ITUB20155049A1 - Treno integrato di generazione di potenza e compressione, e metodo - Google Patents
Treno integrato di generazione di potenza e compressione, e metodo Download PDFInfo
- Publication number
- ITUB20155049A1 ITUB20155049A1 ITUB2015A005049A ITUB20155049A ITUB20155049A1 IT UB20155049 A1 ITUB20155049 A1 IT UB20155049A1 IT UB2015A005049 A ITUB2015A005049 A IT UB2015A005049A IT UB20155049 A ITUB20155049 A IT UB20155049A IT UB20155049 A1 ITUB20155049 A1 IT UB20155049A1
- Authority
- IT
- Italy
- Prior art keywords
- load
- turbine engine
- rotating load
- gas turbine
- electric generator
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
- F02C3/10—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
- F02C3/10—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
- F02C3/103—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor the compressor being of the centrifugal type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/36—Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0287—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0294—Multiple compressor casings/strings in parallel, e.g. split arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
- F25J3/04127—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04139—Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/06—Control effected upon clutch or other mechanical power transmission means and dependent upon electric output value of the generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2210/00—Working fluids
- F05D2210/10—Kind or type
- F05D2210/14—Refrigerants with particular properties, e.g. HFC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/76—Application in combination with an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/76—Application in combination with an electrical generator
- F05D2220/766—Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/02—Purpose of the control system to control rotational speed (n)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/02—Purpose of the control system to control rotational speed (n)
- F05D2270/024—Purpose of the control system to control rotational speed (n) to keep rotational speed constant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/06—Purpose of the control system to match engine to driven device
- F05D2270/061—Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/90—Hot gas waste turbine of an indirect heated gas for power generation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/25—Special adaptation of control arrangements for generators for combustion engines
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Control Of Eletrric Generators (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Description
"TRENO INTEGRATO DI GENERAZIONE DI POTENZA E COMPRESSIONE, E METODO"
Descrizione
Campo tecnico
La descrizione riguarda motori a turbina a gas in applicazioni per trazione meccanica e generazione di potenza.
Arte Anteriore
Motori a turbina a gas sono comunemente usati per azionare equipaggi ruotanti, quali generatori elettrici e turbomacchine. In alcune forme di realizzazione, motori a turbina a gas sono usati per produrre potenza meccanica, che è usata per ruotare un generatore elettrico. Quest'ultimo converte potenza meccanica in potenza elettrica, che a sua volta è usata per azionare un motore elettrico. D motore elettrico aziona in rotazione un carico ruotante, quale una pompa od un compressore.
Una disposizione di questo tipo, in cui il carico ruotante comprende un compressore di gas è descritta in US2013/0121846. D compressore ruota ad una velocità variabile, in funzione delle esigenze del processo, di cui il compressore forma parte. La velocità del motore a turbina a gas varia per controllare la frequenza di uscita del generatore elettrico e quindi la velocità di rotazione del motore, che a sua volta porta in rotazione il compressore.
Sistemi di questo tipo sono spesso usati in applicazioni off-shore, dove treni di compressori elaborano un fluido refrigerante, usato per liquefare gas naturale per scopi di trasporto. D gas naturale viene estratto da giacimenti di petrolio e gas sottomarini e liquefatto per mezzo di un impianto di liquefazione del gas naturale. Gas naturale liquefatto (LNG) viene poi immagazzinato in una nave e trasportato a terra, dove esso è nuovamente gassificato e distribuito attraverso una rete di distribuzione di gas.
Impianti per la produzione di LNG usano uno o più cicli di refrigerazione, dove un refrigerante viene elaborato attraverso un ciclo termodinamico per estrarre calore dal gas naturale e scaricare il calore estratto nell' ambiente. Il refrigerante è compresso da un compressore o treno di compressori prima di essere espanso in una valvola di espansione o laminazione. Il compressore od il treno di compressori è normalmente azionato direttamente da un motore a turbina a gas o da un motore elettrico. La potenza elettrica per alimentare il motore elettrico è generata da un generatore elettrico azionato in rotazione da un motore a turbina a gas. Parte della potenza elettrica prodotta dal generatore elettrico può essere distribuita attraverso una rete di distribuzione di potenza elettrica a vari dispositivi o impianti della piattaforma offshore o del natante, su cui rimpianto LNG è installato, mentre la parte predominante della potenza elettrica è fornita al motore elettrico. Un azionamento a frequenza variabile viene usato per ruotare il motore elettrico alla velocità di rotazione richiesta, che può essere differente rispetto alla velocità di rotazione del generatore elettrico e che può variare per seguire le esigenze del processo, di cui il compressore o treno di compressori forma parte.
Nel settore petrolifero, in alcuni casi biossido di carbonio viene iniettato in un giacimento petrolifero per recuperare da esso idrocarburi. Compressori di biossido di carbonio vengono usualmente azionati direttamente da un motore a turbina a gas o da un motore elettrico. Potenza elettrica per il motore elettrico può essere generata da un generatore elettrico azionato da un motore a turbina a gas.
La necessità di due macchine elettriche (il generatore elettrico ed il motore elettrico) ha molteplici inconvenienti. In particolare, la conversione da potenza meccanica a potenza elettrica (attraverso il generatore elettrico) e nuovamente in potenza meccanica (attraverso il motore elettrico) riduce l'efficienza complessiva del sistema, a causa delle inevitabili perdite nei processi di conversione. Inoltre, le due macchine elettriche contribuiscono all'ingombro in pianta delfinstallazione di potenza. Questo fattore è particolarmente critico nelle applicazioni off-shore, dove lo spazio disponibile è limitato. Inoltre, l'uso di due macchine elettriche riduce la disponibilità del sistema, poiché entrambe le macchine sono soggette a guasti, che provocano l'arresto dell'impianto. Per aumentare la disponibilità del sistema, sono richieste macchine elettriche di scorta, il che significa che devono essere disponibili per la sostituzione almeno un motore elettrico addizionale ed almeno un generatore elettrico addizionale, Le macchine di scorta richiedono ulteriore spazio sull'installazione off-shore e rappresentano un costo.
