JP2005241284A - Chromatic dispersion measuring apparatus and measuring method - Google Patents
Chromatic dispersion measuring apparatus and measuring method Download PDFInfo
- Publication number
- JP2005241284A JP2005241284A JP2004047978A JP2004047978A JP2005241284A JP 2005241284 A JP2005241284 A JP 2005241284A JP 2004047978 A JP2004047978 A JP 2004047978A JP 2004047978 A JP2004047978 A JP 2004047978A JP 2005241284 A JP2005241284 A JP 2005241284A
- Authority
- JP
- Japan
- Prior art keywords
- ultrashort
- pulse
- light pulse
- photon absorption
- chromatic dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
【課題】振動や温度変動の影響を受けることなく、1.7μmより長波長領域も短時間で測定ができる波長分散測定装置及び方法を提供すること。
【解決手段】超短光パルスを発生する超短光パルス光源1と、該超短光パルス光源1から発生された該超短光パルスを伝搬させる被測定媒質2と、該被測定媒質2を伝搬した該超短光パルスを受光して二光子吸収信号を出力する二光子吸収検出手段3と、を有し、該二光子吸収検出手段から出力される二光子吸収信号から該被測定媒質2の波長分散を測定する波長分散測定装置。従来の光パルス法、干渉法、位相シフト法と測定原理が異なり、振動や温度変動の影響を受けることがなく、高精度測定が可能である。また、時間差を調整する必要がないので、高速測定が可能であり、被測定媒質の伝搬距離zが短くてもよいので、短尺の被測定媒質の測定ができる。さらに、二光子吸収信号から波長分散を測定するので、〜1.7μm以上の長波長領域の波長分散を測定することができる。
【選択図】図1Disclosed is a chromatic dispersion measuring apparatus and method capable of measuring a wavelength region longer than 1.7 μm in a short time without being affected by vibration or temperature fluctuation.
An ultrashort optical pulse light source 1 for generating an ultrashort optical pulse, a measured medium 2 for propagating the ultrashort optical pulse generated from the ultrashort optical pulse light source 1, and the measured medium 2 Two-photon absorption detection means 3 for receiving the propagated ultrashort light pulse and outputting a two-photon absorption signal, and from the two-photon absorption signal output from the two-photon absorption detection means, the measured medium 2 A chromatic dispersion measuring device for measuring the chromatic dispersion of a liquid. The measurement principle is different from the conventional optical pulse method, interferometry, and phase shift method, and high-precision measurement is possible without being affected by vibration or temperature fluctuation. In addition, since it is not necessary to adjust the time difference, high-speed measurement is possible, and the propagation distance z of the measured medium may be short, so that a short measured medium can be measured. Furthermore, since the chromatic dispersion is measured from the two-photon absorption signal, the chromatic dispersion in a long wavelength region of ˜1.7 μm or more can be measured.
[Selection] Figure 1
Description
光ファイバーなどの光学媒質の屈折率は波長によって変化し、あらゆる光学媒質は大なり小なり波長分散を有している。波長分散は、光ファイバー通信や超短光パルス生成においてチャープや波形歪みを引き起こす重要なパラメータである。本発明は、この波長分散を測定する装置及び方法に関する。 The refractive index of an optical medium such as an optical fiber changes depending on the wavelength, and every optical medium has a wavelength dispersion that is more or less. Chromatic dispersion is an important parameter that causes chirp and waveform distortion in optical fiber communication and ultrashort optical pulse generation. The present invention relates to an apparatus and method for measuring this chromatic dispersion.
波長分散測定法としては、これまで、光パルス法、干渉法、位相シフト法など様々な方法が知られている。例えば、干渉法を用いた波長分散測定装置としては、波長の異なる光パルスを参照光と測定光に分岐し、被測定媒質による分散の影響を受けた測定光と参照光を干渉させて、干渉が最大になる干渉腕の光路差から群速度遅延時間を求めて波長分散を測定するものが知られている(例えば、特許文献1参照)。しかし、干渉のコントラストは干渉腕の光路差だけでなく、振動や温度変動などの影響を受けるため高精度な測定が難しかった。また、干渉のコントラストを上げるために干渉腕の光路差すなわち、両干渉腕を通過する時間差を調整する必要があり、波長分散測定に長時間を要した。光パルスを受光して電気信号に変換する半導体光検出器は検出できる波長帯域がバンドギャップで制限され、〜1.7μm以上の長波長光には感度がなく、従来の波長分散測定法は、〜1.7μm以上の長波長領域の波長分散を測定するのが難しかった。さらに、〜1.7μmより長波長の波長可変光パルスを発生する光源がないため〜1.7μm以上の波長分散の測定をより一層困難にしていた。
上記の背景技術で触れたように、これまでの波長分散測定装置は、振動や温度変動の影響を受けるため高精度測定が難しい、時間差を調整する必要があるため測定に長時間を要する、〜1.7μmより長波長領域の分散測定が困難である、といった問題をもっていた。 As mentioned in the background art above, conventional chromatic dispersion measuring devices are difficult to perform with high precision because they are affected by vibration and temperature fluctuations, and it takes a long time to measure because it is necessary to adjust the time difference. There was a problem that dispersion measurement in a wavelength region longer than 1.7 μm was difficult.
