JP2010049280A - Method for producing polarizing element - Google Patents
Method for producing polarizing element Download PDFInfo
- Publication number
- JP2010049280A JP2010049280A JP2009267171A JP2009267171A JP2010049280A JP 2010049280 A JP2010049280 A JP 2010049280A JP 2009267171 A JP2009267171 A JP 2009267171A JP 2009267171 A JP2009267171 A JP 2009267171A JP 2010049280 A JP2010049280 A JP 2010049280A
- Authority
- JP
- Japan
- Prior art keywords
- protective film
- metal wires
- fine metal
- film
- polarizing element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 230000001681 protective effect Effects 0.000 claims abstract description 181
- 229910001111 Fine metal Inorganic materials 0.000 claims abstract description 104
- 229910052751 metal Inorganic materials 0.000 claims abstract description 91
- 239000002184 metal Substances 0.000 claims abstract description 91
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 30
- 238000005229 chemical vapour deposition Methods 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 4
- 238000002230 thermal chemical vapour deposition Methods 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims 1
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 52
- 230000003287 optical effect Effects 0.000 abstract description 16
- 230000007423 decrease Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 231
- 239000010410 layer Substances 0.000 description 44
- 239000007789 gas Substances 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 22
- 239000002994 raw material Substances 0.000 description 20
- 238000005755 formation reaction Methods 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 229910052814 silicon oxide Inorganic materials 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 9
- 239000011800 void material Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000011241 protective layer Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NCMAYWHYXSWFGB-UHFFFAOYSA-N [Si].[N+][O-] Chemical compound [Si].[N+][O-] NCMAYWHYXSWFGB-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910009372 YVO4 Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
【課題】ラビング時の耐性を有し且つ光学特性の低下を少なく抑えたワイヤーグリッド型の偏光素子、該偏光素子の製造方法、該偏光素子を用いた液晶装置及び該液晶装置を備えた電子機器を提供することを目的とする。
【解決手段】基材12と、基材12上に所定の配列軸に沿って設けられた複数の金属細線14と、複数の金属細線14の各々を覆う複数の保護膜16と、を備え、保護膜16は、金属細線14の上端部及び両側壁部を覆い、各々の金属細線14の上端部に設けられた第2保護膜16bの配列軸方向の幅が、各々の金属細線14の配列軸方向の幅と各々の両側壁部における第1保護膜16aの配列軸方向の幅とを合わせた幅よりも広くなっており、隣接する金属細線14の相対する側壁部に設けられた第1保護膜16aは空隙部15を形成することを特徴とする。
【選択図】図4A wire grid type polarizing element that has resistance during rubbing and suppresses a decrease in optical characteristics, a method of manufacturing the polarizing element, a liquid crystal device using the polarizing element, and an electronic apparatus including the liquid crystal device The purpose is to provide.
A base material 12, a plurality of fine metal wires 14 provided on the base material 12 along a predetermined array axis, and a plurality of protective films 16 covering each of the plurality of fine metal wires 14, The protective film 16 covers the upper end portion and both side wall portions of the fine metal wires 14, and the width of the second protective film 16 b provided on the upper end portion of each fine metal wire 14 in the arrangement axis direction is the arrangement of the fine metal wires 14. The width in the axial direction and the width in the arrangement axial direction of the first protective film 16a in each side wall portion are wider than each other, and are provided on the opposite side wall portions of the adjacent metal thin wires 14. The protective film 16a is characterized by forming a gap 15.
[Selection] Figure 4
Description
本発明は、偏光素子、偏光素子の製造方法、液晶装置及び電子機器に関するものである。 The present invention relates to a polarizing element, a manufacturing method of a polarizing element, a liquid crystal device, and an electronic apparatus.
様々な電気光学装置の光変調装置として、液晶装置が用いられている。液晶装置の構造として、対向配置された一対の基板間に液晶層が挟持されているものが広く知られ、所定の偏光された光を液晶層に入射するための偏光素子や、電圧無印加時に液晶分子の配列を制御する配向膜が備えられる構成が一般的である。 A liquid crystal device is used as a light modulation device of various electro-optical devices. As a structure of a liquid crystal device, a structure in which a liquid crystal layer is sandwiched between a pair of substrates arranged opposite to each other is widely known, and a polarizing element for entering predetermined polarized light into the liquid crystal layer, or when no voltage is applied In general, an alignment film that controls the alignment of liquid crystal molecules is provided.
偏光素子としては、樹脂フィルムを一方向に延伸することで樹脂フィルムの構成要素を延伸方向に配向させて製造するフィルム型の偏光素子や、透明な基板上にナノスケールの金属細線を敷き詰めた構成のワイヤーグリッド型の偏光素子が知られている。なかでもワイヤーグリッド型の偏光素子は液晶装置内へ内蔵化が可能であるという特長を備えるため、液晶装置の薄型化に有効と考えられている。 As a polarizing element, a film-type polarizing element manufactured by orienting resin film components in the stretching direction by stretching the resin film in one direction, or a structure in which nanoscale metal fine wires are laid on a transparent substrate A wire grid type polarizing element is known. In particular, a wire grid type polarizing element has a feature that it can be incorporated in a liquid crystal device, and is considered to be effective for thinning the liquid crystal device.
ところが、ワイヤーグリッド型の偏光素子は、金属細線部がわずかな接触で破損するほど脆弱であり、取り扱いが非常に困難である。例えば、ワイヤーグリッド型の偏光素子を内蔵した液晶装置の製造では、偏光素子の表面にポリイミド膜を形成し配向膜を作製する。配向膜は、ポリイミド膜の表面を特定方向にラビング処理を施して作製するが、このラビング処理で金属細線が破損してしまうという課題を有する。そのため、金属細線が破損しないように適切な保護を施すことが必要となる。 However, the wire grid type polarizing element is so fragile that the metal thin wire portion is broken by a slight contact, and is very difficult to handle. For example, in the manufacture of a liquid crystal device incorporating a wire grid type polarizing element, a polyimide film is formed on the surface of the polarizing element to produce an alignment film. The alignment film is produced by rubbing the surface of the polyimide film in a specific direction. However, this rubbing process has a problem that the fine metal wires are damaged. Therefore, it is necessary to provide appropriate protection so that the fine metal wires are not damaged.
一方で、偏光素子の光学特性は金属細線の間の材質に影響を受け、屈折率が1であることが望ましいとされる。すなわち、金属細線間は空気(もしくは真空)が最良の材質である。したがって、偏光素子の保護のために金属細線間を例えば透明樹脂のような保護材料で完全に充填してしまうと、光学特性が低下することが考えられる。 On the other hand, the optical characteristics of the polarizing element are affected by the material between the thin metal wires, and it is desirable that the refractive index is 1. That is, air (or vacuum) is the best material between the fine metal wires. Therefore, if the space between the thin metal wires is completely filled with a protective material such as a transparent resin in order to protect the polarizing element, the optical characteristics may be deteriorated.
これらの課題に対し、例えば特許文献1や特許文献2といった手段が提案されている。すなわち、金属細線の形成面に保護材として透明基板を対向配置し、金属細線の破損を防ぐ方法である。また特許文献3には、金属細線の上面にスパッタ法を用いて保護層を成膜し金属細線を保護する方法が提案されている。
For these problems, means such as
しかしながら、特許文献1及び2に記載の方法には、金属細線の保護材として用いられる透明基板のため偏光素子全体の厚みが増してしまうという問題がある。液晶装置への内蔵化を想定した場合、保護材の厚みが妨げになり薄型化に非常に不利である。また、特許文献3に記載の方法では、成膜速度の遅いスパッタ法を用いるため必要な厚みの保護膜の形成に長時間かかる上、金属細線の上面は保護しているが金属細線自体の強化は成されていないため、前述のラビング処理において破損は避けられない。
However, the methods described in
本発明はこのような事情に鑑みてなされたものであって、ラビング時の耐性を有し且つ光学特性の低下を少なく抑えたワイヤーグリッド型の偏光素子及びその製造方法を提供することを目的とする。また、このような偏光素子を備えることにより、表示品質が高く信頼性に優れた液晶装置及び電子機器を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wire grid type polarizing element that has resistance during rubbing and suppresses a decrease in optical characteristics, and a method for manufacturing the same. To do. It is another object of the present invention to provide a liquid crystal device and an electronic device that have high display quality and high reliability by including such a polarizing element.