Esiste pertanto l'esigenza di un sistema di potenza che ha esigenze ridotte di spazio e migliore efficienza.
Sommario dell'invenzione
Secondo un primo aspetto, viene qui descritto un sistema integrato di generazione di potenza e azionamento di un carico, comprendente in combinazione: un motore a turbina a gas avente un albero di potenza in uscita collegato ad una linea d'albero; un generatore elettrico, meccanicamente accoppiato alla linea d'albero e azionato in rotazione dal motore a turbina a gas; un carico ruotante, meccanicamente accoppiato alla linea d'albero ed azionato in rotazione del motore a turbina a gas. Il sistema integrato comprende inoltre una disposizione di controllo del carico, configurata per controllare almeno un parametro operativo del carico ruotante per adattare la condizione di funzionamento del carico ruotante ad esigenze provenienti da un processo, di cui il carico ruotante forma parte, mentre il motore a turbina a gas ed il generatore elettrico ruotano a velocità sostanzialmente costante. Il carico può essere una turbomacchina, quale un compressore od una pompa.
Vantaggiosamente, il motore a turbina a gas è un motore a turbina a gas multi-albero, ad esempio un motore a turbina a gas a due alberi. La linea di albero del sistema integrato di generazione di potenza ed azionamento del carico può così essere collegato meccanicamente ad una turbina di bassa pressione del motore a turbina a gas. La turbina di bassa pressione è meccanicamente disaccoppiata rispetto ad una turbina ad alta pressione, che genera potenza per azionare un compressore di aria del motore a turbina a gas. Il compressore di aria, la turbina di alta pressione ed un combustore tra di essi formano un generatore di gas del motore a turbina a gas. La velocità di rotazione del generatore di gas può essere controllata indipendentemente dalla velocità di rotazione della turbina a bassa pressione e del generatore, fornendo una flessibilità migliorata al sistema.
Usando un motore a turbina a gas a due alberi si consente di eliminare la necessità di un motore elettrico di avviamento e relativo azionamento a frequenza variabile per esso.
Ulteriori vantaggiose caratteristiche e forme di realizzazione di un sistema integrato secondo la presente descrizione verranno illustrate in maggiore dettaglio nel seguito e sono indicate nelle rivendicazioni allegate, che formano parte integrante della presente descrizione.
Secondo un ulteriore aspetto, viene qui descritto un metodo per il funzionamento di un sistema integrato di generazione di potenza ed azionamento di un carico, comprendente le seguenti fasi:
ruotare il motore a turbina a gas ed il generatore elettrico ad una velocità di rotazione, avente una variazione di velocità limitata da una variazione di frequenza ammessa da una rete di distribuzione di potenza elettrica, a cui il generatore elettrico è elettricamente accoppiato;
controllare almeno un parametro operativo del carico ruotante per mezzo di una disposizione di controllo del carico per adattare la condizione di funzionamento del carico ruotante ad esigenze di processo da un processo, di cui il carico forma parte, senza cambiare la velocità di rotazione del motore elettrico.
Caratteristiche e forme di realizzazione sono descritte qui di seguito e ulteriormente definite nelle rivendicazioni allegate, che formano parte integrale della presente descrizione. La sopra riportata breve descrizione individua caratteristiche delle varie forme di realizzazione della presente invenzione in modo che la seguente descrizione dettagliata possa essere meglio compresa e affinché i contribuiti alla tecnica possano essere meglio apprezzati. Vi sono, ovviamente, altre caratteristiche dell’ invenzione che verranno descritte più avanti e che verranno esposte nelle rivendicazioni allegate. Con riferimento a ciò, prima di illustrare diverse forme di realizzazione dell’ invenzione in dettaglio, si deve comprendere che le varie forme di realizzazione dell’ invenzione non sono limitate nella loro applicazione ai dettagli costruttivi ed alle disposizioni di componenti descritti nella descrizione seguente o illustrati nei disegni. L’invenzione può essere attuata in altre forme di realizzazione e attuata e posta in pratica in vari modi. Inoltre si deve comprendere che la fraseologia e la terminologia qui impiegate sono soltanto ai fini descrittivi e non devono essere considerate limitative.
Gli esperti del ramo pertanto comprenderanno che il concetto su cui si basa la descrizione può essere prontamente utilizzato come base per progettare altre strutture, altri metodi e/o altri sistemi per attuare i vari scopi della presente invenzione. E’ importante, quindi, che le rivendicazioni siano considerate come comprensive di quelle costruzioni equivalenti che non escono dallo spirito e dall’ambito della presente invenzione.
Breve descrizione dei disegni
Una comprensione più completa delle forme di realizzazione illustrate dell’invenzione e dei molti vantaggi conseguiti verrà ottenuta quando la suddetta invenzione verrà meglio compresa con riferimento alla descrizione dettagliata che segue in combinazione con i disegni allegati, in cui: la
Fig.l illustra uno schema di una prima forma di realizzazione di un sistema di potenza secondo la presente descrizione; le
Figg,2 a 6 illustrano ulteriori forme di realizzazione di un sistema di potenza secondo la presente descrizione.