本発明は、かかる問題を解決するために創出されたものである。すなわち、本発明の目的は、振動や温度変動の影響を受けることなく、1.7μmより長波長領域も短時間で測定ができる波長分散測定装置及び方法を提供することである。 The present invention has been created to solve such problems. That is, an object of the present invention is to provide a chromatic dispersion measuring apparatus and method capable of measuring a wavelength region longer than 1.7 μm in a short time without being affected by vibration or temperature fluctuation.
この課題を解決するためになされた本発明の波長分散測定装置は、超短光パルスを発生する超短光パルス光源と、該超短光パルス光源から発生された該超短光パルスを伝搬させる被測定媒質と、該被測定媒質を伝搬した該超短光パルスを受光して二光子吸収信号を出力する二光子吸収検出手段と、を有し、該二光子吸収検出手段から出力される二光子吸収信号から該被測定媒質の波長分散を測定することを特徴としている。 The chromatic dispersion measuring device of the present invention made to solve this problem is an ultrashort optical pulse light source that generates an ultrashort optical pulse, and propagates the ultrashort optical pulse generated from the ultrashort optical pulse light source. Two-photon absorption detection means for receiving the ultrashort light pulse propagated through the measurement medium and outputting a two-photon absorption signal, and outputting two-photon absorption detection means. The wavelength dispersion of the measured medium is measured from the photon absorption signal.
二光子吸収信号は、被測定媒質を伝搬した超短光パルスの二乗強度の時間積分値に比例し、被測定媒質の伝搬距離zと分散長さLDの比(z/LD)と所定の関係を有するので、被測定媒質を伝搬する前の超短光パルスのパルス幅Toと伝搬距離zから被測定媒質の波長分散を求めることができる。したがって、従来の光パルス法、干渉法、位相シフト法と測定原理が異なり、振動や温度変動の影響を受けることがなく、高精度測定が可能である。また、時間差を調整する必要がないので、高速測定が可能であり、被測定媒質の伝搬距離zが短くてもよいので、短尺の被測定媒質の測定ができる。さらに、二光子吸収信号から波長分散を測定するので、〜1.7μm以上の長波長領域の波長分散を測定することができる。 The two-photon absorption signal is proportional to the time integral value of the square intensity of the ultrashort light pulse that has propagated through the measured medium, the ratio (z / L D ) between the propagation distance z and the dispersion length L D of the measured medium, and a predetermined value. Therefore, the chromatic dispersion of the measured medium can be obtained from the pulse width To and propagation distance z of the ultrashort light pulse before propagating through the measured medium. Therefore, the measurement principle is different from the conventional optical pulse method, interferometry, and phase shift method, and high-precision measurement is possible without being affected by vibration or temperature fluctuation. In addition, since it is not necessary to adjust the time difference, high-speed measurement is possible, and the propagation distance z of the measured medium may be short, so that a short measured medium can be measured. Furthermore, since the chromatic dispersion is measured from the two-photon absorption signal, the chromatic dispersion in a long wavelength region of ˜1.7 μm or more can be measured.
また、前記超短光パルス光源は、波長が異なる超短光パルスを発生するものとすることができる。 The ultrashort optical pulse light source may generate ultrashort optical pulses having different wavelengths.
異なる波長毎に波長分散を測定することができる。 Chromatic dispersion can be measured for each different wavelength.
さらに、前記超短光パルス光源は、波長範囲が1.56μm〜1.9μmの超短光パルスを発生するものとするとよい。 Further, the ultrashort optical pulse light source may generate an ultrashort optical pulse having a wavelength range of 1.56 μm to 1.9 μm.
これまで測定が困難であった1.56μm〜1.9μmの長波長域の波長分散を測定することができる。 It is possible to measure chromatic dispersion in a long wavelength region of 1.56 μm to 1.9 μm, which has been difficult to measure until now.
前記超短光パルス光源は、ファイバーレーザであることが好ましい。 The ultrashort light pulse light source is preferably a fiber laser.
波長分散測定装置を小型化できる。 The chromatic dispersion measuring device can be downsized.
前記超短光パルスは、ハイパボリックセカンド型もしくはガウス型のフーリエ限界パルス、ないしは、これらに近似できるパルスが望ましく、たとえば、フェムト秒ソリトンパルスであることがさらに望ましい。 The ultrashort light pulse is preferably a hyperbolic second type or Gaussian type Fourier limit pulse or a pulse that can be approximated thereto, and more preferably, for example, a femtosecond soliton pulse.
二光子吸収信号が理論値に厳密に比例するようになり、波長分散測定精度が向上する。 The two-photon absorption signal becomes strictly proportional to the theoretical value, and the chromatic dispersion measurement accuracy is improved.