上記の課題を解決するため、本発明の偏光素子は、基材と、前記基材上に所定の配列軸に沿って設けられた複数の金属細線と、前記複数の金属細線の各々を覆う複数の保護膜と、を備え、前記保護膜は、前記金属細線の上端部及び両側壁部を覆い、各々の前記金属細線の上端部に設けられた前記保護膜の前記配列軸方向の幅が、各々の前記金属細線の前記配列軸方向の幅と各々の前記両側壁部における前記保護膜の前記配列軸方向の幅とを合わせた幅よりも広くなっており、隣接する前記金属細線の相対する前記側壁部に設けられた前記保護膜は空隙部を形成することを特徴とする。 In order to solve the above-described problems, a polarizing element of the present invention includes a base material, a plurality of fine metal wires provided on the base material along a predetermined arrangement axis, and a plurality of the thin metal wires covering each of the fine metal wires. The protective film covers the upper end portion and both side wall portions of the fine metal wires, and the width of the protective film provided on the upper end portions of the fine metal wires in the array axis direction is Each of the fine metal wires is wider than the total width of the metal thin wires in the arrangement axis direction and the width of the protective film on each of the side wall portions in the arrangement axis direction. The protective film provided on the side wall portion forms a void portion.
この構成の偏光素子によれば、保護膜によって金属細線の上端部及び両側壁部が補強されるため、金属細線の破損を防ぐことができる。また、金属細線の上端部に形成された保護膜の幅が金属細線の幅よりも広くなっているため、保護膜により隣接する金属細線間の上部における隙間が狭められたようになる。そのため、金属細線の上に他の材料を積層する場合においても、保護膜により金属細線間への積層物の入り込みを防止することができる。そのため金属細線間が埋没することなく優れた光学特性を備えたものとなる。 According to the polarizing element having this configuration, the upper end portion and both side wall portions of the fine metal wire are reinforced by the protective film, so that the fine metal wire can be prevented from being damaged. Further, since the width of the protective film formed on the upper end portion of the fine metal wire is wider than the width of the fine metal wire, the gap between the adjacent fine metal wires is narrowed by the protective film. Therefore, even when another material is laminated on the fine metal wires, the protective film can prevent the laminate from entering between the fine metal wires. Therefore, it has excellent optical characteristics without being buried between the fine metal wires.
本発明においては、隣接する前記金属細線の上端部に設けられた前記保護膜は、前記配列軸方向に平行な方向において互いに接触していることが望ましい。
この構成によれば、隣接する金属細線の上端部の保護膜が互いに接触しているので、金属細線間には空気(もしくは真空)を封入可能な空隙部が形成される。そのため、優れた光学特性を備えた偏光素子とすることができる。
In the present invention, it is desirable that the protective films provided on the upper ends of the adjacent fine metal wires are in contact with each other in a direction parallel to the arrangement axis direction.
According to this configuration, since the protective films at the upper end portions of the adjacent fine metal wires are in contact with each other, a gap that can enclose air (or vacuum) is formed between the fine metal wires. Therefore, it can be set as the polarizing element provided with the outstanding optical characteristic.
本発明においては、隣接する前記金属細線の上端部に設けられた前記保護膜の前記空隙部に面していない面には複数の堆積膜が形成され、保護層を成していることが望ましい。
この構成によれば、堆積膜による偏光素子の更なる補強が可能になる。堆積膜としては任意の材料を用いることができる。例えば導電性の物質で堆積膜を形成し、形成した導電性の膜を電極として利用するというように、堆積膜の性質により機能を付加することが可能となる。
In the present invention, it is desirable that a plurality of deposited films are formed on a surface of the protective film provided at the upper end portion of the adjacent fine metal wire that does not face the gap portion to form a protective layer. .
According to this configuration, the polarizing element can be further reinforced by the deposited film. Any material can be used as the deposited film. For example, it is possible to add a function depending on the properties of the deposited film, such as forming a deposited film with a conductive material and using the formed conductive film as an electrode.
本発明においては、前記保護膜は透光性の絶縁性材料で形成されていることが望ましい。
この構成によれば、金属細線が周囲と絶縁されるので、例えば偏光素子を装置に組み込む場合に装置の配線と金属細線が意に反して通電することがなく、安定した動作が可能な電子デバイスを提供できる。
In the present invention, the protective film is preferably formed of a light-transmitting insulating material.
According to this configuration, since the fine metal wire is insulated from the surroundings, for example, when a polarizing element is incorporated in the device, the wiring of the device and the fine metal wire are not energized unexpectedly, and an electronic device capable of stable operation Can provide.
本発明の偏光素子の製造方法は、基材上に所定の配列軸に沿って設けられた複数の金属配線を形成する工程と、前記複数の金属細線の上端部及び両側壁部を覆う保護膜を形成する工程と、を備え、前記保護膜を形成する工程では、CVD法を用いて前記複数の金属細線の各々の上端部及び両側壁部に保護膜を形成し、更に成膜を進めて前記複数の金属細線の各々の上端部に成膜された前記保護膜を成長させることにより、前記金属細線の上端部に設けられた前記保護膜の前記配列軸方向の幅が、各々の前記金属細線の前記配列軸方向の幅と各々の前記両側壁部における前記保護膜の前記配列軸方向の幅を合わせた幅よりも広い保護膜を形成することを特徴とする。 The manufacturing method of the polarizing element of the present invention includes a step of forming a plurality of metal wirings provided along a predetermined array axis on a base material, and a protective film that covers upper end portions and both side wall portions of the plurality of metal thin wires. In the step of forming the protective film, a protective film is formed on the upper ends and both side walls of each of the plurality of thin metal wires using the CVD method, and the film formation is further advanced. By growing the protective film formed on the upper end portion of each of the plurality of thin metal wires, the width of the protective film provided on the upper end portion of the thin metal wire in the arrangement axis direction is set to each of the metal wires. A protective film having a width wider than the width of the thin lines in the arrangement axis direction and the width in the arrangement axis direction of the protective film on each side wall portion is formed.
CVD法は形成する膜の成長速度(成膜速度)が大きいという特徴を有しているため、速い成膜速度で膜形成をすることが可能である。金属細線表面への保護膜形成が進行すると、反応初期には各々の金属細線の上端部や側壁部に均一に保護膜が成長する。
反応が進行すると、保護膜の厚みの分だけ隣接する金属細線の間が狭くなり、金属細線間に原料気体が行き渡りにくくなる。すると、金属細線間に原料の気体が進入するよりも速く成膜反応が進行するようになるため、原料気体が行き渡りにくい金属細線間では反応が起こりにくくなり、原料気体に曝される金属細線の上端部で保護膜の形成反応が進行しやすくなる。したがって、金属細線の上端部で保護膜形成の反応が優先的に進行し、隣接する金属細線間の上部の隙間を狭めるように保護膜が成長する。
金属細線の上端部で優先的に保護膜が成長すると、更に金属細線間には原料の気体が進入しにくくなるため、金属細線の間の膜成長が停止し、金属細線間が保護膜で埋没しないまま維持される。そのため、金属細線を効果的に保護膜で補強すると共に、保護膜形成により金属細線間が埋没することなく優れた光学特性を備えた偏光素子を容易に製造することができる。
Since the CVD method has a feature that the growth rate (deposition rate) of a film to be formed is high, the film can be formed at a high film formation rate. As the formation of the protective film on the surface of the fine metal wire proceeds, the protective film uniformly grows on the upper end portion and the side wall portion of each fine metal wire at the beginning of the reaction.
