発明の触媒におけるハニカム構造を例に説明する。また本発明触媒の形状は、ハニカム構造以外にも円柱状やパイプ状なども選択可能である。
<Catalyst>
The honeycomb structure in the catalyst of the present invention will be described as an example. In addition to the honeycomb structure, the shape of the catalyst of the present invention can be selected from a columnar shape and a pipe shape.

本発明の触媒は、水銀圧入ポロシメトリー法による5nmから5400nmの触媒細孔径の比表面積A(SAHg)が25〜50m2/gの範囲であり、30〜50m2/gであることが好ましい。 The catalyst of the present invention has a specific surface area A of the catalyst pore diameter of 5400nm from 5nm by mercury intrusion porosimetry method (SA Hg) is in the range of 25~50m 2 / g, it is preferably 30 to 50 m 2 / g .

水銀圧入ポロシメトリー法とは、ポロシメーターを使用する水銀圧入法であり、例えば従来公知の測定装置を用いて測定することができる。   The mercury intrusion porosimetry method is a mercury intrusion method using a porosimeter, and can be measured using, for example, a conventionally known measuring apparatus.

本発明の触媒は、細孔径分布が、20〜50nmの範囲内に最大ピークを有し、20〜50nmの範囲内にある最大ピークの頂点Xnmに対し、細孔径がX×0.562(=10-0.25)〜X×1.78(=10+0.25)nmの範囲の細孔径が占める比表面積SAXが、触媒の全比表面積SAtotalに対し、SAX/SAtotalが、0.65〜0.90となる。このSAX値は25〜30m2/gとなることが好ましい。
SAX/SAtotalが、0.65〜0.90の範囲にあると、理由は明確ではないが、例えば70〜250℃の低温度域で、還元剤のアンモニアを含む反応ガスの拡散とアンモニアの活性点への吸着がバランスがとれた状態となり、低温脱硝性が発現するものと考えている。
SAX/SAtotalが上記のような範囲にあると、70℃という低温の排ガスを処理した場合に高い脱硝性能を発揮し、さらにアルカリ金属またはアルカリ土類金属(特にカルシウム)を含む被毒成分ならびに硫安類を多く含む排ガスに用いた場合であっても失活し難い。
In the catalyst of the present invention, the pore size distribution has a maximum peak in the range of 20 to 50 nm, and the pore size is X × 0.562 (= The specific surface area SA X occupied by the pore diameter in the range of 10 −0.25 ) to X × 1.78 (= 10 +0.25 ) nm is SA X / SA total is 0.65 with respect to the total specific surface area SA total of the catalyst. ~ 0.90. The SA X value is preferably 25 to 30 m 2 / g.
If SA X / SA total is in the range of 0.65 to 0.90, the reason is not clear. For example, in a low temperature range of 70 to 250 ° C., diffusion of the reaction gas containing ammonia as a reducing agent and ammonia It is considered that the adsorption to the active site is balanced and low temperature denitration is exhibited.
When SA X / SA total is in the above range, it exhibits high denitration performance when exhaust gas at a low temperature of 70 ° C. is treated, and is further a poisoned component containing alkali metal or alkaline earth metal (especially calcium). In addition, it is difficult to deactivate even when used in exhaust gas containing a large amount of ammonium sulfate.

また、本発明の触媒は、70〜600℃程度の範囲において高い脱硝性能を発揮し、同時に高い耐熱性も有する。   Further, the catalyst of the present invention exhibits high denitration performance in the range of about 70 to 600 ° C., and at the same time has high heat resistance.

<ハニカム構造体>
本発明の触媒は、上記のような担体に活性金属成分が担持しているハニカム状の構造体であることが好ましい。
ハニカム状の構造体とは、平行に貫通した多数の小孔(セル)を有する構造体を意味する。このような構造の触媒は、通常、反応管内にぴったりと収めて使用される。また、セルの形(断面形状)としては、六角形、四角形、三角形、円形などがある。通常、セルの大きさ(径)は目開き、セルとセルとの間は隔壁、1つのセルに注目した場合に対向する左右または上下の壁の各中心間の距離はピッチと呼ばれる。
<Honeycomb structure>
The catalyst of the present invention is preferably a honeycomb-like structure in which an active metal component is supported on the carrier as described above.
The honeycomb structure means a structure having a large number of small holes (cells) penetrating in parallel. The catalyst having such a structure is usually used in a state of being closely fitted in a reaction tube. The cell shape (cross-sectional shape) includes a hexagon, a quadrangle, a triangle, and a circle. In general, the size (diameter) of the cells is open, the partition between the cells is a partition, and the distance between the centers of the left and right or upper and lower walls facing each other is called a pitch.

図1に、本発明の触媒に相当するハニカム状の構造体の概略斜視図を例示する。
図1において本発明の触媒(1)は、8目×8目のセル(3)を有し、セル(3)の断面形状は四角形の態様のものである。セル(3)の大きさ(径)は目開きの幅(5)、セル(3)とセル(3)との間は隔壁(7)、隔壁(7)の厚さ(9)を肉厚ともいう。さらに、セル(3)の開口部が露出している面を端面(11)とし、それ以外の面を側面(13)とする。また、ハニカム構造体の長手方向の長さをXとする。
FIG. 1 illustrates a schematic perspective view of a honeycomb-like structure corresponding to the catalyst of the present invention.
In FIG. 1, the catalyst (1) of the present invention has 8 × 8 cells (3), and the cross-sectional shape of the cells (3) has a rectangular shape. The size (diameter) of the cell (3) is the opening width (5), the partition (7) between the cells (3) and (3), and the thickness (9) of the partition (7) is thick. Also called. Furthermore, let the surface which the opening part of the cell (3) exposes be an end surface (11), and let the other surface be a side surface (13). Further, let X be the length in the longitudinal direction of the honeycomb structure.

<本発明の触媒の製造方法>
次に、本発明の触媒の製造方法について説明する。
本発明の触媒において担体は、例えば特開2004−41893号公報や特開2005−021780号公報に記載された方法で製造することができる。
本発明の触媒は、前記担体もしくはその原料および前記活性金属成分もしくはその原料を混合してなる混合物を得た後、押出成形法等によってハニカム構造の形状に成形する方法や、ハニカム構造の基材上に担体成分および活性成分を含浸・担持する方法、さらにハニカム構造の担体成分に活性成分を含浸・担持する方法によって製造することができる。
<Method for producing catalyst of the present invention>
Next, the manufacturing method of the catalyst of this invention is demonstrated.
In the catalyst of the present invention, the carrier can be produced by the method described in, for example, JP-A Nos. 2004-41893 and 2005-021780.
The catalyst of the present invention is a method of obtaining a mixture obtained by mixing the carrier or a raw material thereof and the active metal component or the raw material, and then forming the mixture into a honeycomb structure by an extrusion molding method or the like. It can be produced by a method of impregnating / supporting the carrier component and the active component on the substrate, and a method of impregnating / supporting the carrier component of the honeycomb structure with the active component.