前記二光子吸収検出手段を半導体光検出器としてもよい。 The two-photon absorption detection means may be a semiconductor photodetector.
〜3.4μm(=〜1.7μm×2)まで波長分散測定波長領域を拡げることができる。また、高速測定が可能になる。 The wavelength dispersion measurement wavelength region can be expanded to ˜3.4 μm (= ˜1.7 μm × 2). In addition, high-speed measurement is possible.
前記二光子検出手段をSHG結晶とパワーメータの組合せとしてもよい。 The two-photon detection means may be a combination of an SHG crystal and a power meter.
被測定媒質で吸収損失が大でも二光子吸収検出ができる。 Even if the measurement medium has a large absorption loss, two-photon absorption detection can be performed.
また、前記超短光パルス光源から発生された前記超短光パルスを参照光パルスと被測定媒質に入射させる測定光パルスに切り換える光切換え手段をさらに有するようにしてもよい。 Further, the apparatus may further comprise a light switching means for switching the ultrashort light pulse generated from the ultrashort light pulse light source to a reference light pulse and a measurement light pulse that is incident on the measured medium.
被測定媒質がないときの二光子吸収信号を別途検出する必要がなくなり、波長分散の測定時間を短縮できる。 It is not necessary to separately detect a two-photon absorption signal when there is no medium to be measured, and the chromatic dispersion measurement time can be shortened.
前記参照光パルスと前記被測定媒質を伝搬した測定光パルスの空間コヒーレンスを同一にする空間コヒーレンス調節器をさらに有するようにしてもよい。 You may make it further have a spatial coherence regulator which makes the spatial coherence of the measurement light pulse which propagated the said to-be-measured medium and the said reference light pulse the same.
二光子吸収信号が受ける参照光パルスと測定光パルスの空間コヒーレンス(ビーム径と拡がり角)の差の影響を除去して測定精度を上げることができる。 The measurement accuracy can be improved by removing the influence of the difference in spatial coherence (beam diameter and divergence angle) between the reference light pulse and the measurement light pulse received by the two-photon absorption signal.
前記参照光パルスと前記被測定媒質を伝搬した前記測定光パルスとをそれぞれ分波する光分波器と、該分波器で分波された該参照光パルスと該測定光パルスを受光して一光子吸収信号を出力する一光子吸収検出器と、をさらに有するようにしてもよい。 An optical demultiplexer for demultiplexing the reference light pulse and the measurement light pulse propagated through the measured medium; and receiving the reference light pulse and the measurement light pulse demultiplexed by the demultiplexer. And a one-photon absorption detector that outputs a one-photon absorption signal.
二光子吸収信号は、被測定媒質の透過損失や結合損失の影響を受けるが、その影響を一光子吸収検出器の出力で補正することができる。 The two-photon absorption signal is affected by the transmission loss and coupling loss of the measured medium, and the influence can be corrected by the output of the one-photon absorption detector.
また、前述の課題を解決するための本発明の波長分散測定方法は、超短光パルス光源から超短光パルスを発生させる超短光パルス発生ステップと、該超短光パルス発生ステップで発生された該超短光パルスを被測定媒質に伝搬させる被測定媒質伝搬ステップと、該被測定媒質伝搬ステップで該被測定媒質を伝搬した該超短光パルスを二光子吸収手段で受光して二光子吸収信号を出力する二光子吸収検出ステップと、を有し、該二光子吸収検出ステップで検出される二光子吸収信号から該被測定媒質の波長分散を測定することを特徴とする。 Further, the chromatic dispersion measuring method of the present invention for solving the above-mentioned problems is generated in an ultrashort optical pulse generation step for generating an ultrashort optical pulse from an ultrashort optical pulse light source, and in the ultrashort optical pulse generation step. A measured medium propagation step for propagating the ultrashort light pulse to the measured medium, and the two-photon absorption means receiving the ultrashort light pulse propagated through the measured medium in the measured medium propagation step. A two-photon absorption detection step for outputting an absorption signal, and measuring the chromatic dispersion of the measured medium from the two-photon absorption signal detected in the two-photon absorption detection step.
前記超短光パルス光源は、波長が異なる超短光パルスを発生するものとすることができる。 The ultrashort light pulse light source may generate ultrashort light pulses having different wavelengths.
さらに、前記超短光パルス光源は、波長範囲が1.56μm〜1.9μmの超短光パルスを発生するものとするとよい。 Further, the ultrashort optical pulse light source may generate an ultrashort optical pulse having a wavelength range of 1.56 μm to 1.9 μm.
前記超短光パルス光源は、ファイバーレーザであることが好ましい。 The ultrashort light pulse light source is preferably a fiber laser.
前記超短光パルスは、ハイパボリックセカンド型もしくはガウス型のフーリエ限界パルスであることが望ましい。 The ultrashort light pulse is preferably a hyperbolic second type or Gaussian type Fourier limited pulse.
前記二光子検出手段を半導体光検出器としてもよい。 The two-photon detection means may be a semiconductor photodetector.