When the reaction proceeds, the space between the adjacent fine metal wires becomes narrower by the thickness of the protective film, and the raw material gas becomes difficult to spread between the fine metal wires. Then, since the film-forming reaction proceeds faster than the raw material gas enters between the fine metal wires, the reaction hardly occurs between the fine metal wires where the raw material gas is difficult to spread. The formation reaction of the protective film easily proceeds at the upper end. Therefore, the reaction for forming the protective film preferentially proceeds at the upper end portion of the fine metal wire, and the protective film grows so as to narrow the upper gap between the adjacent fine metal wires.
If the protective film grows preferentially at the upper end of the fine metal wires, the gas of the raw material becomes difficult to enter between the fine metal wires, so the film growth between the fine metal wires stops and the gap between the fine metal wires is buried with the protective film. Maintained without. For this reason, it is possible to easily reinforce the fine metal wire with the protective film and easily manufacture a polarizing element having excellent optical characteristics without being buried between the fine metal wires by forming the protective film.
前記金属細線の上端部から前記基板の鉛直方向への前記保護膜の厚みは、50nm以上であることが望ましい。
上端部で保護膜形成の反応が優先的に進行すると、隣接する金属細線間の上部における隙間を狭める方向のみならず、金属細線の上端部から基板鉛直方向にも保護膜が成長する。保護膜の成長に伴い隣接する金属細線の上端部に形成された保護膜同士は互いに当接しつながる。金属細線のピッチは偏光素子の設計により異なるが、最大でも可視光の波長の数分の1程度(望ましくは10分の1程度)である。よって、ピッチが最も大きい場合であっても50nm程度の厚みの保護膜を形成しておけば上端部に形成された保護膜同士をつなぎ合わせることができる。そのため、保護膜を50nm以上の厚みになるまで形成させると、確実に隣接する金属細線の上端部に形成された保護膜同士をつなぎ合わせることができ、強固に金属細線を保護することが可能となる。加えて、隣接した金属細線間には保護膜で覆われた空隙部が形成されるため、光学特性の上で有利な金属細線間に空隙部を有する構造の偏光素子を製造することができる。
The thickness of the protective film from the upper end of the thin metal wire in the vertical direction of the substrate is preferably 50 nm or more.
When the reaction for forming the protective film preferentially proceeds at the upper end portion, the protective film grows not only in the direction of narrowing the gap between the upper portions of the adjacent fine metal wires but also in the substrate vertical direction from the upper end portion of the fine metal wires. As the protective film grows, the protective films formed on the upper ends of the adjacent fine metal wires are in contact with each other. The pitch of the fine metal wires varies depending on the design of the polarizing element, but is at most about one-fifth of the wavelength of visible light (preferably about one-tenth). Therefore, even if the pitch is the largest, if the protective film having a thickness of about 50 nm is formed, the protective films formed on the upper end portions can be joined together. Therefore, if the protective film is formed to a thickness of 50 nm or more, the protective films formed on the upper end portions of the adjacent fine metal wires can be connected together, and the fine metal wires can be strongly protected. Become. In addition, since a void portion covered with a protective film is formed between adjacent metal thin wires, a polarizing element having a structure having a void portion between metal thin wires that is advantageous in terms of optical properties can be manufactured.
本発明の液晶装置は、一対の基板と、前記一対の基板の間に挟持された液晶層と、前記一対の基板のうち少なくとも一方の基板の前記液晶層側に設けられた先に記載の偏光素子と、前記偏光素子の前記液晶層側に設けられ、ラビング処理が施されてなる配向膜と、を備えることを特徴とする。
この液晶装置によれば、保護膜で補強された偏光素子を使用する構成であるため、偏光素子の破損による画質の低下が少なく信頼性に優れた液晶装置を実現することができる。また、金属細線間の空隙部を大きくとることができるため、光学特性に優れた液晶装置となり、さらにごく薄い保護膜で金属細線を保護した薄型の偏光素子を備えているため、液晶装置の薄型化が可能となる。
The liquid crystal device according to the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and the polarization described above provided on the liquid crystal layer side of at least one of the pair of substrates. And an alignment film provided on the liquid crystal layer side of the polarizing element and subjected to a rubbing treatment.
According to this liquid crystal device, since the polarizing element reinforced with a protective film is used, it is possible to realize a liquid crystal device with excellent reliability with little deterioration in image quality due to damage of the polarizing element. In addition, since the gap between the fine metal wires can be made large, the liquid crystal device has excellent optical characteristics, and since the thin polarizing element that protects the fine metal wires with a very thin protective film is provided, the thin liquid crystal device can be obtained. Can be realized.
本発明の電子機器は、先に記載の液晶装置を光変調装置として備えることを特徴とする。
この電子機器によれば、表示品質が高く信頼性に優れた電子機器を実現できる。また、液晶装置部分の薄型化により、装置全体を薄型化した電子機器を実現することができる。