本発明の触媒は、下記の工程(a)〜(b)を備える製造方法によって製造することが好ましい。
工程(a):Tiを含むスラリー、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとを含むスラリーを脱水し、焼成して、TiO2からなる無機単一酸化物原料、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとの無機複合酸化物原料を得る工程。
工程(b):工程(a)において得られた無機単一酸化物原料または無機複合酸化物原料と、ケイ素および/ またはカルシウムを含む化合物と、活性金属成分を含む混合体を、ハニカム状に押し出して成形し、乾燥、焼成する工程。
このような好ましい製造方法の各工程を、以下で説明する。
The catalyst of the present invention is preferably produced by a production method comprising the following steps (a) to (b).
Step (a): Inorganic single oxidation comprising TiO 2 by dehydrating and firing a slurry containing Ti or a slurry containing Ti and at least one selected from the group consisting of W, Mo, Si and V A step of obtaining a raw material or an inorganic composite oxide raw material of Ti and at least one selected from the group consisting of W, Mo, Si, and V.
Step (b): The mixture containing the inorganic single oxide raw material or inorganic composite oxide raw material obtained in step (a), the compound containing silicon and / or calcium, and the active metal component is extruded into a honeycomb shape. Forming, drying and firing.
Each process of such a preferable manufacturing method is demonstrated below.

<工程(a)>
工程(a)では、初めに、Tiを含むスラリー、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとを含むスラリーを得る。
このスラリーは、例えばTiを含む化合物や、さらにW、Mo、Si、およびVを含む化合物を、水等の溶媒に溶解した後、酸やアルカリを用いてpHを調整することでTiの酸化物や、さらにW、Mo、Si、およびVの酸化物を析出させて得ることができる。析出させた後、20〜98℃で0.5〜24時間、熟成させることが好ましい。
<Process (a)>
In the step (a), first, a slurry containing Ti or a slurry containing Ti and at least one selected from the group consisting of W, Mo, Si, and V is obtained.
This slurry is prepared by, for example, dissolving a compound containing Ti or a compound containing W, Mo, Si, and V in a solvent such as water, and then adjusting the pH with an acid or alkali to thereby obtain an oxide of Ti. Further, it can be obtained by further depositing oxides of W, Mo, Si, and V. After the precipitation, it is preferably aged at 20 to 98 ° C. for 0.5 to 24 hours.

ここでTiを含む化合物としては、硫酸法による二酸化チタンの製造工程より得られる硫酸チタン溶液あるいはメタチタン酸が好ましい。   Here, the compound containing Ti is preferably a titanium sulfate solution or a metatitanic acid obtained from a production process of titanium dioxide by a sulfuric acid method.

Wを含む化合物としては、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、燐タングステン酸アンモニウムおよびテトラチオタングステン酸アンモニウムなどのタングステン含有窒素化合物、二硫化タングステン、三硫化タングステンなどのタングステン含有硫黄化合物、六塩化タングステン、二塩化タングステン、三塩化タングステン、四塩化タングステン、五塩化タングステン、二塩化二酸化タングステン、四塩化酸化タングステンが挙げられる。   Examples of the compound containing W include tungsten-containing nitrogen compounds such as ammonium paratungstate, ammonium metatungstate, ammonium phosphotungstate and ammonium tetrathiotungstate, tungsten-containing sulfur compounds such as tungsten disulfide and tungsten trisulfide, and hexachloride. Examples thereof include tungsten, tungsten dichloride, tungsten trichloride, tungsten tetrachloride, tungsten pentachloride, tungsten dichloride dioxide, and tungsten tetrachloride oxide.

Moを含む化合物としては、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウム、燐モリブデン酸アンモニウムおよびテトラチオモリブデン酸アンモニウムなどのモリブデン含有窒素化合物、二硫化モリブデン、三硫化モリブデンなどのモリブデン含有硫黄化合物、六塩化モリブデン、二塩化モリブデン、三塩化モリブデン、四塩化モリブデン、五塩化モリブデン、二塩化二酸化モリブデン、四塩化酸化モリブデンが挙げられる。   Compounds containing Mo include molybdenum-containing nitrogen compounds such as ammonium paramolybdate, ammonium metamolybdate, ammonium phosphomolybdate and ammonium tetrathiomolybdate, molybdenum-containing sulfur compounds such as molybdenum disulfide and molybdenum trisulfide, and hexachloride. Examples include molybdenum, molybdenum dichloride, molybdenum trichloride, molybdenum tetrachloride, molybdenum pentachloride, molybdenum dichloride dioxide, and molybdenum tetrachloride oxide.

ここでSiを含む化合物としては、シリカゾル、ケイ酸液、ヒュームドシリカ、シリコンアルコキシド等が挙げられる。   Examples of the compound containing Si include silica sol, silicic acid solution, fumed silica, and silicon alkoxide.

ここでVを含む化合物としては、硫酸バナジル、シュウ酸バナジル、メタバナジン酸アンモニウム等が挙げられる。   Examples of the compound containing V include vanadyl sulfate, vanadyl oxalate, and ammonium metavanadate.

Tiを含む化合物の他にW、Mo、Si、およびVを含む化合物を用いる場合、Tiを含む化合物とW、Mo、Si、およびVを含む化合物との量比は特に限定されないが、TiO2(Tiの全てがTiO2であると仮定した換算値)100質量%に対して3〜20質量%となるように調整することが好ましい。 When using a compound containing W, Mo, Si, and V in addition to the compound containing Ti, the amount ratio of the compound containing Ti and the compound containing W, Mo, Si, and V is not particularly limited, but TiO 2 (converted value all is assumed to be of TiO 2 Ti) is preferably adjusted to be 3 to 20 wt% with respect to 100 wt%.

上記のようにしてスラリーを得た後、これを脱水し、焼成する。
脱水方法は特に限定されず、例えば従来公知の方法、具体的には遠心分離法等を適用して脱水することができる。
焼成方法は特に限定されず、例えば従来公知の方法、具体的には焼成炉等を用いて焼成することができる。焼成温度は、例えば110℃以上(好ましくは300℃以上)、700℃以下とする。
脱水後に得られるケーキを焼成する前に、乾燥してもよい。乾燥は、例えば従来公知の方法、具体的には電気乾燥機等を用いることができる。乾燥温度は、例えば30〜200℃とする。
After obtaining the slurry as described above, this is dehydrated and fired.
The dehydration method is not particularly limited, and for example, a conventionally known method, specifically, a centrifugal separation method or the like can be applied for dehydration.
The firing method is not particularly limited, and for example, it can be fired using a conventionally known method, specifically, a firing furnace or the like. The firing temperature is, for example, 110 ° C. or higher (preferably 300 ° C. or higher) and 700 ° C. or lower.
The cake obtained after dehydration may be dried before baking. For drying, for example, a conventionally known method, specifically, an electric dryer or the like can be used. A drying temperature shall be 30-200 degreeC, for example.

このような工程(a)によって、Tiを含むスラリー、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとを含む無機複合酸化物原料を得ることができる。   By such a step (a), a slurry containing Ti or an inorganic composite oxide raw material containing Ti and at least one selected from the group consisting of W, Mo, Si, and V can be obtained.