前記二光子検出手段をSHG結晶とパワーメータの組合せとしてもよい。 The two-photon detection means may be a combination of an SHG crystal and a power meter.
前記超短光パルス光源から発生された前記超短光パルスを光切換え手段で参照光パルスと被測定媒質に入射させる測定光パルスに切り換える光切換えステップをさらに有するようにするとよい。 It is preferable to further include a light switching step of switching the ultrashort light pulse generated from the ultrashort light pulse light source to a reference light pulse and a measurement light pulse to be incident on the measured medium by a light switching means.
また、前記参照光パルスと前記被測定媒質を伝搬した測定光パルスの空間コヒーレンスを同一にする空間コヒーレンス調節ステップをさらに有するようにするとよい。 Further, it is preferable to further include a spatial coherence adjusting step for making the spatial coherence of the measurement light pulse propagated through the measurement target medium the same as the reference light pulse.
前記参照光パルスと前記被測定媒質を伝搬した前記測定光パルスとをそれぞれ分波する光分波ステップと、該分波ステップで分波された該参照光パルスと該測定光パルスを受光して一光子吸収信号を出力する一光子吸収検出ステップと、をさらに有するようにするとよい。
(発明の作用)
光強度I(t,0)の光パルスが波長分散がβ2の分散媒質を伝搬すると、伝搬距離に応じてパルス幅が広がり、距離z伝搬するとI(t,z)となる(図4参照)。ここで、tは郡速度でパルスと共に進行する座標系で測られた時間を表す。したがって、I(t,z)は、波長分散の情報を有していることがわかる。
An optical demultiplexing step for demultiplexing the reference light pulse and the measurement light pulse propagated through the measured medium, and receiving the reference light pulse and the measurement light pulse demultiplexed in the demultiplexing step. And a one-photon absorption detection step for outputting a one-photon absorption signal.
(Operation of the invention)
When an optical pulse of light intensity I (t, 0) propagates through a dispersion medium with chromatic dispersion β 2 , the pulse width increases according to the propagation distance, and when propagating a distance z, I (t, z) is obtained (see FIG. 4). ). Here, t represents the time measured in the coordinate system traveling with the pulse at the county velocity. Therefore, it can be seen that I (t, z) has information on chromatic dispersion.
今、光パルスの波長をλ、角周波数をω(=λ/2π)、パルス幅をT0とすると、伝搬前の光パルスの電場振幅U(t,0)、伝搬後の光パルスの電場振幅U(t,z)はそれぞれ、
U(t,0)=(1/2π)∫U(ω,0)exp(-iωt)dω (1)
U(t,z)=(1/2π)∫U(ω,z)exp(-iωt)dω (2)
と表される。ここで、U(ω,0)はU(t,0)のフーリエ変換であり、U(ω,z)は U(t,z)のフーリエ変換で、それぞれ、
U(ω,0)=∫U(t,0)exp(iωt)dt (3)
U(ω,z)=∫U(t,z)exp(iωt)dt=U(ω,0)exp(iβ2ω2z/2) (4)
と表される。また、光パルスがガウス型の場合は
U(t,0)=exp(-t2/2T0) (5)
ハイパボリックセカンド型(sech型)の場合は
U(t,0)=sech(t/T0) (6)
と表される。さらに、分散媒質を伝搬して光パルスが拡がる程度は次式で定義される分散距離LDにより決まる(小田垣孝、山田興一共訳「非線形ファイバー光学」吉岡書店出版、1997年5月25日、p67−78参照)。
Assuming that the wavelength of the optical pulse is λ, the angular frequency is ω (= λ / 2π), and the pulse width is T 0 , the electric field amplitude U (t, 0) of the optical pulse before propagation, and the electric field of the optical pulse after propagation The amplitude U (t, z) is
U (t, 0) = (1 / 2π) ∫U (ω, 0) exp (−iωt) dω (1)
U (t, z) = (1 / 2π) ∫U (ω, z) exp (-iωt) dω (2)
It is expressed. Where U (ω, 0) is the Fourier transform of U (t, 0), U (ω, z) is the Fourier transform of U (t, z),
U (ω, 0) = ∫U (t, 0) exp (iωt) dt (3)
U (ω, z) = ∫U (t, z) exp (iωt) dt = U (ω, 0) exp (iβ 2 ω 2 z / 2) (4)
It is expressed. If the optical pulse is Gaussian,
U (t, 0) = exp (-t 2 / 2T 0 ) (5)
For hyperbolic second type (sech type)
U (t, 0) = sech (t / T 0 ) (6)
It is expressed. Further, the extent to which the light pulse propagates through the dispersion medium is determined by the dispersion distance L D defined by the following equation (translated by Takashi Odaki and Koichi Yamada “Nonlinear Fiber Optics”, Yoshioka Shoten Publishing, May 25, 1997, p67-78).
LD=T2 0/|β2| (7)
なお、(1)〜(4)式における積分範囲は省略したが−∞〜∞である。
L D = T 2 0 / | β 2 | (7)
Although the integration range in equations (1) to (4) is omitted, it is −∞ to ∞.