An electronic apparatus according to the present invention includes the liquid crystal device described above as a light modulation device.
According to this electronic device, an electronic device with high display quality and excellent reliability can be realized. Further, by thinning the liquid crystal device portion, it is possible to realize an electronic device in which the entire device is thinned.
以下、図面を参照しながら、本発明の実施形態に係る偏光素子及び偏光素子の製造方法について説明する。図1は本実施形態の偏光素子1の部分斜視図である。図2は偏光素子1をYZ平面で切った部分断面図である。なお、以下の説明においてはXYZ座標系を設定し、このXYZ座標系を参照しつつ各部材の位置関係を説明する。この際、水平面内における所定の方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向とY軸方向のそれぞれの直交する方向をZ軸方向とする。本実施形態の場合、偏光層を構成する金属細線の延在方向をX軸方向とし、金属細線の配列軸をY軸方向としている。また、以下の全ての図面においては、図面を見やすくするため、各構成要素の膜厚や寸法の比率などは適宜異ならせている。
Hereinafter, a polarizing element and a method for manufacturing the polarizing element according to embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partial perspective view of the
(偏光素子)
図1に示すように、偏光素子1は、基板12上に形成された偏光層14Lと、偏光層14Lを覆う保護膜16と、を備えている。基板12は、ガラスや石英、プラスチック等の透光性基材を基体としてなる。基板12上には、X軸方向に延在する複数の金属細線14が設けられている。金属細線14は可視光の波長よりも短い周期でY軸方向に沿って均等な間隔で配列されており、これら複数の金属細線14によりワイヤーグリッド型の偏光層14Lが形成されている。偏光層14Lは、金属細線15の延在方向と直交する方向(Y軸方向)に振動する直線偏光を透過させ、それと直交する方向(X軸方向)に振動する直線偏光を反射する反射型の偏光層である。金属細線14としては、アルミニウム等の金属材料が用いられる。
(Polarizing element)
As shown in FIG. 1, the
基板12上には、金属細線14の表面を覆って保護膜16が設けられている。保護膜16は、シリコン酸化膜等の透光性絶縁膜によって形成されている。保護膜16は、金属細線14の側壁部を覆ってX軸方向に延在する第1保護膜16aと、金属細線14の上面部を覆ってX軸方向に延在する第2保護膜16bと、金属細線14の隙間に露出した基板12の表面を覆ってX軸方向に延在する第3保護膜16cと、を備えている。第2保護膜16b同士はY軸方向において互いに接続されており、複数の第2保護膜16bが一体となって偏光層14Lの上面全体を覆っている。第1保護膜16a、第2保護膜16b及び第3保護膜16cに囲まれた領域は空隙部15になっており、空隙部15の内部は真空又は空気によって満たされている。第2保護膜16bの偏光層14Lとは反対側の面は保護面13となっている。保護面13は、金属細線14のパターンを反映し、金属細線14と平面的に重なる箇所は盛り上がり、空隙部15と平面的に重なる箇所は凹んでおり、わずかに波打っている。
A
図2に示すように、金属細線14は、アルミニウム等の金属材料からなる金属突起体14Aと、金属突起体14A上に積層されたマスクM、とを備えている。金属細線14の幅、高さ、間隔(ピッチ)は、例えば、50nm、250nm、140nmである。金属細線14は可視光の波長よりも短い周期でY軸方向に多数配列しており、これにより、Y軸方向に平行な偏光光を透過し、X軸方向に平行な偏光光を反射する反射型の偏光層14Lが形成されている。
As shown in FIG. 2, the
マスクMは、後述する偏光素子1の製造方法で金属細線14を形成する際のエッチングマスクとして用いられるものである。マスクMは、例えばシリコン酸化膜によって形成されている。マスクMは、アルミニウム等からなる金属突起体14Aの上面を保護し、シリコン酸化膜等からなる保護膜16との密着性を向上する機能を有する。また、保護膜16の成膜時には、金属細線14の上面部への保護膜16の成長を促進し、偏光層14Lの上面を被覆し且つ金属細線間に大きな空隙部15を備えた保護膜16の形成を可能とする。なお、マスクMは金属突起体14Aのパターニング後に除去し、金属突起体14Aのみで金属細線1を形成することも可能である。
The mask M is used as an etching mask when the
第2保護膜16bの厚み(Z軸方向の厚み)は例えば200nmである。本実施形態の場合、隣接する第2保護膜16b同士は互いに接続されているが、第2保護膜16b同士は必ずしも接続される必要はない。例えば第2保護膜16b同士の間に僅かに隙間が形成されている構成も可能である。この場合、金属細線14毎に保護膜16が形成され、X軸方向に延在する複数の保護膜16がY軸方向に均等な間隔で多数配列されることになる。
The thickness (Z-axis direction thickness) of the second
第1保護膜16aの厚み(Y軸方向の厚み)は例えば10nm〜50nmである。第1保護膜16aの厚みは、Y軸方向において隣接する第1保護膜16a同士が互いに接触しない(すなわち第1保護膜16a間に空隙部15が形成される)厚みとされる。第2保護膜16bのY軸方向の幅は、第1保護膜16aを含む金属細線14のY軸方向の幅(金属細線14のY軸方向の幅と、金属細線14の左右の側面に形成された第1保護膜16aのY軸方向の幅との総和)よりも大きい。金属細線間の領域には、基板12から離れるにしたがって開口面積が小さくなるようなテーパ状の空隙部15が形成されている。
The thickness (the thickness in the Y-axis direction) of the first
第3保護膜16cの厚み(Z軸方向の厚み)は例えば10nm〜50nmである。第3保護膜16cは第1保護膜16a及び第2保護膜16bと一体に形成され、金属細線14を基盤12上に強固に固定する機能を有する。第1保護膜16a、第2保護膜16b及び第3保護膜16cによって囲まれた空間は空隙部15となっており、空隙部15の内部は第2保護膜16bによって保護面13側の空間と仕切られている。
The thickness (thickness in the Z-axis direction) of the third
(偏光素子の製造方法)
図3及び図4は偏光素子1の製造方法の説明図である。図3は金属細線14の形成工程の説明図、図4は保護膜16の形成工程の説明図である。図3及び図4は図2の断面図に対応する図である。
(Polarizing element manufacturing method)
3 and 4 are explanatory views of a method for manufacturing the
まず図3(a)に示すように、ガラス基板等の透光性基板12を用意し、基板12の一面側にアルミニウム等の金属膜14aとシリコン酸化膜等のマスク層mとを順に積層する。金属膜14aとマスク層mは少なくとも偏光素子が形成される領域の全面に形成する。金属膜14a及びマスク層mを形成する方法としては、蒸着法やスパッタ法等の公知の成膜方法を用いることができる。本実施形態では金属膜14aとしてアルミニウムを用いるが、アルミニウム以外にも、金、銀、銅、パラジウム、白金、ロジウム、シリコン、ニッケル、コバルト、マンガン、鉄、クロム、チタン、ルテニウム、ニオブ、ネオジウム、イッテルビウム、イットリウム、モリブデン、インジウム、ビスマス、若しくはそれらの合金を用いることができる。またマスク層mとしてシリコン酸化膜を用いるが、シリコン酸化膜以外にも、シリコン窒化膜やシリコン酸窒化膜等の他のシリコン化合物膜を用いることができる。
First, as shown in FIG. 3A, a light-transmitting
次に、図3(b)に示すように、マスク層m上にレジスト材料をスピンコートにより塗布し、これをプリベークすることでレジスト層20aを形成する。次に、例えば波長が266nmのレーザ光を露光光として用いた二光束干渉露光法によりレジスト層20aを露光する。ここでは、ピッチが可視光の波長以下(例えば140nm)の微細な縞状パターンとなるように露光を行う。
Next, as shown in FIG. 3B, a resist material is applied onto the mask layer m by spin coating, and this is pre-baked to form a resist
ここで、二光束干渉露光法を行う露光装置は、例えば図6に示すものを用いることができる。露光装置120は、露光光を照射するレーザ光源121と、回折型ビームスプリッタ122と、モニタ123と、ビームエキスパンダ124、125と、ミラー126、127と、基板12を載置するステージ128とを備えている。
Here, as an exposure apparatus that performs the two-beam interference exposure method, for example, the one shown in FIG. 6 can be used. The
レーザ光源121は、例えば第4高調波の波長が266nmであるNd:YVO4レーザ装置である。回折型ビームスプリッタ122は、レーザ光源121から出力された1本のレーザビームを分岐して2本のレーザビームを生成する分岐手段である。そして、回折型ビームスプリッタ122は、入射するレーザビームをTE偏光としたときに強度の等しい2本の回折ビーム(±1次)を発生させる構成となっている。モニタ123は、回折型ビームスプリッタ122から出射した光を受光して電気信号に変換する。露光装置120では、この変換された電気信号に基づいて2本のレーザビームの交差角度などを調整できるようになっている。