<工程(b)>
工程(b)では、工程(a)において得られた無機単一酸化物原料または無機複合酸化物原料とケイ素および/またはカルシウムを含む化合物、および活性金属成分を水分を添加した上で混合することが好ましい。
この混合比は特に限定されないものの、無機単一酸化物原料または無機複合酸化物原料と、ケイ素および/またはカルシウムを含む化合物と、活性金属成分と、水分との合計に対する無機単一酸化物原料または無機複合酸化物原料の比率((無機単一酸化物原料または無機複合酸化物原料)/(無機単一酸化物原料または無機複合酸化物原料+ケイ素および/またはカルシウムを含む化合物+活性金属成分+水分)×100)は10〜70質量%であることが好ましい。
また、ケイ素および/またはカルシウムを含む化合物の比率((ケイ素および/またはカルシウムを含む化合物)/(無機単一酸化物原料または無機複合酸化物原料+ケイ素および/またはカルシウムを含む化合物+活性金属成分+水分)×100)は15質量%以下であることが好ましい。
また、活性金属成分の比率(活性金属成分/(無機単一酸化物原料または無機複合酸化物原料+ケイ素および/またはカルシウムを含む化合物+活性金属成分+水分)×100)は5質量%以下であることが好ましい。
<Step (b)>
In the step (b), the inorganic single oxide raw material or the inorganic composite oxide raw material obtained in the step (a), the compound containing silicon and / or calcium, and the active metal component are mixed after adding moisture. Is preferred.
Although the mixing ratio is not particularly limited, the inorganic single oxide raw material or the inorganic composite oxide raw material, the compound containing silicon and / or calcium, the active metal component, and the total of the moisture and the inorganic single oxide raw material or Ratio of inorganic composite oxide raw material ((inorganic single oxide raw material or inorganic composite oxide raw material) / (inorganic single oxide raw material or inorganic composite oxide raw material + compound containing silicon and / or calcium + active metal component + Moisture) × 100) is preferably 10 to 70% by mass.
Further, ratio of compound containing silicon and / or calcium ((compound containing silicon and / or calcium) / (inorganic single oxide raw material or inorganic composite oxide raw material + silicon and / or calcium containing compound + active metal component) + Moisture) × 100) is preferably 15% by mass or less.
The ratio of active metal component (active metal component / (inorganic single oxide raw material or inorganic composite oxide raw material + compound containing silicon and / or calcium + active metal component + moisture) × 100) is 5% by mass or less. Preferably there is.

上記のように無機単一酸化物原料または無機複合酸化物原料と、ケイ素および/またはカルシウムを含む化合物、および活性金属成分を、水分を添加した上で混合する際に、必要に応じて成形助剤を、さらに添加して混合してもよい。   As described above, when mixing the inorganic single oxide raw material or the inorganic composite oxide raw material, the compound containing silicon and / or calcium, and the active metal component with the addition of moisture, a molding aid is added as necessary. An agent may be further added and mixed.

成形助剤としては、例えば従来公知のものを用いることができ、具体的には、ポリエチレンオキサイド、結晶性セルロース、グリセリン、ポリビニルアルコール等の有機物が挙げられる。   As the molding aid, for example, conventionally known ones can be used, and specific examples include organic substances such as polyethylene oxide, crystalline cellulose, glycerin, and polyvinyl alcohol.

そして、得られた混合物を、例えば従来公知の成形機を用いて例えばハニカム状に成形し、その後、焼成する。ここで成形した後に乾燥することが好ましい。   Then, the obtained mixture is formed into, for example, a honeycomb using a conventionally known molding machine, and then fired. It is preferable to dry after shaping | molding here.

乾燥方法は、成形加工後、湿度90%以上の環境下から、0.20〜0.97%/hrの範囲の速度で湿度を30%まで減少させた環境下で乾燥させることが好ましい。具体的には調湿調温乾燥機等を適用して乾燥することができる。乾燥温度は、例えば30〜200℃とする。   As a drying method, it is preferable to dry in an environment in which the humidity is reduced to 30% at a rate in the range of 0.20 to 0.97% / hr from an environment having a humidity of 90% or more after molding. Specifically, it can be dried by applying a humidity-conditioning dryer or the like. A drying temperature shall be 30-200 degreeC, for example.

湿度の低下速度が0.97%/hrより速い場合は、にクラックが発生し、成形体強度など実用上に堪えない可能性がある。   When the rate of decrease in humidity is faster than 0.97% / hr, cracks may occur, and there is a possibility that the strength of the molded body and the like will be unpractical.

湿度の低下速度が0.20%/hrより遅い場合は、生産上効率が悪く適用できない可能性がある。   When the rate of decrease in humidity is slower than 0.20% / hr, there is a possibility that the production efficiency is poor and the application is not possible.

焼成方法は特に限定されず、例えば従来公知の方法、具体的には焼成炉等を用いて焼成することができる。焼成温度は、例えば400〜700℃とする。   The firing method is not particularly limited, and for example, it can be fired using a conventionally known method, specifically, a firing furnace or the like. The firing temperature is, for example, 400 to 700 ° C.

このような本発明の製造方法によって、本発明の触媒を得ることができる。
<排ガス処理方法>
By such a production method of the present invention, the catalyst of the present invention can be obtained.
<Exhaust gas treatment method>

本発明の触媒は、火力発電所排ガス、セメント製造排ガス、ゴミ焼却排ガス、ガラス溶融炉排ガス、鉄鋼コークス炉の排ガス処理触媒として好ましく用いることができる。   The catalyst of the present invention can be preferably used as an exhaust gas treatment catalyst for thermal power plant exhaust gas, cement production exhaust gas, waste incineration exhaust gas, glass melting furnace exhaust gas, and steel coke oven.

本発明の触媒は、排ガスに有機塩素化化合物(ダイオキシン類等)が含有されている場合、これを分解除去する装置にも用いることができる。   The catalyst of the present invention can also be used in an apparatus for decomposing and removing organic chlorinated compounds (such as dioxins) in exhaust gas.

本発明の触媒は、排ガスに水銀が含有されている場合、本触媒を設置し水銀をハロゲン化する装置にも用いることができる。   When the exhaust gas contains mercury, the catalyst of the present invention can also be used in an apparatus for installing the catalyst and halogenating mercury.

以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

[原料調製1(Ti酸化物原料:TiO2原料−1)]
メタチタン酸スラリー(石原産業製)を還流器付撹拌機に仕込み、35質量%H22水をTiO290質量部に対して、H22が9質量部となるように添加し、25質量%アンモニア水をpH9.0となるように徐々に添加した後、40℃で3時間に亘り十分な撹拌を行いつつ恒温熟成した。その後、これに25質量%硫酸水をpH2.0となるように徐々に添加した後、40℃で1時間に亘り十分な撹拌を行い、さらにこれに25質量%アンモニア水をpH7.5となるように徐々に添加した後、40℃で3時間に亘り十分な撹拌を行いつつ恒温熟成した。そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後150℃で焼成して、Ti酸化物原料−1を得た。
[Raw material preparation 1 (Ti oxide raw material: TiO 2 raw material-1)]
A metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd.) was charged into a stirrer equipped with a reflux condenser, and 35% by mass H 2 O 2 water was added to 90 parts by mass of TiO 2 so that H 2 O 2 was 9 parts by mass, 25% by mass aqueous ammonia was gradually added so as to have a pH of 9.0, and then the mixture was aged at 40 ° C. for 3 hours while being sufficiently stirred. Thereafter, 25% by mass sulfuric acid aqueous solution is gradually added so that the pH becomes 2.0, and then sufficient stirring is performed at 40 ° C. for 1 hour. Further, 25% by mass ammonia water is adjusted to pH 7.5. Then, the mixture was aged at 40 ° C. for 3 hours with sufficient agitation. And the obtained slurry was dehydrated and washed, and the dehydrated cake was dried at 110 ° C. and baked at 150 ° C. to obtain Ti oxide raw material-1.