パルス強度は電場振幅の二乗に比例するので、伝搬前の光強度I(t,0)と伝搬後の光強度I(t,z)は、(1)式と(2)式からそれぞれ
I(t,0)∝|(1/2π)∫U(ω,0)exp(-iωt)dω |2 (8)
I(t,z)∝|(1/2π)∫U(ω,z)exp(-iωt)dω |2 (9)
と表される。
Since the pulse intensity is proportional to the square of the electric field amplitude, the light intensity I (t, 0) before propagation and the light intensity I (t, z) after propagation are calculated from the equations (1) and (2) as I ( t, 0) ∝ | (1 / 2π) ∫U (ω, 0) exp (-iωt) dω | 2 (8)
I (t, z) ∝ | (1 / 2π) ∫U (ω, z) exp (-iωt) dω | 2 (9)
It is expressed.
一方、二光子吸収信号は、パルスの二乗強度の積分値に比例するので、被測定媒質を伝搬した光パルスを受光したときの二光子吸収信号D2(z)、被測定媒質を伝搬しない光パルス(被測定媒質を伝搬する前の光パルス、すなわち参照光パルスに等しい)を受光したときの二光子吸収信号D2(0)は、それぞれ
D2(z)∝∫I2(t,z)dt (10)
D2(0)∝∫I2(t,0)dt (11)
と表される。
On the other hand, since the two-photon absorption signal is proportional to the integral value of the squared intensity of the pulse, the two-photon absorption signal D 2 (z) when the light pulse propagated through the measured medium is received and the light not propagated through the measured medium. The two-photon absorption signal D 2 (0) when receiving a pulse (equivalent to the light pulse before propagating through the measured medium, ie, the reference light pulse) is D 2 (z) ∝∫I 2 (t, z ) dt (10)
D 2 (0) ∝∫I 2 (t, 0) dt (11)
It is expressed.
光パルスがsech型の場合、上記の(1)〜(4)式、及び(6)〜(11)式を使って、D2(z)/D2(0)とz/LDの関係をシミュレーションすると、図5に示す関係が得られる。横軸のz/LDは無次元パラメータで|β2|z/T2 0に等しいので、二光子吸収信号を測定することで、z/LDが求まり、伝搬距離zと伝搬前の光パルスのパルス幅T0から分散値|β2|が求まる。 When the optical pulse is a sech type, the relationship between D 2 (z) / D 2 (0) and z / L D using the above equations (1) to (4) and (6) to (11) Is simulated, the relationship shown in FIG. 5 is obtained. Since z / L D on the horizontal axis is a dimensionless parameter and equal to | β 2 | z / T 2 0 , z / L D is obtained by measuring the two-photon absorption signal, and the propagation distance z and the light before propagation are obtained. The dispersion value | β 2 | is obtained from the pulse width T 0 of the pulse.
本発明の波長分散測定装置は、上記のように、被測定媒質を伝搬した光パルスの二光子吸収信号から波長分散を測定するので、従来の光パルス法、干渉法、位相シフト法と測定原理が異なり、振動や温度変動の影響を受けることがなく、高精度測定が可能であり、〜1.7μm以上の長波長領域の測定が可能になる。また、時間差を調整する必要がないので、高速測定が可能であり、被測定媒質の伝搬距離zが短くてもよいので、短尺の被測定媒質の測定ができる。 As described above, the chromatic dispersion measuring apparatus of the present invention measures the chromatic dispersion from the two-photon absorption signal of the optical pulse propagated through the measured medium, so that the conventional optical pulse method, interference method, phase shift method and measurement principle are used. However, it is possible to measure with high accuracy without being affected by vibration and temperature fluctuation, and to measure a long wavelength region of up to 1.7 μm or more. In addition, since it is not necessary to adjust the time difference, high-speed measurement is possible, and the propagation distance z of the measured medium may be short, so that a short measured medium can be measured.