Descrizione dettagliata di forme di realizzazione
La descrizione dettagliata che segue di forme di realizzazione esemplificative fa riferimento ai disegni allegati. Gli stessi numeri di riferimento in disegni differenti identificano elementi uguali o simili. Inoltre, i disegni non sono necessariamente in scala. Ancora, la descrizione dettagliata che segue non limita l’invenzione. Al contrario, l’ambito dell’invenzione è definito dalle rivendicazioni allegate.
Il riferimento in tutta la descrizione a “una forma di realizzazione” o “la forma di realizzazione” o “alcune forme di realizzazione” significa che una particolare caratteristica, struttura o elemento descritto in relazione ad una forma di realizzazione è compresa in almeno una forma di realizzazione dell’oggetto descritto. Pertanto la frase “in una forma di realizzazione” o “nella forma di realizzazione” o “in alcune forme di realizzazione” in vari punti lungo la descrizione non si riferisce necessariamente alla stessa o alle stesse forme di realizzazione. Inoltre le particolari caratteristiche, strutture od elementi possono essere combinati in qualunque modo idoneo in una o più forme di realizzazione.
La Fig.l illustra schematicamente una prima forma di realizzazione di un sistema integrato 1 di generazione di potenza e di azionamento di un carico secondo la presente descrizione. Il sistema integrato 1 comprende un motore a turbina a gas 3, un generatore elettrico 5 ed un carico ruotante. Nella forma di realizzazione della Fig.l il carico ruotante è un compressore centrifugo di gas 7, In altre forme di realizzazione può essere previsto un differente carico ruotante, ad esempio una differente tecnologia di compressori, quali un compressore assiale, oppure una pompa. Il carico può comprendere più di una macchina ruotante. Il compressore di gas può essere disposto per iniettare biossido di carbonio compresso in un giacimento di gas o di petrolio, ad esempio in un giacimento di idrocarburi sottomarino.
Una linea di albero 9 collega meccanicamente un albero di uscita di potenza 1 1 del motore a turbina a gas 3 al generatore elettrico 5 ed al carico ruotante, cioè in questo caso al compressore 7. Nella forma di realizzazione della Fig.l, il generatore elettrico 5 è disposto lungo la linea di albero 9 fra il motore a turbina a gas 3 ed il compressore di gas 7, In altre forme di realizzazione, come verrà descritto in maggiore dettaglio più avanti, può essere prevista una diversa disposizione, con il compressore 7 disposto fra il motore a turbina a gas 3 ed il generatore elettrico 5, ad esempio. La prima disposizione può avere alcuni vantaggi rispetto alla seconda disposizione in certe circostanze. Ad esempio, l'apertura della cassa del compressore può essere facilitata se il compressore è disposto all'estremità della linea d'albero 9, in caso di compressori ad apertura verticale. Disporre il generatore elettrico 5 all'estremità della linea d'albero 9, con il compressore 7 disposto tra il motore a turbina a gas 3 ed il generatore elettrico 5, evita la necessità di trasmettere l'intera potenza meccanica dal motore a turbina a gas 3 attraverso l'albero del generatore elettrico, che può conseguentemente essere meno performante.
Il motore a turbina a gas 3 può essere un motore a turbina a gas di derivazione aeronautica, cioè un motore a turbina a gas derivato da un motore turbo jet aeronautico.
Secondo forme di realizzazione attualmente preferite, il motore a turbina a gas 3 è un motore a turbina a gas mu Iti-albero. In forme di realizzazione esemplificative, il motore a turbina a gas 3 è un motore a turbina a gas a due alberi.
Il motore a turbina a gas 3 può comprendere un generatore di gas 310 ed una turbina di potenza 320, denominata anche turbina di bassa pressione. Il generatore di gas 310 comprende a sua volta un compressore di aria 312, un combustore 314, una turbina di alta pressione 316 ed un primo albero 318, che collega meccanicamente la turbina di alta pressione 316 al compressore di aria 312. 11 combustore 314 è in accoppiamento di fluido con un lato di mandata del compressore di aria 312 e con un ingresso della turbina di alta pressione 316.
L'uscita della turbina di alta pressione 316 è in accoppiamento di fluido con la turbina di potenza o turbina di bassa pressione 320. La turbina di bassa pressione 320 è a sua volta meccanicamente accoppiata all'albero di uscita di potenza 11 del motore a turbina a gas 3. Secondo la forma di realizzazione illustrata in Fig.l, quindi, il motore a turbina a gas 3 è un motore a turbina a gas a due alberi avente un primo albero 318 che collega la turbina di alta pressione 316 al compressore di aria 312, ed un secondo albero 11, che riceve potenza meccanica dalla turbina di potenza o di bassa pressione 320. D numero di riferimento 322 indica un motore di avviamento della turbina a gas, ad esempio un motore idraulico, che è usato per avviare la rotazione del generatore di gas 310.
Come menzionato, il compressore di gas 7 può essere parte di un circuito aperto, ad esempio un circuito di iniezione di biossido di carbonio. In altre forme di realizzazione, il compressore di gas 7 può essere parte di un circuito chiuso, ad esempio un circuito di refrigerazione. In termini più generali, il compressore 7 può essere parte di un processo, che è schematicamente mostrato in 13. Il numero di riferimento 15 indica il lato di aspirazione ed il numero di riferimento 17 indica il lato di mandata del compressore di gas 7, attraverso cui il compressore di gas 7 è collegato al processo 13.
Viene prevista vantaggiosamente una disposizione di controllo del carico, che è configurata e disposta per regolare almeno un parametro di funzionamento del compressore di gas 7, in funzione di richieste dal processo 13. La disposizione di controllo del carico può comprendere un controllore del compressore, schematicamente indicato in 19, per controllare uno o più parametri di funzionamento del compressore di gas 7 sulla base di richieste dal processo 13. Il controllore 19 del compressore riceve un ingresso basato su uno o più parametri di processo dal processo 13 e genera una uscita rappresentata da uno o più parametri di funzionamento del compressore di gas 7.