[原料調製2(Ti酸化物原料:TiO2原料−2)]
メタチタン酸スラリー(石原産業製)を還流器付撹拌機に仕込み、25質量%アンモニア水をpH7.5以上となるように添加した後、60℃で3時間に亘り十分な撹拌を行いつつ加熱熟成した。そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後600℃で焼成して、Ti酸化物原料−2を得た。
[Raw material preparation 2 (Ti oxide raw material: TiO 2 raw material-2)]
After charging metatitanic acid slurry (Ishihara Sangyo Co., Ltd.) into a stirrer equipped with a refluxer and adding 25% by mass ammonia water to a pH of 7.5 or higher, heat aging with sufficient stirring for 3 hours at 60 ° C. did. And the obtained slurry was dehydrated and washed, and the dehydrated cake was dried at 110 ° C. and baked at 600 ° C. to obtain Ti oxide raw material-2.

[原料調製3(Ti−W−V原料:TiO2−5質量%WO3−4.35%V2複合酸化物原料)]
メタチタン酸スラリー(石原産業製)を還流器付撹拌機に仕込み、これに35質量%H22水をTiO2 88.5質量部に対して、H22が8.9質量部となるように添加し、さらにパラタングステン酸アンモニウム(日本新金属社製)を、TiO2 88.85質量部に対してWO3が5質量部となるように添加し、加えて硫酸バナジル(新興化学工業製)を、TiO2 88.85質量部に対してV25が6.15質量部となるように添加し、加えて25質量%アンモニア水をpH7.5以上となるように添加した後、60℃で3時間に亘り十分な撹拌を行いつつ加熱熟成した。そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後400℃で焼成して、Ti−W−V複合酸化物原料Aを得た。次にメタチタン酸スラリー(石原産業製)を還流器付撹拌機に仕込み、これにTi−W−V複合酸化物原料Aを、メタチタン酸スラリー由来のTiO230質量部に対してTi−W−V複合酸化物原料Aが70質量部となるように添加し、さらにこれに25質量%アンモニア水をpH7.2となるように徐々に添加した後、40℃で3時間に亘り十分な撹拌を行いつつ恒温熟成した。そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後600℃で焼成して、Ti−W−V複合酸化物原料を得た。
[Raw material preparation 3 (Ti—W—V raw material: TiO 2 -5 mass% WO 3 −4.35% V 2 O 5 composite oxide raw material]]
Charged metatitanic acid slurry (manufactured by Ishihara Sangyo) in a reflux condenser fitted with a stirrer, a 35 wt% H 2 O 2 water against TiO 2 88.5 parts by weight of a, and H 2 O 2 is 8.9 parts by weight Further, ammonium paratungstate (manufactured by Nippon Shin Metals Co., Ltd.) was added so that WO 3 was 5 parts by mass with respect to 88.85 parts by mass of TiO 2 , and vanadyl sulfate (Emerging Chemicals) was added. Kogyo Co., Ltd.) was added so that V 2 O 5 was 6.15 parts by mass with respect to 88.85 parts by mass of TiO 2 , and 25% by mass aqueous ammonia was added so that the pH was 7.5 or more. Thereafter, the mixture was aged by heating with sufficient stirring at 60 ° C. for 3 hours. And the obtained slurry was dehydrated and washed, and the dehydrated cake was dried at 110 ° C. and then calcined at 400 ° C. to obtain a Ti—W—V composite oxide raw material A. Next was charged metatitanic acid slurry (manufactured by Ishihara Sangyo) in a reflux condenser fitted with a stirrer, this to Ti-W-V complex oxide material A, Ti-W- respect TiO 2 30 parts by weight from metatitanic acid slurry After adding V composite oxide raw material A to 70 parts by mass and further gradually adding 25% by mass ammonia water to pH 7.2 to this, sufficient stirring is performed at 40 ° C. for 3 hours. Aged at constant temperature. And the obtained slurry was dehydrated and washed, and the dehydrated cake was dried at 110 ° C. and then fired at 600 ° C. to obtain a Ti—W—V composite oxide raw material.

[原料調製4(Ti−Mo−Si原料:TiO2−5質量%MoO3−10質量%SiO2複合酸化物原料複合酸化物原料)]
メタチタン酸スラリー(石原産業製)を還流器付撹拌機に仕込み、これに35質量%H22水をTiO2 90質量部に対して、H22が10質量部となるように添加し、さらにパラモリブデン酸アンモニウムを、TiO2 85質量部に対してMoO3が5質量部となるように添加し、さらにシリカゾル(日揮触媒化成社製、S−20L)を、TiO2 85質量部に対してSiO2が10質量部となるように添加し、加えて25質量%アンモニア水をpH7.2となるように徐々に添加した後、40℃で24時間に亘り十分な撹拌を行いつつ恒温熟成した。そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後500℃で焼成して、Ti−Mo−Si複合酸化物原料を得た。
[Raw material preparation 4 (Ti—Mo—Si raw material: TiO 2 -5 mass% MoO 3 -10 mass% SiO 2 composite oxide raw material composite oxide raw material]]
A metatitanic acid slurry (manufactured by Ishihara Sangyo) was charged into a stirrer equipped with a reflux condenser, and 35% by mass of H 2 O 2 water was added to 90 parts by mass of TiO 2 so that H 2 O 2 was 10 parts by mass. Further, ammonium paramolybdate was added so that MoO 3 was 5 parts by mass with respect to 85 parts by mass of TiO 2 , and further silica sol (manufactured by JGC Catalysts & Chemicals, S-20L) was added to 85 parts by mass of TiO 2. SiO 2 was added to 10 parts by mass, and 25% by mass ammonia water was gradually added to pH 7.2, followed by sufficient stirring at 40 ° C. for 24 hours. Aged at constant temperature. And the obtained slurry was dehydrated and washed, and the dehydrated cake was dried at 110 ° C. and then fired at 500 ° C. to obtain a Ti—Mo—Si composite oxide raw material.

[原料調製5(Ti-Si原料:TiO2−20質量%SiO2複合酸化物原料)]
硫酸チタニルの硫酸溶液(テイカ製TM結晶を水で溶解したもの)を還流器付撹拌機に仕込み、これに35質量%H22水をTiO2 80質量部に対して、H22が8質量部となるように添加し、さらにこれにシリカゾル(日揮触媒化成社製、S−20L)を、TiO2 80質量部に対してSiO2が20質量部となるように添加し、さらに32.5質量%の尿素水をTiO2 80質量部に対して、尿素が27質量部となるように添加し、95℃まで加熱した後12時間に亘り十分な撹拌を行いつつ熟成した。そして、得られたスラリーを脱水洗浄し、脱水ケーキを110℃乾燥の後500℃で焼成して、Ti−Si複合酸化物原料を得た。
[Raw material preparation 5 (Ti—Si raw material: TiO 2 -20 mass% SiO 2 composite oxide raw material)]
A sulfuric acid solution of titanyl sulfate (Teica TM crystal dissolved in water) was charged into a stirrer equipped with a reflux condenser, and 35% by mass of H 2 O 2 water was added to 80 parts by mass of TiO 2 with respect to H 2 O 2. The silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd., S-20L) is added thereto so that the SiO 2 is 20 parts by mass with respect to 80 parts by mass of TiO 2. 32.5% by mass of urea water was added to 80 parts by mass of TiO 2 so that urea was 27 parts by mass, heated to 95 ° C., and then aged with sufficient stirring for 12 hours. And the obtained slurry was dehydrated and washed, and the dehydrated cake was dried at 110 ° C. and then fired at 500 ° C. to obtain a Ti—Si composite oxide raw material.