The
ビームエキスパンダ124は、レンズ124aと空間フィルタ124bとを備えており、回折型ビームスプリッタ122で分岐された2本のレーザビームのうちの一方のビーム径を例えば300mm程度に広げる構成となっている。同様に、ビームエキスパンダ125も、レンズ125aと空間フィルタ125bとを備えており、2本のレーザビームのうちの他方のビーム径を広げる構成となっている。ミラー126、127は、ビームエキスパンダ124、125を透過したレーザビームをそれぞれステージ128に向けて反射させる構成となっている。ここで、ミラー126、127は、反射したレーザビームを交差させることで干渉光を発生させ、この干渉光を基板12上のレジスト層20aに照射する。このような露光装置120を用いてレジスト層20aに干渉光を照射することで、レーザ光源121の波長よりも狭い形成ピッチでレジスト層20aを露光することができる。
The
次に、図3(c)に示すように、露光を行った後に更にレジスト層20aをベーク(PEB)し、その後にレジスト層20aを現像する。これにより、縞状のパターンを有するレジスト20をマスク層m上に形成する。
Next, as shown in FIG. 3C, after the exposure, the resist
次に、図3(d)に示すように、レジスト20を介してドライエッチング処理を行い、マスク層mをパターニングしてマスクMを形成する。なお、レジスト20はマスクMを形成した後に剥離してもよい。また、仮にレジスト20を剥離しない場合でも、次に示す金属膜14aのパターニング時にエッチングされることで除去されるため問題は無い。
Next, as shown in FIG. 3D, a dry etching process is performed through the resist 20, and the mask layer m is patterned to form a mask M. The resist 20 may be peeled off after the mask M is formed. Even if the resist 20 is not peeled off, there is no problem because it is removed by etching during the patterning of the
次に、図3(e)に示すように、マスクMを介してドライエッチング処理を行い、金属膜14aをパターニングして金属細線14を形成する。金属細線14は、金属膜からなる金属突起体14Aと無機絶縁膜からなるマスクMとの2層構造からなる。金属細線14は基板12上にストライプ状に形成され、金属細線14間には基板12を露出させる溝15Aが形成されている。金属細線14Aと溝15Aは微細な幅で交互に形成されており、これらが可視光の波長よりも短い周期で多数配列されることにより、反射型の偏光層14Lが形成されている。なお、図3(e)では金属細線14を金属突起体14AとマスクMとの2層構造としたが、マスクMは必ずしも必要ではなく、金属膜14aをパターニングした後、除去しても良い。
Next, as shown in FIG. 3E, a dry etching process is performed through a mask M, and the
次に、図4(a)に示すように、金属細線14上にCVD法を用いて保護膜を成膜する。CVD法は薄膜の原料を気体で供給し、所望の箇所で化学反応を起こして薄膜を形成する方法である。CVD法は、原料の気体が行き渡ればどんな形状の表面であっても膜を付着させることが出来る特徴を有する。そのため、CVD法を用いてワイヤーグリッド型の偏光素子の保護膜を作成すると、原料の気体を金属細線の間にも均一に行き渡った後に反応をさせることが可能となる。反応の際には固体表面であれば保護膜が付着して成長するので、金属/非金属を問わず均一に保護膜を形成することができる。そのため、CVD法の反応雰囲気下に曝される金属細線の上端部、側壁部及び金属細線の間に露出する基板表面の全てに保護膜を形成し、金属細線を補強することができる。
Next, as shown in FIG. 4A, a protective film is formed on the
保護膜16の形成方法にはCVD法の外にも、一般に用いられる方法として蒸着法やスパッタ法が考えられる。しかし、蒸着法を用いた場合には、蒸着に用いられる装置内の膜原料が配置される位置から保護膜の形成面への射出角が、形成面上の位置により異なり、膜原料と形成面との距離が厳密には一定ではない。そのため、製造される保護膜の厚みに差が生じ、偏光素子の品質が一定しない。また、スパッタ法は、成膜速度が非常に遅いため本発明が想定する成膜速度を実現できない。そのため、CVD法を用いた成膜を行った場合に、本発明が実施可能である。
In addition to the CVD method, a vapor deposition method or a sputtering method can be considered as a commonly used method for forming the
まず、図4(a)に示すように、金属細線14を備えた基板12をCVD法の作業環境下に配置し、保護膜16の原料気体16gを供給する。原料気体16gは、溝15Aの底面に露出した基板12にまで行き渡る。本実施形態では保護膜16としてシリコン酸化物を形成することとし、原料気体16gとしてTEOSと酸素(O2)の混合気体を用いることとする。図面ではTEOSとO2は区別して表記しておらず、いずれも原料気体16gとして図示している。保護膜16はシリコン酸化物以外にもシリコン窒化物(SiN)、シリコン窒素酸化物(SiON)、アルミナ(Al2O3)などの絶縁性の材料を使用することができ、選択する保護膜16にあわせて原料気体16gを適切なものを選ぶことができる。CVD法は、熱CVD法およびプラズマCVD法のいずれも使用することができる。本実施形態では熱CVD法を用いることとしている。本実施形態の反応条件は、例えば、ガス流量:TEOS/O2=12/388sccm、圧力:50Pa、反応温度:200℃、反応時間:2minである。
First, as shown in FIG. 4A, the
次に、図4(b)に示すように、原料気体16gを反応させると、化学反応により生成する保護膜16が近接した金属細線14と基板12の表面に堆積する。保護膜の成膜速度は例えば100nm/minである。成膜初期の段階では、保護膜16は、溝15Aの底面に露出した基板12の表面、金属細線14の側面部、及び金属細線14の上端部に堆積する。反応が進行すると保護膜16が成長するため厚みを持ってくる。そのため、金属細線14の上端部を包み込むように基板12に垂直な方向に保護膜16が成長する。また、金属細線14の上端部に形成された保護膜16同士の間隔は成長した保護膜16の厚みの分だけ狭くなる。その結果、溝15Aの底面及び側面に形成された保護膜16は、金属細線14の上端部に形成された保護膜16と共に空隙部15を形成する。
Next, as shown in FIG. 4B, when the
次に、図4(c)に示すように、更に反応が進行すると、保護膜16の厚みの分だけ隣接する金属細線14の間隔は狭くなるため、空隙部15に原料気体16gが進入しにくくなる。そのため原料気体16gは、空隙部15に侵入する前に金属細線14の上端部に形成された保護膜16で次々と反応が進行し、上端部で優先的に保護膜16の形成が進行する。
Next, as shown in FIG. 4C, when the reaction further proceeds, the distance between the adjacent
ここで、反応速度が遅い場合には、保護膜16の厚みによって金属細線14の間隔が狭くなっても空隙部15に原料気体16gが行き渡る十分な時間があるため、図5に示すように、優先的に金属細線14の上端部に保護膜16が形成することはなく、原料気体16gが接する金属細線14の側壁部、上端部及び基板12に形成される保護膜16の表面全体で反応が進行する。そのため、形成される保護膜16で空隙部15は徐々に埋没していく。このように空隙部15が埋没した構造は光学特性上望ましくないため、本実施形態では反応速度を速め、空隙部15を形成することとしている。
Here, when the reaction rate is slow, there is sufficient time for the
次に、図4(d)に示すように、更に反応が進行すると、隣接する金属細線14の上端部で成長を続ける保護膜16が、隣同士で互いに当接するに至る。これにより、隣接する金属細線14の間には、保護膜16で囲まれた空隙部15が形成される。また、金属細線14の上端部で当接した保護膜16は、原料気体16gに接する保護面13を形成する。この状態で金属細線14の上端部に形成された保護膜16の、基板12から鉛直方向の厚み(図中の厚みW1)は例えば50nmである。
Next, as shown in FIG. 4D, when the reaction further proceeds, the
次に、図4(e)に示すように、更に反応が進行すると、保護面13の上に保護膜16が形成され、形成される保護膜16が凹凸を埋めるために保護面13は徐々に平坦に近づく。この状態で金属細線14の上端部に形成された保護膜16の、基板12に垂直な方向の厚み(図中の厚みW2)は例えば200nmである。以上のようにして、本実施形態の偏光素子1が完成する。
Next, as shown in FIG. 4E, when the reaction further proceeds, a
以上のようにして得られる偏光素子1によれば、保護膜16によって金属細線14の上端部及び側壁部を覆い補強をしたものとなり、金属細線14の破損を防ぐことができる。また、第2保護膜16bの配列軸方向の幅は、金属細線14の配列軸方向の幅と金属細線14の両側壁部に形成される第1保護膜16aとを合わせた幅よりも広くなっているため、溝15Aの上部が狭められたようになる。そのため、金属細線14の上に他の材料を積層する場合においても、保護膜16により溝15Aへの積層物の入り込みを防止することができる。そのため溝15Aが埋没することなく優れた光学特性を備えたものとなる。
According to the