La disposizione di controllo del carico può comprendere inoltre uno o più dispositivi combinati con il compressore di gas 7 e che, sulla base del o dei parametri di funzionamento, regolano uno o più dei seguenti: la velocità di rotazione del compressore di gas 7, la pressione di aspirazione del compressore, la pressione di mandata del compressore, il rapporto di compressione del compressore di gas 7. Alternativamente, od in combinazione, la disposizione di controllo del carico può comprendere uno o più dispositivi che, sulla base del o dei parametri di funzionamento, regolano una portata del gas di processo elaborato attraverso il compressore di gas 7.
In alcune forme di realizzazione, detti dispositivi possono comprendere vani di guida di ingresso variabili (in breve IGV variabili) 7 A, che possono essere usati per regolare la portata del gas di processo elaborato dal compressore di gas 7. Un ingresso dal controllore 19 del compressore può essere applicato ad un attuatore, che selettivamente apre e chiude gli IGV variabili 7A.
In forme di realizzazione esemplificative una valvola di strozzamento o di laminazione 21 può essere disposta sul lato di mandata del compressore di gas 7, per regolare la pressione di mandata. La valvola di laminazione o strozzamento 21 può essere aperta o chiusa gradualmente e selettivamente da un attuatore (non mostrato), che è controllato da un ingresso dal controllore 19 del compressore. Altri dispositivi per regolare parametri di funzionamento del compressore di gas 7 verranno descritti in maggiore dettaglio più avanti, con riferimento ad altre forme di realizzazione esemplificative.
In termini generali, il controllore 19 del compressore può regolare uno o più dei parametri di funzionamento del compressore di gas 7, o di qualunque carico ruotante azionato dal motore a turbina a gas 3 attraverso la linea d'albero 9, sulla base di richieste provenienti dal processo 13, cosicché il carico ruotante 7 operi nel o nell' intorno del punto operativo richiesto, senza la necessità di modificare la velocità di rotazione del motore a turbina a gas 3 e del generatore elettrico 5. Questo consente al motore a turbina a gas 3 ed al generatore elettrico 5 di ruotare ad una velocità di rotazione sostanzialmente costante.
Nel presente contesto il termine "sostanzialmente costante" significa che la variazione di velocità, e quindi la variazione di frequenza elettrica, rimane entro Γ intervallo di fluttuazione della frequenza (intervallo di tolleranza) consentito da una rete di distribuzione di potenza elettrica 23, a cui il generatore elettrico 5 è collegato e che distribuisce potenza elettrica a dispositivi ausiliari del sistema integrato 1, del processo 13, e/o del natante o della piattaforma off-shore, su cui il sistema integrato 1 può essere disposto. Intervalli di tolleranza possono essere entro /- 5%, preferibilmente fra /- 2,5%,
Il sistema integrato di potenza I descritto sin qui opera come segue. Aria viene compressa dal compressore di aria 312 del motore a turbina a gas 3 e miscelato con il combustibile F nel combustore 314. La miscela aria/combustibile viene bruciata nel combustore 314 per produrre gas di combustione compresso ad alta temperatura. Il gas di combustione viene parzialmente espanso nella turbina di alta pressione 316, generando potenza meccanica per supportare la rotazione del compressore di aria 312. Il gas di combustione parzialmente espanso viene ulteriormente espanso nella turbina di potenza 320. Il salto entalpico del gas di combustione nella turbina di potenza 320 produce potenza meccanica addizionale, che è resa disponibile sull'albero di uscita di potenza Il e sulla linea di albero 9, per ruotare il generatore elettrico 5 ed il compressore 7 o qualunque altro carico ruotante meccanicamente accoppiato alla linea d'albero 9.
La potenza meccanica disponibile sull'albero di uscita di potenza 11 del motore a turbina a gas 3 è quindi convertito dal generatore elettrico 5 in potenza elettrica e distribuita sulla rete di distribuzione di potenza elettrica 23. Se e quando potenza meccanica in eccesso è disponibile sulla linea d'albero 9, questa potenza meccanica in eccesso viene usata per comprimere il gas di processo elaborato attraverso il compressore di gas 7.
Facendo funzionare il generatore di gas 5 ad una velocità di rotazione fissa, determinata dalla frequenza della rete di distribuzione di potenza elettrica 23, si raggiunge una efficienza ottimale nella sezione di produzione di potenza elettrica del sistema di potenza integrato I .
Mentre la linea d'albero 9 ruota ad una velocità sostanzialmente costante, dettata dalla frequenza della rete di distribuzione di potenza elettrica 23, regolazioni delle condizioni di funzionamento del compressore 7 richieste dal processo 13 sono ottenute attraverso l'ingresso di controllo dal controllore 19 del compressore. Ad esempio, la pressione di aspirazione e/o la pressione di mandata possono essere regolate agendo sulle IGV variabili 7A e/o sulla valvola di strozzamento o laminazione 21, o la portata di gas di processo può essere regolata agendo sugli IGV variabili 7A. Come verrà descritto più avanti, differenti azioni possono essere intraprese per modificare ulteriormente uno o più parametri di funzionamento del compressore 7, quali la velocità di rotazione, la portata od il rapporto di compressione, senza influenzare la velocità di rotazione del motore a turbina a gas 3 e del generatore elettrico 5.