<触媒調製> <Catalyst preparation>

[実施例1]
上記のようにして得たTi酸化物原料−1、22.7kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、パラモリデン酸アンモニウム(太陽鉱工製)920g、硝子繊維1.25kg、25質量%アンモニア水2.10kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるようにミキサーにて混練後、ハニカム状に押出成形した。得られた成形体を、湿度90%から30%まで3日間で徐々に減少させ(0.83%/hrの減少率相当)、また温度を40℃から60℃まで3日間で徐々に上昇させた環境下で乾燥させた。その後、500℃で3時間焼成し触媒を得た。得られたハニカム状触媒は、隔壁の肉厚:0.50mm、目開き:3.20mm、外形75mmの態様であった。
[Example 1]
Ti oxide raw material-1 obtained as described above, 12.7 kg, ammonium metavanadate (manufactured by Shinsei Chemical Industry) 1.285 kg, ammonium paramoridenate (manufactured by Taiyo Mining) 920 g, glass fiber 1.25 kg, 2.10 kg of 25% by mass ammonia water, water, 125 g of polyethylene glycol (PEG-20000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 125 g of crystalline cellulose (Theorus TG-101) are added, and a mixer is added so that the water concentration becomes 30% by mass. After being kneaded in, it was extruded into a honeycomb shape. The obtained molded body was gradually decreased from 90% to 30% in 3 days (equivalent to a reduction rate of 0.83% / hr), and the temperature was gradually increased from 40 ° C. to 60 ° C. in 3 days. Dried in a dry environment. Then, it baked at 500 degreeC for 3 hours, and obtained the catalyst. The obtained honeycomb catalyst had a partition wall thickness of 0.50 mm, an opening of 3.20 mm, and an outer shape of 75 mm.

[比較例1]
同様に、上記のようにして得たTi酸化物原料−2、24.7kgに、メタバナジン酸アンモニウム(新興化学工業社製)1.285kg、25質量%アンモニア水2.30kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるように混練後、ハニカム形状に成形し、実施例1と同じ乾燥条件にて乾燥した後、500℃で3時間焼成し、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状触媒を得た。
[Comparative Example 1]
Similarly, to the Ti oxide raw material-2, 24.7 kg obtained as described above, 1.285 kg of ammonium metavanadate (manufactured by Shinsei Chemical Industry Co., Ltd.), 2.30 kg of 25 mass% ammonia water, water, polyethylene glycol ( 125 g of PEG-20000 (Daiichi Kogyo Seiyaku Co., Ltd.) and 125 g of crystalline cellulose (Theolas TG-101) were added, kneaded so that the water concentration was 30% by mass, then formed into a honeycomb shape, and dried as in Example 1. After drying under the conditions, firing was performed at 500 ° C. for 3 hours to obtain a honeycomb-shaped catalyst having a partition wall thickness of 0.50 mm, an opening of 3.20 mm, and an outer diameter of 75 mm.

[実施例2]
上記のようにして得たTi−W−V複合酸化物原料23.7kgに、硝酸ランタン六水和物1.02kgと硝酸イットリウム六水和物1.28kg、硝子繊維1.25kg、25質量%アンモニア水2.10kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるようにミキサーにて混練後、ハニカム形状に成形し、実施例1と同じ乾燥条件にて乾燥した後、500℃で3時間焼成し、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状触媒を得た。
[Example 2]
To 23.7 kg of the Ti-W-V composite oxide raw material obtained as described above, 1.02 kg of lanthanum nitrate hexahydrate, 1.28 kg of yttrium nitrate hexahydrate, 1.25 kg of glass fiber, 25% by mass 2.10 kg of aqueous ammonia, water, 125 g of polyethylene glycol (PEG-20000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and 125 g of crystalline cellulose (Theolas TG-101) were added and kneaded with a mixer so that the water concentration was 30% by mass. Thereafter, it was formed into a honeycomb shape, dried under the same drying conditions as in Example 1, and then fired at 500 ° C. for 3 hours to obtain a honeycomb catalyst having a partition wall thickness of 0.50 mm, an opening of 3.20 mm, and an outer diameter of 75 mm. It was.

[実施例3]
上記のようにして得たTi−Mo−Si複合酸化物原料22.7kgに、50質量%硝酸マンガン水溶液4.52kgと、硝酸第一セリウム六水和物1.89kg、活性白土1.25kg、25質量%アンモニア水2.10kgと水、ポリエチレングリコール(第一工業製薬社製 PEG−20000)125g、結晶セルロース(セオラスTG−101)125gを添加し、水分濃度が30質量%になるようにミキサーにて混練後、ハニカム形状に成形し、実施例1と同じ乾燥条件にて乾燥した後、500℃で3時間焼成し、隔壁厚0.50mm、目開き3.20mm、外径75mmのハニカム状触媒を得た。
[Example 3]
To 22.7 kg of the Ti—Mo—Si composite oxide raw material obtained as described above, 4.52 kg of 50 mass% manganese nitrate aqueous solution, 1.89 kg of cerous nitrate hexahydrate, 1.25 kg of activated clay, 2.10 kg of 25% by mass ammonia water, water, 125 g of polyethylene glycol (PEG-20000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 125 g of crystalline cellulose (Theorus TG-101) are added, and a mixer is added so that the water concentration becomes 30% by mass. After being kneaded in, formed into a honeycomb shape, dried under the same drying conditions as in Example 1, and then fired at 500 ° C. for 3 hours to form a honeycomb shape having a partition wall thickness of 0.50 mm, an opening of 3.20 mm, and an outer diameter of 75 mm. A catalyst was obtained.

[実施例4]
同様に、Ti−Si複合酸化物原料22.7kgを使用すること以外は実施例1と同様にして触媒を得た。
[Example 4]
Similarly, a catalyst was obtained in the same manner as in Example 1 except that 22.7 kg of the Ti—Si composite oxide raw material was used.

[比較例2]
実施例2と同様に、ハニカム状に成形した後、得られたを、湿度90%から30%まで1日間で急速に減少させ(2.5%/hrの減少率相当)、また温度を40℃から60℃まで1日間で急速に上昇させた環境下で乾燥させた。その結果、ハニカムに多数のクラックが発生しサンプルが採取できなかった。
[Comparative Example 2]
As in Example 2, after forming into a honeycomb shape, the obtained material was rapidly reduced from 90% to 30% humidity in one day (equivalent to a rate of reduction of 2.5% / hr), and the temperature was changed to 40%. Drying was performed in an environment where the temperature was rapidly increased from 60 ° C. to 60 ° C. in one day. As a result, many cracks were generated in the honeycomb, and the sample could not be collected.

[試験例1] 水銀ポロシメータ比表面積測定による比表面積の見積もり
実施例および比較例において得られた各触媒について、水銀ポロシメータによる5nmから5400nmの範囲の比表面積分布測定を行った。
水銀ポロシメータ比表面積測定装置:Quantachrome PoreMaster
水銀ポロシメータ比表面積測定条件:前処理300℃1時間、水銀圧入角130度、表面張力473erg/cm2
[Test Example 1] Estimation of specific surface area by measurement of specific surface area of mercury porosimeter With respect to each catalyst obtained in Examples and Comparative Examples, specific surface area distribution measurement in the range of 5 nm to 5400 nm was performed using a mercury porosimeter.
Mercury porosimeter specific surface area measuring device: Quantachrome PoreMaster
Mercury porosimeter specific surface area measurement conditions: pretreatment 300 ° C. for 1 hour, mercury intrusion angle 130 °, surface tension 473 erg / cm 2

各触媒の水銀圧入ポロシメトリー法による5nmから5400nmの触媒比表面積分布の内、5nmから500nmの触媒比表面積分布を図1〜図5に示す。なお、500nm以上に、識別可能な比表面積ピークはなかった。   FIG. 1 to FIG. 5 show the catalyst specific surface area distribution of 5 nm to 500 nm among the catalyst specific surface area distribution of 5 nm to 5400 nm by mercury porosimetry of each catalyst. Note that there was no distinguishable specific surface area peak at 500 nm or more.