また、本実施形態では、隣接する金属細線14の上端部に設けられた第2保護膜16bは、配列軸方向に平行な方向において互いに接触していることとしている。そのため、金属細線間には空気(もしくは真空)を封入可能な空隙部15が形成され、優れた光学特性を備えた偏光素子1とすることができる。また、各々の金属細線14を離間した第2保護膜16bで保護する場合よりも強固に保護することができる。
In the present embodiment, the second
また、本実施形態では、保護膜16は透光性の絶縁性材料で形成されていることとしている。金属細線14が絶縁性材料に覆われ周囲と絶縁するので、例えば偏光素子1を装置に組み込む場合に金属細線14が装置の配線と通電することがない。そのため、安定した駆動の装置とすることができる。
In the present embodiment, the
また、以上のような構成の偏光素子1の製造方法によれば、保護膜16の形成にCVD法を用いて行うこととしている。そのため、原料気体16gが行き渡る箇所の金属細線14の上端部、側壁部及び溝15Aに面する基板12の表面に保護膜16を形成し、金属細線14を補強することができる。更に、成膜速度が早いというCVD法の特徴により、成膜が進行すると空隙部15に原料気体16gが行き渡るよりも先に成膜反応が起こる様になり、金属細線14の上端部で優先して保護膜が成長する。すると、金属細線14の間の膜成長が停止し、金属細線14間が保護膜16で埋没することなく優れた光学特性を備えた偏光素子1を製造することができる。
Moreover, according to the manufacturing method of the
また、本実施形態では、金属細線14の上端部に形成された第2保護膜16bは、金属細線14の上端部からの基板の鉛直方向への厚みが200nmであり、50nm以上となっている。この厚みになるまで保護膜16を形成させると、確実に隣接する金属細線14の上端部に形成された第2保護膜16b同士をつなぎ合わせることができる。そのため強固に金属細線14を保護することが可能となり、また金属細線間に空隙部15を有することで、保護膜形成による光学特性の劣化を防ぎ、光学特性を維持した構造の偏光素子1を製造することができる。
In the present embodiment, the thickness of the second
なお、本実施形態では、保護膜16は1種のみ使用したが、保護面13の表面に、更に複数の堆積膜を形成し、保護層22を形成することとしても良い。
In the present embodiment, only one type of
図7は、保護面13に更に複数の堆積膜を形成した偏光素子2の断面図である。ここでは、シリコン酸化物とITO(Indium Tin Oxide)が交互に階層構造を形成している。堆積膜の種類としてはここに挙げたシリコン酸化物とITO以外に、例えばシリコン窒化物(SiN)、シリコン窒素酸化物(SiON)、アルミナ(Al2O3)などの材料も選択することができる。堆積膜の形成方法は所望の膜が形成できれば特に限定されない。本実施形態では、CVD法を用いて堆積膜を形成した。偏光素子2は、保護面13上にITOに合わせて変更した原料気体を反応させITO膜を形成した後、再度CVD法によりシリコン酸化物とITO膜の成膜を繰り返して形成し、金属細線14の上端部に全体として保護層22を形成する。このITO膜は電極として使用可能である。
FIG. 7 is a cross-sectional view of the
この構成によれば、保護膜16の表面に導電性を備えた堆積膜(ITO膜)を別途形成することとしている。このITO膜は例えば画素電極などの電極として使用可能である。そのため、偏光素子の更なる補強が可能であると共に、堆積膜の性質により機能を付加することが可能となる。
According to this configuration, a deposited film (ITO film) having conductivity is separately formed on the surface of the
(液晶装置)
図8は、本発明にかかる偏光素子を備えた液晶装置1000の一例を示した断面模式図である。液晶装置1000は、横電界方式の半透過反射型液晶装置である。
(Liquid crystal device)
FIG. 8 is a schematic cross-sectional view showing an example of a
液晶装置1000は、TFTアレイ基板(第1基板)100と対向基板(第2基板)200との間に液晶層500を挟持した構成を備えている。液晶層500は、TFTアレイ基板100と対向基板200とが対向する領域の縁端に沿って設けられた図示略のシール材によって基板100,200間に封止されている。TFTアレイ基板100の背面側(図示下面側)には、導光板910と反射板920とを具備したバックライト(照明装置)900が設けられている。
The
TFTアレイ基板100及び対向基板200は、偏光素子100A、200Aを備えている。偏光素子100A、200Aは、前述の製造方法を用いて製造された偏光素子であり、それぞれガラスや石英、プラスチック等の透光性の基板上に保護膜を備えた金属細線が形成された構造を備えている。
The
偏光素子100Aは基板101と金属細線102及び保護膜103を、偏光素子200Aは基板201と金属細線202及び保護膜203をそれぞれに備えている。本実施形態では、基板101、201は偏光素子の基板であると同時に液晶装置用の基板も兼ねている。また、金属細線102と金属細線202は、互いに交差するように配置されている。いずれの偏光素子も、金属細線が内面側(液晶層500側)に配置されている。
The
偏光素子100Aの内面側には、走査線30a及び容量線30bが形成されており、走査線30a及び容量線30bを覆って、シリコン酸化物等の透明絶縁膜からなるゲート絶縁膜110が形成されている。
A
ゲート絶縁膜110上に、アモルファスシリコンの半導体層350が形成されており、半導体層350に一部乗り上げるようにしてソース電極60bと、ドレイン電極320とが設けられている。ドレイン電極320の半導体層350に乗り上げている端部の反対の端部には容量電極310が一体に形成されている。半導体層350は、ゲート絶縁膜110を介して走査線30aと対向配置されており、当該対向領域で走査線30aがTFT300のゲート電極を構成するようになっている。
An amorphous
容量電極310は、ゲート絶縁膜110を介して容量線30bと対向配置されており、容量電極310と容量線30bとが対向する領域に、ゲート絶縁膜110をその誘電体膜とする蓄積容量700が形成されている。
The
半導体層350、ソース電極60b、ドレイン電極320、及び容量電極310を覆って、シリコン酸化物等からなる第1層間絶縁膜120が形成されている。この第1層間絶縁膜120上には、ITO等の透明導電材料からなる透明共通電極190tと、アルミニウム等の反射性の金属膜を主体としてなる反射共通電極(反射偏光層)190rとからなる共通電極190が形成されている。
A first
共通電極190(190t、190r)を覆ってシリコン酸化物等からなる第2層間絶縁膜130が形成されており、第2層間絶縁膜130上にITO等の透明導電材料からなる画素電極90が形成されている。
A second
第1層間絶縁膜120及び第2層間絶縁膜130には、それぞれの絶縁膜を貫通して容量電極310に達する画素コンタクトホール450が形成されており、この画素コンタクトホール450内に画素電極90のコンタクト部90bが一部埋設されることで、画素電極90と容量電極310とが電気的に接続されている。なお、上記画素コンタクトホール450の形成領域に対応して共通電極190にも開口部が設けられており、共通電極190と画素電極90とが接触しないようになっている。画素電極90を覆う第2層間絶縁膜130上の領域には、ポリイミド等からなる配向膜180が形成されている。
A
対向基板200が備える偏光素子200Aの内面側には、カラーフィルタ220と、配向膜280とが積層されている。なお、対向基板200の外面側には、位相差板その他の光学素子を設けることができる。
A
カラーフィルタ220は、画素領域内で色度の異なる2種類の領域に区画された構成とすることが好ましく、具体例を挙げると、透過表示領域を構成する透明共通電極190tの平面領域に対応して第1の色材領域が設けられ、反射表示領域を構成する反射共通電極190tの平面領域に対応して第2の色材領域が設けられており、第1の色材領域の色度が、第2の色材領域の色度より大きいものとされている構成を採用できる。このような構成とすることで、カラーフィルタ220を表示光が1回のみ透過する透過表示領域と、2回透過する反射表示領域との間で表示光の色度が異なるのを防止でき、反射表示と透過表示の見映えを同じくして表示品質を向上させることができる。
The
本実施形態の液晶装置1000においては、偏光素子100A及び200Aを液晶装置1000内に組み込んだ構成であることから、基板本体101,201が、液晶装置用の基板と、偏光素子用の基板との機能を兼ねることになる。これにより、部品点数を削減することができるので装置全体が薄型化でき、液晶装置1000の機能を向上させることができる。さらに、装置構造が簡略化されるので、コスト削減を図ることができる。また、液晶装置1000が備える偏光素子100A及び200Aは保護膜103及び203により強固に保護されている構成となっている。そのため、液晶装置1000の製造工程、特に配向膜280を形成するラビング工程において偏光素子が破損することを防ぎ、高い歩留まりの製造を実現することができる。加えて、用いる偏光素子は隣接する金属細線の間に空気を封入可能な空隙部を備えているため、良好な表示が可能である。
In the
なお、本実施形態では液晶層を挟持する一対の基板のいずれも、基板の液晶層側に偏光素子が形成されていることとしたが、一方の基板にのみ偏光素子が形成されていることとしても構わない。 In this embodiment, the polarizing element is formed on the liquid crystal layer side of each of the pair of substrates sandwiching the liquid crystal layer. However, the polarizing element is formed only on one substrate. It doesn't matter.