Il sistema integrato di potenza I ha una efficienza migliorata rispetto ai sistemi dell'arte corrente poiché la potenza meccanica generata dal motore a turbina a gas 3 è usata per azionare direttamente il compressore 7, senza necessità di conversione in potenza elettrica e nuovamente in potenza meccanica. Inoltre, il motore a turbina a gas 3 può essere fatto funzionare a velocità costante, massimizzando così l'efficienza della turbina e generando potenza elettrica ad una frequenza sostanzialmente costante. Poiché il generatore elettrico 5 ruota a velocità sostanzialmente costante, esso può essere collegato direttamente alla rete di distribuzione di potenza elettrica 23, senza la necessità di una conversione della potenza elettrica, ad esempio attraverso un azionamento a frequenza variabile.
Usando una singola linea d'albero 9 con una singola macchina elettrica 5 si riduce l'ingombro in pianta complessivo del sistema, risparmiando spazio sull'installazione off-shore.
Usando un motore a turbina a gas 3 a due alberi, il generatore elettrico 5 non deve operare in un modo motore elettrico come starter per il motore a turbina a gas 3. L'avviamento del motore a turbina a gas 3 viene ottenuto avviando da prima il generatore di gas 310 lasciando la turbina di potenza 320, e quindi la linea d'albero 9, inoperative. L'avvio del generatore di gas 310 richiede soltanto una potenza limitata, che può essere fornita dal motore di avviamento 322, che può essere un motore idraulico.
Il generatore elettrico 5 non richiede di essere fatto funzionare come un motore helper, poiché il motore a turbina a gas 3 è progettato o selezionato così da fornire una potenza sufficiente ad azionare il generatore elettrico 5, e cosicché la potenza meccanica in eccesso può essere disponibile sulla linea d'albero 9. Questa potenza meccanica in eccesso, se disponibile, viene usata per azionare il compressore 7.
Sono possibili molte configurazioni alternative del sistema integrato di potenza 1 descritto sin qui. Una forma di realizzazione esemplificativa alternativa del sistema integrato di potenza 1 della presente descrizione è schematicamente rappresentato in Fig.2. Gli stessi componenti o componenti equivalenti già descritti in relazione alla forma di realizzazione della Fig.l sono indicati con gli stessi numeri di riferimento e non verranno descritti nuovamente. La principale differenza fra la forma di realizzazione della Fig.2 e la forma di realizzazione della Fig.l consiste nella disposizione del compressore di gas 7 e del generatore elettrico 5 lungo la linea d'albero 9. In Fig.2 il compressore di gas 7 è disposto fra il motore a turbina a gas 3 ed il generatore elettrico 5.
La disposizione inversa del generatore elettrico 5 e il compressore di gas 7 può essere adottata anche in almeno alcune delle forme di realizzazione descritte più avanti. In Fig.3 il sistema integrato di potenza I è configurato sostanzialmente come nella Fig.l, ma una frizione 31 è disposta lungo la linea d'albero 9, fra il generatore elettrico 5 ed il compressore di gas 7. Le due macchine condotte 5 e 7 possono così essere disaccoppiate, ad esempio se viene richiesto un arresto del compressore di gas 7, mentre la generazione di potenza elettrica per la rete di distribuzione di potenza elettrica 23 deve continuare.
Anziché una semplice frizione, fra il generatore elettrico 5 ed il compressore di gas 7 può essere disposto un accoppiamento a velocità variabile 33, come mostrato in Fig.4, A questo scopo può essere usato un qualunque accoppiamento a velocità variabile 33 idoneo, ad esempio un ruotismo planetario a velocità variabile quale un azionamento a velocità variabile Vorecon, disponibile da Voith Turbo GmbH & Co. KG, Crallshelm, Repubblica Federale di Germania.
Secondo la forma di realizzazione della Fig.4 la velocità del compressore di gas 7 può essere modificata durante il funzionamento del sistema integrato di potenza 1, in risposta ad esigenze del processo 13, senza modificare la velocità del generatore elettrico 5. La variazione di velocità consentita dall'accoppiamento a velocità variabile 33 può essere combinata ad altri parametri variabili del compressore di gas 7, quale la pressione e la portata. Il rapporto di velocità fra un albero di ingresso ed un albero di uscita dell'accoppiamento a velocità variabile 33 può essere controllato selettivamente dal controllore 19 del compressore.
Pertanto, nella forma di realizzazione della Fig.4 una porzione della linea d'albero 9 ha una velocità di rotazione che viene mantenuta attorno ad un valore costante, dettato dalla frequenza della rete di distribuzione di potenza elettrica 23. Questa sezione della linea d'albero 9 si estende dal motore a turbina a gas 3 all'ingresso dell'accoppiamento a velocità variabile 33. La parte rimanente della linea d'albero 9, fra l'uscita dell'accoppiamento a velocità variabile 33 ed il compressore di gas 7, ruota a velocità variabile, che può essere differente dalla velocità di rotazione del motore a turbina gas 3 e del generatore elettrico 5.
Tipicamente, un impianto di gas, ad esempio un impianto LNG, comprende diversi processi di gas secondari e circuiti secondari che possono richiedere una fase di riduzione di pressione. Usualmente questo viene ottenuto attraverso una fase di laminazione di gas, con dispersione dell'energia del gas, oppure tramite un treno di turbo-espantore autonomo (turbo-espantore generatore). In questo caso, la potenza elettrica generata espandendo il gas nel turbo-espantore viene resa disponibile per la rete di distribuzione di potenza elettrica 23. Secondo alcune forme di realizzazione dell'oggetto qui descritto, anziché usare un treno autonomo turbo-espantore e generatore elettrico, il turbo-espantore può essere integrato nel sistema integrato di potenza 1, come schematicamente mostrato in Fig.5, in cui parti e componenti uguali già descritti nelle forme di realizzazione precedentemente menzionate sono indicati con gli stessi numeri di riferimento e non verranno descritti nuovamente.