以下に本発明の好ましい実施の形態を図面を参照して説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の一実施形態を示す波長分散測定装置の概略構成図である。この図に示すように、波長分散測定装置は、超短光パルス光源1と、超短光パルス光源1から発生された超短光パルスを参照光パルスと被測定媒質2に入射させる測定光パルスに切り換える光切換え手段4と、参照光パルスと被測定媒質2を伝搬した測定光パルスの空間コヒーレンスを同一にする空間コヒーレンス調節器5と、参照光パルスと被測定媒質2を伝搬した測定光パルスとをそれぞれ分波する光分波器6と、光分波器6で分波された参照光パルスと測定光パルスを受光して一光子吸収信号を出力する一光子吸収検出器7と、光分波器6を通過した参照光パルスと測定光パルスを受光して二光子吸収信号を出力する二光子吸収検出手段3と、二光子吸収信号と一光子吸収信号を入力して処理する処理手段8と、を有している。ここで、基本的な構成要素は、超短光パルス光源1、被測定媒質2、及び二光子吸収検出手段3である。たとえば、光切り換え手段4がなくても、超短光パルス光源1と二光子吸収検出手段3の間に被測定媒質2を挿入して二光子吸収検出し、その後被測定媒質2を取り去って二光子吸収検出することで、波長分散を測定することができる。
FIG. 1 is a schematic configuration diagram of a chromatic dispersion measuring apparatus showing an embodiment of the present invention. As shown in this figure, the chromatic dispersion measuring apparatus includes an ultrashort light
超短光パルス光源1は、波長の異なる超短光パルスを発生するものが望ましい。単一波長の超短光パルスを発生するものだと、複数の超短光パルス光源が必要になる。波長の異なる超短光パルスを発生する超短光パルス光源としては、たとえば、フェムト秒ファイバーレーザからの超短光パルスを強度変調してファイバに入射し波長の異なるソリトンパルスを発生させるものを用いることができる。この波長可変超短光パルス光源は、特許第3390755号で開示されているもので、ファイバに入射させる超短光パルスの強度を変えることでラマン散乱シフト量を変え、入射超短光パルスより長波長側にシフトした光パルスがファイバの自己位相変調と波長分散によるソリトン効果で超短パルス化するものである。
The ultrashort optical pulse
被測定媒質2は超短光パルス光源1から発生された超短光パルスが透過する媒質であれば良く、長さも特に限定されない。
The medium to be measured 2 may be any medium that transmits the ultrashort light pulse generated from the ultrashort light
二光子吸収検出手段3としては、アバランシェフォトダイオード(APD)、PINフォトダイオード等を用いることができる。SHG結晶とパワーメータの組合せを用いてもよい。被測定媒質2で減衰が大きい場合でも二光子吸収検出することができる。
As the two-photon absorption detection means 3, an avalanche photodiode (APD), a PIN photodiode, or the like can be used. A combination of an SHG crystal and a power meter may be used. Even when the measured
光切り換え手段4は、45°回動ミラー41、41’からなり、ミラー41、41’を共に実線の位置にすることで、超短光パルスは被測定媒質2を伝搬することなく参照光パルスとなる。ミラー41、41’を共に点線の位置にすることで、超短光パルスは被測定媒質2を伝搬する測定光パルスとなる。なお、ミラー41、41’をビームスプリッタで構成してもよい。その場合、参照光パルスと測定光パルスは光路差による時間差で分割して二光子吸収検出手段3で検出されることになる。光路差が小さい場合は測定光パルスの光路中に光学遅延線を挿入すればよい。ビームスプリッタにすることで、機械的に動く部分がなくなり、分散測定装置の信頼性が増す。
The light switching means 4 is composed of 45 ° rotating
空間コヒーレンス調節器5は、参照光パルスと測定光パルスの空間コヒーレンス(ビーム径、拡がり角)を同じにして、二光子吸収信号が被測定媒質2の分散だけに影響されるようにするもので、長さ5cm前後の光ファイバ51と集光レンズ52、コリメータレンズ52’とからなる。光ファイバ51の波長分散や吸収損失などが問題になる場合は、光ファイバ51の代わりにピンホールなどの空間フィルタを用いればよい。
The
光分波器6は、波長板と偏光ビームスプリッタを組み合わせたものでもよいが、入射光の一部を反射し残りを透過させるハーフミラーが好ましい。ハーフミラーの反射率は、一光子吸収検出器7が一光子吸収検出するように設定される。すなわち、一光子吸収検出器7として、アバランシェフォトダイオード(APD)、PINフォトダイオード等を用いる場合、二光子吸収が起きないようにハーフミラーの反射率を設定する。反射率の調整だけで二光子吸収を防ぐことができない場合は、光分波器6と一光子吸収検出器7の間に減衰フィルタ等を挿入すればよい。
The
処理手段8は、コンピュータが望ましい。図5に示す二光子吸収信号比D2(z)/D2(0)とz/LDの関係を予め入力しておくことで、二光子吸収信号比を一光子吸収信号比で補正し、伝搬距離zと伝搬前のパルス幅T0を入力するだけで、分散値|β2|を求めることができる。さらに、被測定媒質2を分散値が既知の媒質とすることで、分散値の絶対値だけでなく符号も含めて求めることができる。処理手段8としてオッシロスコープを用いると、超短光パルス光源1から発生される超短光パルスの波長をスキャンすることで、分散値の相対的な波長依存性を観測することができる。そして、別途異なる波長の超短光パルスでの二光子吸収信号比を一光子吸収信号比で補正し、図5の関係を使って分散値の相対値を校正するようにしてもよい。
The processing means 8 is preferably a computer. By inputting the relationship between the two-photon absorption signal ratio D 2 (z) / D 2 (0) and z / L D shown in FIG. 5 in advance, the two-photon absorption signal ratio is corrected by the one-photon absorption signal ratio. The dispersion value | β 2 | can be obtained simply by inputting the propagation distance z and the pulse width T 0 before propagation. Furthermore, by making the measured medium 2 a medium whose dispersion value is known, not only the absolute value of the dispersion value but also the sign can be obtained. When an oscilloscope is used as the processing means 8, the relative wavelength dependence of the dispersion value can be observed by scanning the wavelength of the ultrashort light pulse generated from the ultrashort light
なお、二光子吸収信号比D2(z)/D2(0)は、測定光パルスの一光子吸収信号をD1(z)、参照光パルスの一光子吸収信号をD1(0)とすると、
(D2(z)/D2(0))/(D1(z)/D1(0))2 (12)
で補正される。
The two-photon absorption signal ratio D 2 (z) / D 2 (0) is defined as D 1 (z) for the one-photon absorption signal of the measurement light pulse and D 1 (0) for the one-photon absorption signal of the reference light pulse. Then
(D 2 (z) / D 2 (0)) / (D 1 (z) / D 1 (0)) 2 (12)
It is corrected by.