また、本実施形態では液晶装置は横電界方式の半透過反射型液晶装置としたが、透過型液晶装置及び反射型液晶装置にも同様に好適に用いることが出来る。 In this embodiment, the liquid crystal device is a transverse electric field type transflective liquid crystal device, but can be suitably used for a transmissive liquid crystal device and a reflective liquid crystal device as well.
(電子機器)
図9は、本発明にかかる液晶装置を表示部に備えた電子機器の一実施形態としての携帯電話の斜視構成図である。この携帯電話1300は、本発明の液晶装置を小サイズの表示部1301として備え、複数の操作ボタン1302、受話口1303、及び送話口1304を備えて構成されている。
(Electronics)
FIG. 9 is a perspective configuration diagram of a mobile phone as an embodiment of an electronic apparatus including the liquid crystal device according to the present invention in a display unit. This
本実施形態の携帯電話1300においては、装置用の基板と偏光素子用の基板を共通させて全体を薄型化した液晶装置を備えているので、携帯電話1300の装置全体を薄型化することができる。また、偏光素子が保護膜により強固に保護され、隣接する金属細線の間に空気を封入可能な空隙部を有している構成となっているので、信頼性が高く優れた表示特性を示す電子機器となる。
The
上記実施の形態の液晶装置は、上記携帯電話に限らず、電子ブック、パーソナルコンピュータ、ディジタルスチルカメラ、液晶テレビ、プロジェクタ、ビューファインダ型あるいはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等々の画像表示手段として好適に用いることができる。 The liquid crystal device of the above embodiment is not limited to the mobile phone, but is an electronic book, personal computer, digital still camera, liquid crystal television, projector, viewfinder type or monitor direct view type video tape recorder, car navigation device, pager, electronic It can be suitably used as an image display means for devices such as notebooks, calculators, word processors, workstations, videophones, POS terminals, and touch panels.
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
本発明の実施例として、偏光素子のラビングに対する強度を評価した結果を説明する。
本実施例で評価したサンプル(CVDサンプル)は、CVD法による反応条件をガス流量:TEOS/O2=12/388sccm、圧力:40Pa、反応温度:110℃、反応時間:2minとして保護膜を形成した。保護膜の成膜レートは103nm/minであった。比較例として、スパッタ法を用いて膜厚が同程度になるように保護膜を形成した偏光素子(スパッタサンプル)を評価した。スパッタ法での反応条件は、ガス流量:Ar/N2=30/7sccm、反応時間:60minであった。保護膜の成膜レートは2.2nm/minであった。
As an example of the present invention, the result of evaluating the strength against rubbing of the polarizing element will be described.
The sample (CVD sample) evaluated in this example forms a protective film with the reaction conditions by the CVD method as follows: gas flow rate: TEOS / O 2 = 12/388 sccm, pressure: 40 Pa, reaction temperature: 110 ° C., reaction time: 2 min. did. The deposition rate of the protective film was 103 nm / min. As a comparative example, a polarizing element (sputter sample) on which a protective film was formed using a sputtering method so as to have the same film thickness was evaluated. The reaction conditions in the sputtering method were gas flow rate: Ar / N 2 = 30/7 sccm, reaction time: 60 min. The deposition rate of the protective film was 2.2 nm / min.
用意したそれぞれのサンプルの偏光素子表面にポリイミド膜を成膜し、2条件のラビングロール回転速度で、金属細線の延長方向に平行及び垂直の2方向に対してラビング処理を行い強度評価を行った。 A polyimide film was formed on the surface of the polarizing element of each sample prepared, and the strength was evaluated by rubbing treatment in two directions parallel and perpendicular to the extending direction of the thin metal wire at two conditions of rubbing roll rotation speed. .
図10は偏光素子のラビングに対する強度を評価した結果を示す表である。図10には評価の詳細な条件も合わせて表記してある。結果の表記では、ラビング処理により金属細線が破損したものを×、破損しなかったものを○で示してある。この場合の破損とは金属細線がラビング方向に倒れたり、金属細線が基板から剥離したりして偏光素子として機能しなくなった状態を指す。 FIG. 10 is a table showing the results of evaluating the strength against rubbing of the polarizing element. FIG. 10 also shows detailed conditions for evaluation. In the notation of the results, those in which the fine metal wires were damaged by the rubbing treatment are indicated by ×, and those that were not damaged are indicated by ○. In this case, the breakage refers to a state in which the fine metal wire falls in the rubbing direction or the fine metal wire peels off from the substrate and does not function as a polarizing element.
結果、スパッタサンプルは図中に示す標準条件以外の評価条件において偏光素子が破損したのに対し、CVDサンプルはいずれの条件においても破損が見られず、CVDサンプルはラビング耐性が格段に向上していることが確かめられた。 As a result, the sputter sample was damaged in the polarizing element under the evaluation conditions other than the standard conditions shown in the figure, whereas the CVD sample was not damaged under any conditions, and the CVD sample was greatly improved in rubbing resistance. I was confirmed.
1、2、100A、200A…偏光素子、12…基板、13…保護面、14…金属細線、15…空隙部、16…保護膜、16a…第1保護膜、16b…第2保護膜、16c…第3保護膜、22…保護層、100…TFTアレイ基板(第1基板)、180…配向膜、200…対向基板(第2基板)、280…配向膜、500…液晶層、1000…液晶装置(光変調装置)、1300…携帯電話(電子機器)。
DESCRIPTION OF
Claims (4)
前記複数の金属細線の上端部及び両側壁部を覆う保護膜を形成する工程と、を備え、
前記マスクと前記保護膜とは、酸化物を用いて形成され、
前記保護膜を形成する工程では、前記金属細線の上端に前記マスクが残存した状態で、CVD法を用いて前記複数の金属細線の各々の上端部及び両側壁部に保護膜を形成し、更に成膜を進めて前記複数の金属細線の各々の上端部に成膜された前記保護膜を成長させることにより、前記金属細線の上端部に設けられた前記保護膜の前記配列軸方向の幅が、各々の前記金属細線の前記配列軸方向の幅と各々の前記両側壁部における前記保護膜の前記配列軸方向の幅を合わせた幅よりも広い保護膜を形成することを特徴とする偏光素子の製造方法。 Forming a plurality of metal wirings provided along a predetermined arrangement axis on the base material by etching the metal film provided on the base material through a mask; and
Forming a protective film covering the upper end portions and both side wall portions of the plurality of fine metal wires, and
The mask and the protective film are formed using an oxide,
In the step of forming the protective film, with the mask remaining on the upper end of the thin metal wire, a protective film is formed on the upper end and both side walls of each of the thin metal wires using the CVD method. By proceeding the film formation and growing the protective film formed on the upper ends of each of the plurality of fine metal wires, the width of the protective film provided on the upper ends of the fine metal wires in the array axis direction is increased. A polarizing element characterized by forming a protective film wider than a width obtained by combining the width in the arrangement axis direction of each of the thin metal wires and the width in the arrangement axis direction of the protective film in each of the side walls. Manufacturing method.