[試験例2] CaCl2溶液スプレー、硫安による触媒の加速劣化試験
実施例および比較例において得られた各触媒について、4目×4目×107mmLに切り出し(肉厚:0.50mm、目開きの幅:3.20mm)、石英反応管にセットした後、Fresh状態での触媒脱硝性能を測定した。ここで触媒接触前後のガス中の窒素酸化物(NOx)の脱硝率は、下記式により求めることができる。このとき、NOxの濃度は化学発光式の窒素酸化物分析計(株式会社 アバテック・ヤナコ社製、ECL−88AO)で測定した。
脱硝率(%)={(未接触ガス中のNOx(体積ppm)−接触後のガス中のNOx(体積ppm))/未接触ガス中のNOx(体積ppm)}×100
ここで求められた初期脱硝率をη0(%)とした。また反応速度定数k0=―AV×ln(1−η0/100)を算出した。
その後、石英反応管中にCaCl2溶液を噴霧するためのノズルを取り付け、触媒上流側からCaCl2溶液を添加した。ノズルは石英反応管の上流側の端面から300mm離して設置した。CaCl2溶液の濃度は0.1質量%、噴霧時間は48時間で実施した。CaCl2溶液スプレー後、再び触媒の脱硝性能を測定した。ここで求められた劣化後脱硝率をη(%)からk=―AV×ln(1−η/100)を算出した。そして、k/k0を求めて、Fresh状態の性能との比較を行った。性能測定及びCaCl2溶液スプレーはいずれも130℃で実施した。測定条件は以下に示す通りである。
活性測定条件
反応温度:130℃、SV=3000(1/h)、ガス風量=0.075(Nm3/h)、AV=3.30(Nm3/m2h)、NO=180(体積ppm)、NH3=180(体積ppm)、SO2=40(体積ppm)、O2=7体積%、H2O=10体積%、N2=バランス
加速劣化試験条件
SV=3000(1/h)、ガス風量=0.075(Nm3/h)、AV=3.30(Nm3/m2h)、NO=0(体積ppm)、NH3=0(体積ppm)、SO2=1000(体積ppm)、O2=7体積%、H2O=10体積%(CaCl2溶液として)、N2=バランス
[Test Example 2] Accelerated deterioration test of catalyst by CaCl 2 solution spray and ammonium sulfate Each catalyst obtained in Examples and Comparative Examples was cut into 4 × 4 × 107 mmL (thickness: 0.50 mm, opening size) (Width: 3.20 mm) After setting in a quartz reaction tube, the catalyst denitration performance in the Fresh state was measured. Here, the denitration rate of nitrogen oxide (NOx) in the gas before and after contact with the catalyst can be obtained by the following equation. At this time, the concentration of NOx was measured with a chemiluminescent nitrogen oxide analyzer (ECL-88AO, manufactured by Abatech Yanaco).
Denitration rate (%) = {(NOx in noncontact gas (volume ppm) −NOx in gas after contact (volume ppm)) / NOx in noncontact gas (volume ppm)} × 100
The initial denitration rate obtained here was defined as η 0 (%). The calculated reaction rate constant k 0 = -AV × ln (1 -η 0/100).
Thereafter, a nozzle for spraying the CaCl 2 solution was attached to the quartz reaction tube, and the CaCl 2 solution was added from the upstream side of the catalyst. The nozzle was installed 300 mm away from the upstream end face of the quartz reaction tube. The concentration of the CaCl 2 solution was 0.1% by mass, and the spraying time was 48 hours. After spraying the CaCl 2 solution, the denitration performance of the catalyst was measured again. The post-degradation denitration rate obtained here was calculated from η (%) as k = −AV × ln (1−η / 100). Then, in search of k / k 0, it was compared with the performance of the Fresh state. Both performance measurement and CaCl 2 solution spraying were performed at 130 ° C. The measurement conditions are as shown below.
Activity measurement conditions Reaction temperature: 130 ° C., SV = 3000 (1 / h), gas flow rate = 0.075 (Nm 3 / h), AV = 3.30 (Nm 3 / m 2 h), NO = 180 (volume) ppm), NH 3 = 180 (volume ppm), SO 2 = 40 (volume ppm), O 2 = 7 volume%, H 2 O = 10 volume%, N 2 = balance accelerated deterioration test conditions SV = 3000 (1 / h), the gas air volume = 0.075 (Nm 3 /h),AV=3.30(Nm 3 / m 2 h), NO = 0 ( volume ppm), NH 3 = 0 (volume ppm), SO 2 = 1000 (volume ppm), O 2 = 7 vol%, H 2 O = 10 vol% (as CaCl 2 solution), N 2 = balance

結果を第1表に示す。比較例1の触媒に比べ、実施例1〜4の触媒はCaCl2溶液スプレー後も活性が高いことがわかる。 The results are shown in Table 1. Compared with the catalyst of Comparative Example 1, it can be seen that the catalysts of Examples 1 to 4 have higher activity even after spraying with CaCl 2 solution.

[試験例3] 低温脱硝試験
実施例および比較例において得られた各触媒について、4目×4目×107mmLに切り出し(肉厚:0.50mm、目開きの幅:3.20mm)、石英反応管にセットした後、低温脱硝性能を測定した。
ここで触媒接触前後のガス中の窒素酸化物(NO)の脱硝率は、上記式により求めた。このときNOの濃度は化学発光式の窒素酸化物分析計(株式会社 アナテック・ヤナコ製、ECL-88AO)にて測定した。
[Test Example 3] Low-temperature denitration test Each catalyst obtained in Examples and Comparative Examples was cut into 4 × 4 × 107 mmL (wall thickness: 0.50 mm, opening width: 3.20 mm), quartz reaction After setting the tube, the low temperature denitration performance was measured.
Here, the denitration rate of nitrogen oxides (NO x ) in the gas before and after contact with the catalyst was determined by the above formula. In this case NO X concentrations chemiluminescent nitrogen oxide of Formula analyzer (manufactured Anatekku-Yanaco Ltd., ECL-88AO) was measured by.

低温脱硝性能の測定方法は次の通りである。
反応温度:110℃、空塔速度(SV)=3000hr−1
モデルガス組成:NO=180体積ppm、NH3=180体積ppm、O2=7体積%、H2O=10体積%、N2=バランス
The measuring method of the low temperature denitration performance is as follows.
Reaction temperature: 110 ° C., superficial velocity (SV) = 3000 hr −1
Model gas composition: NO x = 180 vol ppm, NH 3 = 180 vol ppm, O 2 = 7 vol%, H 2 O = 10 vol%, N 2 = balance

[試験例4] 脱硝試験
実施例および比較例において得られた各触媒について、4目×4目×272mmLに切り出し(肉厚:0.50mm、目開きの幅:3.20mm)、石英反応管にセットした後、脱硝性能を測定した。
ここで触媒接触前後のガス中の窒素酸化物(NO)の脱硝率は、上記式により求めた。このときNOの濃度は化学発光式の窒素酸化物分析計(株式会社 アナテック・ヤナコ製、ECL-88AO)にて測定した。
Test Example 4 Denitration Test Each catalyst obtained in Examples and Comparative Examples was cut into 4 × 4 × 272 mmL (wall thickness: 0.50 mm, opening width: 3.20 mm), quartz reaction tube After setting, the denitration performance was measured.
Here, the denitration rate of nitrogen oxides (NO x ) in the gas before and after contact with the catalyst was determined by the above formula. In this case NO X concentrations chemiluminescent nitrogen oxide of Formula analyzer (manufactured Anatekku-Yanaco Ltd., ECL-88AO) was measured by.