前述の図1は、本発明の実施例1の波長分散測定装置の概略構成図である。図2は、図1の超短光パルス光源1の構成図である。
FIG. 1 is a schematic configuration diagram of a chromatic dispersion measuring apparatus according to the first embodiment of the present invention. FIG. 2 is a configuration diagram of the ultrashort optical pulse
超短光パルス光源1は、単一波長の超短光パルス発生するレーザ11と、その超短光パルスの強度を変調する強度変調器12と、長さ100mの定偏波ファイバ13と、を有している。強度変調器12は、音響光学変調素子121と駆動制御用マイクロコンピュータ122とを有し、通過する超短光パルスの強度を1msの周期で連続的に変えることができるようになっている。強度変調器12の後には定偏波ファイバ13の偏光軸を調整するための半波長板14が挿入されている。
The ultrashort optical pulse
レーザ11は、波長が1.55μm、パルス幅が100fs、パルス繰り返し周期が50MHz、平均出力が60mWの超短光パルスを発生する市販のファイバーレーザである。レーザ11から発生した超短光パルスは強度変調器12で強度変調された後、半波長板14で偏光軸が調整されてレンズ15で集光され定偏波ファイバ13に入射される。波長が1.55μmの超短光パルスが入射されるとそのパルスの強度に応じて1.55μmより長波長側にシフトした誘導ラマン散乱光パルスが誘起され、自己位相変調と郡速度分散によるソリトン効果でその誘起された光パルスが超短光パルス化され、定偏波ファイバ13から波長が1.62μmから1.90μmまで変化したパルス幅210fsのsech2型強度の超短光パルス(ソリトンパルス)が出射される。出射される超短光パルスの波長は、周期1msの鋸歯状波で連続的に1.62〜1.90μm範囲走査される。出射された超短光パルスはレンズ15’でコリメートされ光フィルタ16で1.55μmの入射超短光パルスがカットされた後、光切り換え手段4に入射される。
The
二光子吸収検出手段3はアバランシェフォトダイオードであり、一光子吸収検出器7はPINフォトダイオードである。処理手段8はオッシロスコープである。
The two-photon absorption detection means 3 is an avalanche photodiode, and the one-
図3が被測定媒質2を長さ1cmの音響光学変調素子(AMTIR(GeAsSe Glass))、長さ50cmの定偏波ファイバ(PMF)、長さ50cmの分散シフトファイバ(DSF)にしたときの波長分散測定結果である。従来の干渉法で測定した結果よく一致することが確認された。 FIG. 3 shows a case where the medium 2 to be measured is an acousto-optic modulator (AMTIR (GeAsSe Glass)) having a length of 1 cm, a constant polarization fiber (PMF) having a length of 50 cm, and a dispersion shifted fiber (DSF) having a length of 50 cm. It is a chromatic dispersion measurement result. It was confirmed that the results measured by the conventional interferometry agreed well.
1 超短光パルス光源
2 被測定媒質
3 二光子吸収検出手段
4 光切り換え手段
5 空間コヒーレンス調節器
6 光分波器
7 一光子吸収検出器
8 処理手段
DESCRIPTION OF
Claims (14)
該超短光パルス光源から発生された該超短光パルスを伝搬させる被測定媒質と、
該被測定媒質を伝搬した該超短光パルスを受光して二光子吸収信号を出力する二光子吸収検出手段と、
を有し、該二光子吸収検出手段から出力される二光子吸収信号から該被測定媒質の波長分散を測定することを特徴とする波長分散測定装置。 An ultrashort optical pulse light source that generates an ultrashort optical pulse;
A medium to be measured for propagating the ultrashort light pulse generated from the ultrashort light pulse light source;
Two-photon absorption detection means for receiving the ultrashort light pulse propagated through the measured medium and outputting a two-photon absorption signal;
And measuring the chromatic dispersion of the medium to be measured from the two-photon absorption signal output from the two-photon absorption detection means.