前記複数の金属細線の上端部及び両側壁部を覆う保護膜を形成する工程と、を備え、
前記マスクと前記保護膜とは、窒化物を用いて形成され、
前記保護膜を形成する工程では、前記金属細線の上端に前記マスクが残存した状態で、CVD法を用いて前記複数の金属細線の各々の上端部及び両側壁部に保護膜を形成し、更に成膜を進めて前記複数の金属細線の各々の上端部に成膜された前記保護膜を成長させることにより、前記金属細線の上端部に設けられた前記保護膜の前記配列軸方向の幅が、各々の前記金属細線の前記配列軸方向の幅と各々の前記両側壁部における前記保護膜の前記配列軸方向の幅を合わせた幅よりも広い保護膜を形成することを特徴とする偏光素子の製造方法。 Forming a plurality of metal wirings provided along a predetermined arrangement axis on the base material by etching the metal film provided on the base material through a mask; and
Forming a protective film covering the upper end portions and both side wall portions of the plurality of fine metal wires, and
The mask and the protective film are formed using nitride,
In the step of forming the protective film, with the mask remaining on the upper end of the thin metal wire, a protective film is formed on the upper end and both side walls of each of the thin metal wires using the CVD method. By proceeding the film formation and growing the protective film formed on the upper ends of each of the plurality of fine metal wires, the width of the protective film provided on the upper ends of the fine metal wires in the array axis direction is increased. A polarizing element characterized by forming a protective film wider than a width obtained by combining the width in the arrangement axis direction of each of the thin metal wires and the width in the arrangement axis direction of the protective film in each of the side walls. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009267171A JP2010049280A (en) | 2009-11-25 | 2009-11-25 | Method for producing polarizing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009267171A JP2010049280A (en) | 2009-11-25 | 2009-11-25 | Method for producing polarizing element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007236596A Division JP4412372B2 (en) | 2007-09-12 | 2007-09-12 | Manufacturing method of polarizing element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010049280A true JP2010049280A (en) | 2010-03-04 |
Family
ID=42066342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009267171A Pending JP2010049280A (en) | 2009-11-25 | 2009-11-25 | Method for producing polarizing element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010049280A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8687151B2 (en) | 2009-10-30 | 2014-04-01 | Seiko Epson Corporation | Polarization element comprising a plurality of metal protruding sections formed in a striped manner having first and second heat radiation sections tilted in opposite directions |
JP2015082010A (en) * | 2013-10-22 | 2015-04-27 | デクセリアルズ株式会社 | Inorganic optical element |
WO2016163390A1 (en) * | 2015-04-07 | 2016-10-13 | 綜研化学株式会社 | Optical element and polarizing plate |
JP2017076684A (en) * | 2015-10-14 | 2017-04-20 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and imaging device |
TWI812026B (en) * | 2021-07-16 | 2023-08-11 | 大陸商福建晶安光電有限公司 | Polarization component, light emitting diode and light emitting device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04230708A (en) * | 1990-04-03 | 1992-08-19 | Commiss Energ Atom | Integrated optical element protected from outside and manufacture thereof |
JP2005037872A (en) * | 2003-01-28 | 2005-02-10 | Nippon Sheet Glass Co Ltd | Optical element, optical circuit including the same, and optical demultiplexer |
JP2005070456A (en) * | 2003-08-25 | 2005-03-17 | Enplas Corp | Wire grid polarizer and its manufacturing method |
JP2005517973A (en) * | 2002-02-12 | 2005-06-16 | ユナキス・バルツェルス・アクチェンゲゼルシャフト | Ingredients containing submicron hollow spaces |
JP2007017762A (en) * | 2005-07-08 | 2007-01-25 | Seiko Epson Corp | Wire grid polarizer manufacturing method, liquid crystal device, projector |
WO2007011047A1 (en) * | 2005-07-22 | 2007-01-25 | Zeon Corporation | Grid polarizer and method for manufacturing same |
JP2007052317A (en) * | 2005-08-19 | 2007-03-01 | Seiko Epson Corp | Manufacturing method of optical element and projection type display device |
-
2009
- 2009-11-25 JP JP2009267171A patent/JP2010049280A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04230708A (en) * | 1990-04-03 | 1992-08-19 | Commiss Energ Atom | Integrated optical element protected from outside and manufacture thereof |
JP2005517973A (en) * | 2002-02-12 | 2005-06-16 | ユナキス・バルツェルス・アクチェンゲゼルシャフト | Ingredients containing submicron hollow spaces |
JP2005037872A (en) * | 2003-01-28 | 2005-02-10 | Nippon Sheet Glass Co Ltd | Optical element, optical circuit including the same, and optical demultiplexer |
JP2005070456A (en) * | 2003-08-25 | 2005-03-17 | Enplas Corp | Wire grid polarizer and its manufacturing method |
JP2007017762A (en) * | 2005-07-08 | 2007-01-25 | Seiko Epson Corp | Wire grid polarizer manufacturing method, liquid crystal device, projector |
WO2007011047A1 (en) * | 2005-07-22 | 2007-01-25 | Zeon Corporation | Grid polarizer and method for manufacturing same |
JP2007052317A (en) * | 2005-08-19 | 2007-03-01 | Seiko Epson Corp | Manufacturing method of optical element and projection type display device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8687151B2 (en) | 2009-10-30 | 2014-04-01 | Seiko Epson Corporation | Polarization element comprising a plurality of metal protruding sections formed in a striped manner having first and second heat radiation sections tilted in opposite directions |
JP2015082010A (en) * | 2013-10-22 | 2015-04-27 | デクセリアルズ株式会社 | Inorganic optical element |
WO2016163390A1 (en) * | 2015-04-07 | 2016-10-13 | 綜研化学株式会社 | Optical element and polarizing plate |
JP2017076684A (en) * | 2015-10-14 | 2017-04-20 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and imaging device |
US10861893B2 (en) | 2015-10-14 | 2020-12-08 | Sony Semiconductor Solutions Corporation | Imaging element and imaging apparatus |
TWI812026B (en) * | 2021-07-16 | 2023-08-11 | 大陸商福建晶安光電有限公司 | Polarization component, light emitting diode and light emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4412372B2 (en) | Manufacturing method of polarizing element | |
TW409194B (en) | Active matrix substrate and liquid crystal display apparatus and method for producing the same | |
JP3361278B2 (en) | Reflection type liquid crystal display device, method for manufacturing the same, and method for manufacturing circuit board | |
US20220415253A1 (en) | Array substrate, display panel, and display device | |
KR102649145B1 (en) | display device | |
US7738072B2 (en) | Liquid crystal display array substrate and its manufacturing method | |
CN101432655B (en) | Liquid crystal display and method for manufacturing liquid crystal display | |
JP2010049280A (en) | Method for producing polarizing element | |
JP2005345757A (en) | Liquid crystal display device and manufacturing method thereof | |
WO2003005115A1 (en) | An etchant for a wire, a method for manufacturing the wire and a method for manufacturing a thin film transistor array panel including the method | |
KR20020045551A (en) | Liquid crystal display device | |
US8610858B2 (en) | Thin film transistor array panel and method of manufacturing the same | |
JP2001083506A (en) | Manufacture of reflection liquid crystal display device | |
KR101290282B1 (en) | Liquid crystal display device and method of fabricating the same | |
KR19990080631A (en) | LCD Display | |
TWI323513B (en) | Display panel and method for manufacturing thin film transistor substrate thereof | |
TWI373680B (en) | Fabricating method of pixel structure | |
US20050037528A1 (en) | Thin film transistor liquid crystal display and fabrication method thereof | |
TWI326129B (en) | Pixel structure and manufacturing method thereof | |
CN113196157A (en) | Display device and manufacturing method thereof | |
JP2002090726A (en) | Liquid crystal display device and manufacturing method thereof | |
JP2001249358A (en) | Liquid crystal display device and method of manufacturing the same | |
US20230378185A1 (en) | Array substrate and preparation method thereof, and display panel | |
KR100293985B1 (en) | Thin film transistor substrate for liquid crystal display device with improved pad reliability and manufacturing method | |
JP2010032765A (en) | Tft array substrate, and liquid crystal display using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120808 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130305 |