In Fig.5 un turbo- espantore 35 è disposto sulla linea d'albero 9. Una frizione 37 può essere disposta per scollegare meccanicamente il turbo-espantore 35 dalla linea d'albero 9.
Il turbo-espantore 35 ha un ingresso 35A ed un’uscita 35 B. Un fluido di lavoro pressurizzato, ad esempio un gas pressurizzato che richiede una riduzione di pressione, fluisce da una sorgente di fluido ad alta pressione, genericamente indicata in 36, attraverso il turbo-espantore 35. Potenza meccanica generata dalla riduzione di pressione nel flusso di gas viene resa disponibile sulla linea d'albero 9 e sfruttata per fornire potenza di azionamento al compressore di gas 7, oppure al generatore elettrico 5, o ad entrambi, contribuendo così all'efficienza complessiva del sistema integrato di potenza 1. Se non vi è un flusso di gas attraverso il turbo-espantore 35, quest'ultimo può essere meccanicamente scollegato dalla linea d'albero 9 aprendo la frizione 37, cosicché il sistema integrato di potenza 1 può operare lasciando il turbo-espantore 35 inoperativo.
Il turbo-espantore 35 della Fig.5 può essere usato anche nelle forme di realizzazione delle Figg.I a 4.
Integrando il turbo-espantore 35 nel sistema integrato di potenza 1 si possono ottenere ulteriori vantaggi rispetto alle configurazioni in cui il turbo-espantore è accoppiato ad un generatore elettrico separato. Sono richiesti meno passaggi di conversione di potenza, e il generatore elettrico addizionale accoppiato al turbo-espantore può essere evitato, così contribuendo a ridurre l'ingombro in pianta ed il costo dell’istallazione.
Ancora un’ulteriore forma di realizzazione di un sistema 1 integrato di generazione di potenza ed azionamento di un carico secondo la presente descrizione è illustrata in Fig.6. Gli stessi numeri di riferimento indicano componenti uguali od equivalenti a quelli già descritti in correlazione alle Figg.I a 5 e non verranno descritti nuovamente. La forma di realizzazione della Fig.6 è simile alla forma di realizzazione della Fig.l. Una valvola di by-pass 41 è addizionalmente prevista lungo una linea di by-pass 43 disposta fra il lato di mandata ed il lato di aspirazione del compressore di gas 7. Uno scambiatore di calore 45 può anche essere previsto tra il lato di mandata del compressore di gas 7 e la valvola di by-pass 41,
In alcune forme di realizzazione la valvola di by-pass 41 può essere una valvola anti -pompaggio del compressore 7.
La valvola di by-pass 41 può essere sotto il controllo del controllore 19 del compressore e può essere usata per ricircolare parte del gas di processo elaborato dal compressore di gas 7, cosicché la portata alimentata dal compressore di gas 7 al processo 13 può essere modificata secondo le esigenze provenienti dal processo 13, senza influenzare la velocità di rotazione del generatore elettrico 5 e del motore a turbina a gas 3, La linea di by-pass 43 e la rispettiva valvola di by-pass 41 possono essere previsti in combinazione con IGV variabili 7A e/o con altri dispositivi per modificare le condizioni di funzionamento del compressore di gas 7, quali una valvola di strozzamento o laminazione 21 od un turbo- espantore 35, come illustrato in Fig.5. Inoltre, anziché una frizione 31, fra il compressore di gas 7 ed il generatore elettrico 5 può essere disposto un accoppiamento a velocità variabile 35.
Il funzionamento del sistema integrato di potenza 1 delle Figg.2 a 6 è sostanzialmente lo stesso di quello già descritto con riferimento alla Fig.l, eccetto che possono essere controllati parametri operativi aggiuntivi del compressore di gas 7, quali la portata attraverso il turbo-espantore 35 o la velocità di rotazione.
In funzione dei dispositivi disponibili associati al compressore di gas 7, o a qualunque altro carico ruotante collegato alla linea d'albero 9, differenti azioni possono essere intraprese per modificare il punto di funzionamento del compressore di gas 7 in risposta a richieste del processo 13, senza influenzare la velocità di rotazione del motore a turbina a gas 3 e del generatore elettrico 5.
Sono possibili ulteriori numerose combinazioni e modifiche del sistema integrato 1 di generazione di potenza e di azionamento del carico della presente descrizione. Ad esempio una o più scatole di ingranaggi possono essere disposte lungo la linea d'albero 9, fra le macchine ruotante disposte lungo di essa. Se il generatore elettrico 5 è disposto fra il motore a turbina a gas 3 ed il compressore di gas 7, una scatola di ingranaggi può essere disposta fra il motore a turbina a gas 3 ed il generatore elettrico 5 e/o tra il generatore elettrico 5 ed il compressore di gas 7 o altro carico ruotante. Se il compressore di gas è disposto fra il motore a turbina a gas 3 ed il generatore elettrico 5, una scatola di ingranaggi può essere disposta tra il motore a turbina a gas 3 ed il compressore di gas 7, e/o tra il compressore di gas 7 ed il generatore elettrico 5.
L'uso di una o più scatole di ingranaggi consente velocità di rotazione stazionarie differenti per differenti macchine condotte e per il motore a turbina a gas 3.
Inoltre, mentre nelle forme di realizzazione sopra descritte è stato fatto riferimento ad un compressore di gas 7, può essere previsto un treno di compressori od una differente disposizione di uno o più carichi ruotanti. Ad esempio il carico ruotante può comprendere una pompa centrifuga o una pompa assiale. Sono anche possibili combinazioni di differenti turbo macchine condotte, quali compressori e pompe sulla stessa linea d'albero 9.