低温脱硝性能の測定方法は次の通りである。
反応温度:350℃、空塔速度(SV)=29300hr−1
モデルガス組成:NO=180体積ppm、NH3=180体積ppm、O2=7体積%、H2O=10体積%、N2=バランス
The measuring method of the low temperature denitration performance is as follows.
Reaction temperature: 350 ° C., superficial velocity (SV) = 29300 hr −1
Model gas composition: NO x = 180 vol ppm, NH 3 = 180 vol ppm, O 2 = 7 vol%, H 2 O = 10 vol%, N 2 = balance

結果を表1に示す。   The results are shown in Table 1.

Claims (7)

(i)水銀圧入ポロシメトリー法による5nmから5400nmの触媒細孔の比表面積A(SAHg)が25〜50m2/gの範囲にある、
(ii)細孔径分布で、20〜50nmの範囲内に最大ピークXを有する、
(iii)最大ピークの細孔径Xに対して、X×10-0.25〜X×10+0.25nmの範囲の細孔径が占める比表面積SAXが、触媒の全比表面積SAtotalに対し、SAX/SAtotal=0.65〜0.90の範囲にある、
上記(i)〜(iii)の条件を満たし、酸化チタンおよび/またはチタン複合酸化物の少なくとも1種類以上の無機単一酸化物および/または無機複合酸化物からなる担体と、構造規制剤と、活性金属成分とを含むことを特徴とする排ガス処理用触媒。
(I) The specific surface area A (SA Hg ) of catalyst pores of 5 nm to 5400 nm by mercury intrusion porosimetry is in the range of 25 to 50 m 2 / g.
(Ii) pore size distribution with a maximum peak X in the range of 20-50 nm,
Relative pore diameter X of (iii) the maximum peak, X × 10 -0.25 ~X × 10 +0.25 nm specific surface area SA X occupied by pore size in the range of, relative to the total specific surface area SA total catalyst, SA X / SA total = 0.65 to 0.90.
A carrier satisfying the above conditions (i) to (iii) and comprising at least one inorganic single oxide and / or inorganic composite oxide of titanium oxide and / or titanium composite oxide, a structure regulating agent, An exhaust gas treatment catalyst comprising an active metal component.
前記担体がTiO2からなる無機単一酸化物、および/またはW、Mo、SiおよびVからなる群から選ばれる少なくとも1つとTiとの無機複合酸化物であることを特徴とする、請求項1に記載の排ガス処理用触媒。 2. The carrier is an inorganic single oxide composed of TiO 2 and / or an inorganic composite oxide of Ti and at least one selected from the group consisting of W, Mo, Si and V. The catalyst for exhaust gas treatment as described in 1. 前記活性金属成分が、バナジウム、モリブデン、マンガン、ランタン、イットリウムおよびセリウムからなる群から選ばれる少なくとも1つであることを特徴とする、請求項1または2に記載の排ガス処理用触媒。   3. The exhaust gas treatment catalyst according to claim 1, wherein the active metal component is at least one selected from the group consisting of vanadium, molybdenum, manganese, lanthanum, yttrium, and cerium. 前記構造規制剤は、ケイ素および/またはカルシウムを含む化合物であることを特徴とする、請求項1〜3のいずれかに記載の排ガス処理用触媒。   The exhaust gas treatment catalyst according to any one of claims 1 to 3, wherein the structure regulating agent is a compound containing silicon and / or calcium. 工程(a):Tiを含むスラリー、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとを含むスラリーを脱水し、焼成して、TiO2からなる無機単一酸化物原料、または、W、Mo、Si、およびVからなる群から選ばれる少なくとも1つとTiとの無機複合酸化物原料を得る工程。
工程(b):工程(a)において得られた無機単一酸化物原料および/または無機複合酸化物原料と、ケイ素および/またはカルシウムを含む化合物と、活性金属成分を含む混合体を、成形し、乾燥、焼成する工程。
を含む、請求項1〜4のいずれかに記載の排ガス処理用触媒の製造方法。
Step (a): Inorganic single oxidation comprising TiO 2 by dehydrating and firing a slurry containing Ti or a slurry containing Ti and at least one selected from the group consisting of W, Mo, Si and V A step of obtaining a raw material or an inorganic composite oxide raw material of Ti and at least one selected from the group consisting of W, Mo, Si, and V.
Step (b): A mixture containing the inorganic single oxide raw material and / or inorganic composite oxide raw material obtained in step (a), a compound containing silicon and / or calcium, and an active metal component is molded. , Drying and firing.
The manufacturing method of the catalyst for exhaust gas treatment in any one of Claims 1-4 containing these.
工程(b)の前記混合体の成形加工後、湿度90%以上の環境下から、0.20〜0.97%/hrの範囲の速度で湿度を30%まで減少させた環境下で乾燥させることを特徴とする乾燥工程をさらに含む、請求項5に記載の排ガス処理用触媒の製造方法。   After forming the mixture in the step (b), the mixture is dried in an environment where the humidity is reduced to 30% at a rate in the range of 0.20 to 0.97% / hr from an environment where the humidity is 90% or more. The method for producing an exhaust gas treatment catalyst according to claim 5, further comprising a drying step. 請求項1〜4のいずれかに記載の排ガス処理用触媒を用いて排ガスを処理する、排ガスの処理方法。
An exhaust gas treatment method for treating exhaust gas using the exhaust gas treatment catalyst according to claim 1.
JP2015193128A 2015-09-30 2015-09-30 Exhaust gas treatment catalyst and method for producing the same Active JP6592319B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015193128A JP6592319B2 (en) 2015-09-30 2015-09-30 Exhaust gas treatment catalyst and method for producing the same
CN201610862366.9A CN106824168B (en) 2015-09-30 2016-09-28 Catalyst for exhaust gas treatment and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193128A JP6592319B2 (en) 2015-09-30 2015-09-30 Exhaust gas treatment catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017064627A true JP2017064627A (en) 2017-04-06
JP6592319B2 JP6592319B2 (en) 2019-10-16

Family

ID=58490930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193128A Active JP6592319B2 (en) 2015-09-30 2015-09-30 Exhaust gas treatment catalyst and method for producing the same

Country Status (2)