該分波器で分波された該参照光パルスと該測定光パルスを受光して一光子吸収信号を出力する一光子吸収検出器と、
をさらに有することを特徴とする請求項5及び6に記載の波長分散測定装置。 An optical demultiplexer for demultiplexing the reference light pulse and the measurement light pulse propagated through the measurement medium;
A one-photon absorption detector that receives the reference light pulse demultiplexed by the demultiplexer and the measurement light pulse and outputs a one-photon absorption signal;
The chromatic dispersion measuring device according to claim 5, further comprising:
該超短光パルス発生ステップで発生された該超短光パルスを被測定媒質に伝搬させる被測定媒質伝搬ステップと、
該被測定媒質伝搬ステップで該被測定媒質を伝搬した該超短光パルスを二光子吸収手段で受光して二光子吸収信号を出力する二光子吸収検出ステップと、
を有し、該二光子吸収検出ステップで検出される二光子吸収信号から該被測定媒質の波長分散を測定することを特徴とする波長分散測定方法。 An ultrashort optical pulse generating step for generating an ultrashort optical pulse from an ultrashort optical pulse light source;
A measured medium propagation step for propagating the ultrashort light pulse generated in the ultrashort light pulse generation step to the measured medium;
A two-photon absorption detection step of receiving the ultrashort light pulse propagated through the measured medium in the measured medium propagation step by a two-photon absorption means and outputting a two-photon absorption signal;
And measuring the chromatic dispersion of the measured medium from the two-photon absorption signal detected in the two-photon absorption detection step.
該分波ステップで分波された該参照光パルスと該測定光パルスを受光して一光子吸収信号を出力する一光子吸収検出ステップと、
をさらに有することを特徴とする請求項12及び13に記載の波長分散測定方法。 An optical demultiplexing step for demultiplexing the reference light pulse and the measurement light pulse propagated through the measured medium;
A one-photon absorption detection step for receiving the reference light pulse and the measurement light pulse demultiplexed in the demultiplexing step and outputting a one-photon absorption signal;
The chromatic dispersion measuring method according to claim 12, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047978A JP2005241284A (en) | 2004-02-24 | 2004-02-24 | Chromatic dispersion measuring apparatus and measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047978A JP2005241284A (en) | 2004-02-24 | 2004-02-24 | Chromatic dispersion measuring apparatus and measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005241284A true JP2005241284A (en) | 2005-09-08 |
Family
ID=35023183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004047978A Pending JP2005241284A (en) | 2004-02-24 | 2004-02-24 | Chromatic dispersion measuring apparatus and measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005241284A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1865299A1 (en) * | 2006-06-06 | 2007-12-12 | Hartmut Schröder | Method and device for fs laser pulse characterization |
JP2012127898A (en) * | 2010-12-17 | 2012-07-05 | Aisin Seiki Co Ltd | Device and method for measuring wavelength dispersion |
-
2004
- 2004-02-24 JP JP2004047978A patent/JP2005241284A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1865299A1 (en) * | 2006-06-06 | 2007-12-12 | Hartmut Schröder | Method and device for fs laser pulse characterization |
JP2012127898A (en) * | 2010-12-17 | 2012-07-05 | Aisin Seiki Co Ltd | Device and method for measuring wavelength dispersion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10260990B2 (en) | Multi-wavelength DMD measurement apparatus and methods | |
EP1420238B1 (en) | Determining an optical property by using superimposed delayed signals | |
JP4830096B2 (en) | Distance measuring device and distance measuring method | |
US5619326A (en) | Method of sample valuation based on the measurement of photothermal displacement | |
US7557930B2 (en) | Bessel beam interferometer and measurement method | |
KR101392341B1 (en) | Reducing coherent crosstalk in dual-beam laser processing system | |
CN101900608B (en) | Multifunctional wide-range ultra-short pulsed laser autocorrelator | |
US6850318B1 (en) | Polarization mode dispersion measuring device and polarization mode dispersion measuring method | |
US6181429B1 (en) | Interferometer for measurements of optical properties in bulk samples | |
US12209860B2 (en) | Method and device for analog in situ laser process monitoring | |
KR100996140B1 (en) | Cross correlator for measuring ultra-short laser pulses and method | |
JP2004226404A (en) | Optical fiber residual stress measuring device | |
JP4463828B2 (en) | Measuring method, measuring apparatus and measuring program for wavelength dispersion of optical waveguide | |
JP4853255B2 (en) | Gas analyzer | |
JPH05248996A (en) | Optical fiber wavelength dispersion measuring device | |
KR100337646B1 (en) | Apparatus for measurement of an optical pulse shape | |
JP2005241284A (en) | Chromatic dispersion measuring apparatus and measuring method | |
CN107907980B (en) | an interferometer | |
EP0924507B1 (en) | Interferometer for measurements of optical properties in bulk samples | |
JP5605643B2 (en) | Chromatic dispersion measuring apparatus and chromatic dispersion measuring method | |
JP2016029340A (en) | Measuring device | |
JP3597946B2 (en) | Single pulse autocorrelator | |
JP2767000B2 (en) | Waveguide dispersion measurement method and apparatus | |
JPH09133585A (en) | Optical pulse train measurement method | |
CA2257034A1 (en) | Interferometer for measurements of optical properties in bulk samples |