Si deve anche comprendere che vari dispositivi e apparecchiature descritte in relazione a forme di realizzazione specifiche mostrate nei disegni possono essere differentemente combinati gli uni agli altri. Ad esempio, la valvola di by-pass 41 illustrata nella Fig.6 può essere prevista anche nelle forme di realizzazione delle Figg.l a 5 ed usata come (ulteriore) dispositivo per controllare le condizioni di funzionamento del compressore di gas 7. In altre forme di realizzazione, uno o più dei dispositivi sopra descritti possono essere omessi. Ad esempio gli IGV variabili 7 A possono essere rimossi se altri mezzi forniscono un sufficiente controllo sui parametri di funzionamento del carico ruotante 7.
Claims (14)
- "TRENO INTEGRATO DI GENERAZIONE DI POTENZA E COMPRESSIONE, E METODO" Rivendicazioni 1. Un sistema integrato (I) di generazione di potenza e azionamento di un carico, comprendente in combinazione; un motore a turbina a gas (3) avente un albero di uscita di potenza (11) collegato ad una linea di albero (9); un generatore elettrico (5), meccanicamente accoppiato alla linea d'albero (9) ed azionato in rotazione dal motore a turbina a gas (3); un carico ruotante (7), meccanicamente accoppiato alla linea d'albero (9) ed azionato in rotazione dal motore a turbina a gas (3); una disposizione di controllo del carico configurata per controllare almeno un parametro operativo del carico ruotante (7) per adattare la condizione operativa del carico ruotante (7) a richieste di processo da un processo (13), di cui il carico ruotante (7) forma parte, mentre il motore a turbina a gas (3) ed il generatore elettrico (5) ruotano ad una velocità sostanzialmente costante.
- 2. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico della rivendicazione 1, in cui il motore a turbina a gas (3) è un motore a turbina a gas multi-albero, comprendente: una turbina di alta pressione (316) meccanicamente accoppiata ad un compressore di aria (312); e una turbina di bassa pressione (320), in accoppiamento di fluido con, ma meccanicamente separata dalla turbina di alta pressione (316) e meccanicamente accoppiata all'albero di uscita di potenza (II);
- 3. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico della rivendicazione 1 o 2, in cui la velocità sostanzialmente costante del motore a turbina a gas (3) e del generatore elettrico (5) è imposta da una frequenza elettrica di una rete (23) di distribuzione di potenza elettrica, a cui il generatore elettrico è collegato.
- 4. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico di una o più delle rivendicazioni precedenti, in cui la disposizione di controllo del carico è configurata e disposta per regolare uno o più dei seguenti parametri: una pressione di aspirazione di un fluido di processo elaborato dal carico ruotante (7); una pressione di mandata del fluido di processo elaborato dal carico ruotante (7); un rapporto di pressione fra un lato di mandata ed un lato di aspirazione del carico ruotante (7); un flusso di fluido di processo attraverso il carico ruotante (7); una velocità di rotazione del carico ruotante (7).
- 5. Il sistema integrato (I) di generazione di potenza ed azionamento di un carico di una o più delle rivendicazioni precedenti, in cui il carico ruotante (7) è una turbomacchina,
- 6. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico di una o più delle rivendicazioni precedenti, in cui la disposizione di controllo del carico comprende uno o più dei seguenti: una valvola di by-pass (41) disposta in parallelo al carico ruotante (7) e che collega un lato di mandata ad un lato di aspirazione del carico ruotante; una disposizione di vani di guida di ingresso variabili (7A); una valvola di strozzamento o laminazione (21) in accoppiamento di fluido con il lato di mandata del carico ruotante (7); un accoppiamento a velocità variabile (33) lungo la linea d'albero (9) tra il generatore elettrico (5) ed il carico ruotante (7), configurato e controllato per modificare la velocità di rotazione del carico ruotante, mentre la velocità di rotazione del generatore elettrico (5) rimane sostanzialmente costante.
- 7. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico di una o più delle rivendicazioni precedenti, comprendente inoltre una frizione (31) tra il generatore elettrico (5) ed il carico ruotante (7).
- 8. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico di una o più delle rivendicazioni precedenti, comprendente inoltre un turboespantore (35) meccanicamente accoppiato alla linea d'albero (9), configurato e disposto per ricevere un fluido di processo pressurizzato da una sorgente di fluido di processo pressurizzato (36) e per convertire l’energia di pressione del fluido di processo pressurizzato in potenza meccanica disponibile sulla linea d’albero (9).
- 9. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico della rivendicazione 8, in cui il turbo-espantore (35) è meccanicamente accoppiato alla linea d'albero (9) attraverso una frizione (37).
- 10. Il sistema integrato (1) di generazione di potenza ed azionamento di un carico di una o più delle rivendicazioni precedenti, in cui il generatore elettrico (5) è privo di una capacità di modo motore.
- 11. Il sistema integrato (I) di generazione di potenza ed azionamento di un carico di una o più delle rivendicazioni precedenti, in cui il generatore elettrico (5) è disposto fra il motore a turbina a gas (3) ed il carico ruotante (7) o, alternativamente, il carico ruotante (7) è disposto fra il motore a turbina a gas ed il generatore elettrico (5).