Country Link
JP (1) JP6592319B2 (en)
CN (1) CN106824168B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552041A (en) * 2017-09-30 2018-01-09 湖北神雾热能技术有限公司 A kind of wear-resisting denitrating catalyst of the grey high calcium operating mode of suitable height and preparation method thereof
CN107694558A (en) * 2017-09-30 2018-02-16 湖北神雾热能技术有限公司 A kind of SCR catalyst for having denitration heat accumulation function concurrently and preparation method thereof
CN110339847A (en) * 2019-08-08 2019-10-18 清华大学 Denitrification catalyst and its preparation method and application
KR102079475B1 (en) * 2019-07-29 2020-02-20 노한길 Fabrication method of SCR catalyst for removal of dioxin
WO2020039903A1 (en) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
CN111974399A (en) * 2020-08-18 2020-11-24 山东大学 Red mud-based SCR denitration catalyst and preparation method and application thereof
CN112206768A (en) * 2020-09-24 2021-01-12 四川大学 Cerium-doped modified lanthanum-manganese composite oxide SCR denitration catalyst and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198455B (en) * 2021-05-17 2022-12-09 南昌航空大学 Molybdenum trioxide/molybdenum mesh photocatalyst and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219293A (en) * 1982-06-15 1983-12-20 Chiyoda Chem Eng & Constr Co Ltd Heavy oil hydrocracking method
JPH07132233A (en) * 1993-11-09 1995-05-23 Babcock Hitachi Kk Production of honeycomb catalyst
JPH10235191A (en) * 1996-12-27 1998-09-08 Nippon Shokubai Co Ltd Catalyst for removing organohalogen compound, preparing method thereof, and method for removing organohalogen compound
JP2002079091A (en) * 2000-09-08 2002-03-19 Nippon Shokubai Co Ltd Catalyst for treating wastewater and wastewataer treatment method using the same
JP2002126520A (en) * 2000-10-23 2002-05-08 Nippon Shokubai Co Ltd Wastewater treatment catalyst and method for treating wastewater by using the catalyst
WO2015037536A1 (en) * 2013-09-10 2015-03-19 新日鐵住金株式会社 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas
CN104815644A (en) * 2015-03-16 2015-08-05 南通亚泰工程技术有限公司 Porous honeycomb type denitration catalyst for ship denitration, preparation method and application thereof
JP2016129885A (en) * 2015-01-09 2016-07-21 日揮触媒化成株式会社 Exhaust gas treatment honeycomb catalyst and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486539B2 (en) * 2011-03-30 2014-05-07 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
JP6007193B2 (en) * 2012-01-23 2016-10-12 エヌ・イーケムキャット株式会社 Method for producing alumina material containing barium sulfate and method for producing exhaust gas purifying catalyst
CN104755149A (en) * 2012-11-01 2015-07-01 京瓷株式会社 Honeycomb structure and gas processing device using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219293A (en) * 1982-06-15 1983-12-20 Chiyoda Chem Eng & Constr Co Ltd Heavy oil hydrocracking method
JPH07132233A (en) * 1993-11-09 1995-05-23 Babcock Hitachi Kk Production of honeycomb catalyst
JPH10235191A (en) * 1996-12-27 1998-09-08 Nippon Shokubai Co Ltd Catalyst for removing organohalogen compound, preparing method thereof, and method for removing organohalogen compound
JP2002079091A (en) * 2000-09-08 2002-03-19 Nippon Shokubai Co Ltd Catalyst for treating wastewater and wastewataer treatment method using the same
JP2002126520A (en) * 2000-10-23 2002-05-08 Nippon Shokubai Co Ltd Wastewater treatment catalyst and method for treating wastewater by using the catalyst
WO2015037536A1 (en) * 2013-09-10 2015-03-19 新日鐵住金株式会社 Oxidation catalyst, exhaust gas treatment device, regenerative combustion burner, method for oxidizing combustible components contained in gas, and method for removing nitrogen oxide contained in gas
JP2016129885A (en) * 2015-01-09 2016-07-21 日揮触媒化成株式会社 Exhaust gas treatment honeycomb catalyst and manufacturing method thereof
CN104815644A (en) * 2015-03-16 2015-08-05 南通亚泰工程技术有限公司 Porous honeycomb type denitration catalyst for ship denitration, preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552041A (en) * 2017-09-30 2018-01-09 湖北神雾热能技术有限公司 A kind of wear-resisting denitrating catalyst of the grey high calcium operating mode of suitable height and preparation method thereof
CN107694558A (en) * 2017-09-30 2018-02-16 湖北神雾热能技术有限公司 A kind of SCR catalyst for having denitration heat accumulation function concurrently and preparation method thereof
WO2020039903A1 (en) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
JPWO2020039903A1 (en) * 2018-08-22 2020-10-22 三井金属鉱業株式会社 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using it, and exhaust gas purification method
KR20210022763A (en) * 2018-08-22 2021-03-03 미쓰이금속광업주식회사 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using the same, and exhaust gas purification method
US11141721B2 (en) 2018-08-22 2021-10-12 Mitsui Mining & Smelting Co., Ltd. Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
KR102312699B1 (en) 2018-08-22 2021-10-15 미쓰이금속광업주식회사 Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using same, and exhaust gas purification method
KR102079475B1 (en) * 2019-07-29 2020-02-20 노한길 Fabrication method of SCR catalyst for removal of dioxin
CN110339847A (en) * 2019-08-08 2019-10-18 清华大学 Denitrification catalyst and its preparation method and application
CN111974399A (en) * 2020-08-18 2020-11-24 山东大学 Red mud-based SCR denitration catalyst and preparation method and application thereof
CN112206768A (en) * 2020-09-24 2021-01-12 四川大学 Cerium-doped modified lanthanum-manganese composite oxide SCR denitration catalyst and preparation method thereof

Also Published As

Publication number Publication date
CN106824168B (en) 2021-05-28
CN106824168A (en) 2017-06-13
JP6592319B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6592319B2 (en) Exhaust gas treatment catalyst and method for producing the same
KR100767563B1 (en) Method of preparing a vanadium / titania-based catalyst having excellent nitrogen oxide removal activity in a wide temperature range by the introduction of ball milling and its use
CN106345523B (en) A kind of low-temperature denitration catalyst and preparation method thereof based on carbonization MOFs
JP6671163B2 (en) Exhaust gas treatment honeycomb catalyst and method for producing the same
CN101428212B (en) Composite carrier flue gas selective catalytic reduction method denitrification catalyst and preparation method
KR101095229B1 (en) Method for preparing vanadium / tungsten / titania catalyst for nitrogen oxide removal
CN107649116A (en) Cerium tin composite oxides denitrating catalyst and its preparation method and application
JP2018527168A (en) SCR catalyst for removing nitrogen oxides and method for producing the same
KR101733171B1 (en) NOx Removal Catalyst using Ceramic Nanotube on Metal Structure with Gaps for Ship and Method for Manufacturing Same
CN103769080A (en) Diesel vehicle tail gas purification SCR catalyst and preparation method thereof
CN108671946A (en) Phosphorus doping cerium titanium catalyst, preparation and its application in selective-catalytic-reduction denitrified
CN114505066A (en) Denitration catalyst, preparation method thereof and denitration method
CN108568296A (en) A kind of vanadium titanium oxide catalyst and its preparation method and application
CN109603808B (en) Preparation method and application of zirconium pillared montmorillonite-loaded Ce-Nb composite catalyst
WO2013099253A1 (en) Titanium-containing granular powder and method for production thereof, and exhaust gas treatment catalyst using same and method for production thereof
CN111330563B (en) A kind of ordered mesoporous carbon-titanium oxide composite catalyst and preparation method thereof
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
CN112023908A (en) Nitrogen oxide removal catalyst and preparation method thereof
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
CN114308008B (en) Porous reduction TiO based on Ba doping 2 Preparation method of ultra-low temperature denitration catalyst
CN107029736A (en) A kind of Fe M/CNTs denitrating catalysts, preparation method and its application in ammine selectivity catalytic reduction nitrous oxides
JP2005342711A (en) Denitration method for diesel engine exhaust gas
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP2005342710A (en) Heat-resistant denitration catalyst
US20240066503A1 (en) Nitrogen oxide removing denitrification catalyst having high durability against sulfur dioxide, method for preparing the same, and method for removing nitrogen oxide using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190920

R150 Certificate of patent or registration of utility model

Ref document number: 6592319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250