- 12. Un metodo di funzionamento di un sistema integrato (I) di generazione di potenza ed azionamento di un carico, comprendente: un motore a turbina a gas (3); un generatore elettrico (5); un carico ruotante (7); una linea d'albero (9) che collega meccanicamente il generatore elettrico (5) ed il carico ruotante (7) al motore a turbina a gas (3); il metodo comprendendo le seguenti fasi: ruotare il motore a turbina a gas (3) ed il generatore elettrico (5) ad una velocità di rotazione, avente una variazione limitata da una variazione di frequenza ammessa da una rete di distribuzione elettrica (23) a cui il generatore elettrico (5) è elettricamente accoppiato; controllare almeno un parametro operativo del carico ruotante (7) per mezzo di una disposizione di controllo del carico, per adattare le condizioni di funzionamento del carico ruotante a richieste di processo da un processo (13), di cui il carico ruotante forma parte, senza cambiare la velocità di rotazione del generatore elettrico (5).
- 13. Il metodo della rivendicazione 12, in cui il motore a turbina a gas (3) è un motore a turbina a gas multi-albero comprendente almeno un primo albero (318), che collega meccanicamente un compressore di aria (312) ad una turbina ad alta pressione (316), ed un albero di potenza (I I) collegato meccanicamente ad una turbina di bassa pressione (320), in accoppiamento di fluido con meccanicamente separata dalla turbina di alta pressione (316), e che riceve da essa gas di combustione parzialmente espanso; in cui gas di combustione ad alta temperatura generato in un combustore (314), che riceve aria compressa dal compressore di aria (312) e combustibile, viene parzialmente espanso nella turbina di alta pressione (316) per produrre potenza meccanica per azionare il compressore di aria (312), e parzialmente espanso nella turbina di bassa pressione (320) per produrre potenza meccanica disponibile sulla linea di albero (9).
- 14. Il metodo della rivendicazione 12 o 13, in cui il carico ruotante (7) è una turbomacchina, ed in cui un punto di funzionamento della turbo macchina viene controllato in risposta a richieste di processo, agendo su almeno uno dei seguenti parametri: una pressione di aspirazione di un fluido di processo elaborato dal carico ruotante (7); una pressione di mandata del fluido di processo elaborato dal carico ruotante (7); un rapporto di compressione fra il lato di mandata ed il lato di aspirazione del carico ruotante (7); una portata di fluido di processo attraverso il carico ruotante (7); una velocità di rotazione del carico ruotante (7).
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITUB2015A005049A ITUB20155049A1 (it) | 2015-10-20 | 2015-10-20 | Treno integrato di generazione di potenza e compressione, e metodo |
RU2018113492A RU2718735C2 (ru) | 2015-10-20 | 2016-10-17 | Комплексный блок генерации энергии и сжатия и соответствующий способ |
PCT/EP2016/074836 WO2017067871A1 (en) | 2015-10-20 | 2016-10-17 | Integrated power generation and compression train, and method |
US15/768,187 US10815882B2 (en) | 2015-10-20 | 2016-10-17 | Integrated power generation and compression train, and method |
SA518391367A SA518391367B1 (ar) | 2015-10-20 | 2018-04-15 | نظام متكامل وطريقة لتوليد طاقة وضغط |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITUB2015A005049A ITUB20155049A1 (it) | 2015-10-20 | 2015-10-20 | Treno integrato di generazione di potenza e compressione, e metodo |
Publications (1)
Publication Number | Publication Date |
---|---|
ITUB20155049A1 true ITUB20155049A1 (it) | 2017-04-20 |
Family
ID=55273397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ITUB2015A005049A ITUB20155049A1 (it) | 2015-10-20 | 2015-10-20 | Treno integrato di generazione di potenza e compressione, e metodo |
Country Status (5)
Country | Link |
---|---|
US (1) | US10815882B2 (it) |
IT (1) | ITUB20155049A1 (it) |
RU (1) | RU2718735C2 (it) |
SA (1) | SA518391367B1 (it) |
WO (1) | WO2017067871A1 (it) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113513375A (zh) * | 2020-04-09 | 2021-10-19 | 通用电气公司 | 用于改装发电系统以结合无离合器同步冷凝的系统和方法 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10731501B2 (en) * | 2016-04-22 | 2020-08-04 | Hamilton Sundstrand Corporation | Environmental control system utilizing a motor assist and an enhanced compressor |
US10669940B2 (en) | 2016-09-19 | 2020-06-02 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and turbine drive |
SG11201906786YA (en) | 2017-02-24 | 2019-09-27 | Exxonmobil Upstream Res Co | Method of purging a dual purpose lng/lin storage tank |
AU2018270432A1 (en) | 2017-05-16 | 2019-11-28 | Exxonmobil Upstream Research Company | Method and System for Efficient Nonsynchronous LNG Production using Large Scale Multi-Shaft Gas Turbines |
WO2019040154A1 (en) * | 2017-08-24 | 2019-02-28 | Exxonmobil Upstream Research Company | METHOD AND SYSTEM FOR GENERATING LNG USING STANDARD MULTI-SHAFT GAS TURBINES, COMPRESSORS AND REFRIGERANT SYSTEMS |
CN107979226A (zh) * | 2017-12-28 | 2018-05-01 | 广东欧珀移动通信有限公司 | 一种多输出驱动装置以及电子设备 |
EP3803241B1 (en) | 2018-06-07 | 2022-09-28 | ExxonMobil Upstream Research Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
CA3109351C (en) | 2018-08-14 | 2023-10-10 | Exxonmobil Upstream Research Company | Conserving mixed refrigerant in natural gas liquefaction facilities |
EP3841342A1 (en) | 2018-08-22 | 2021-06-30 | ExxonMobil Upstream Research Company | Managing make-up gas composition variation for a high pressure expander process |
US11635252B2 (en) | 2018-08-22 | 2023-04-25 | ExxonMobil Technology and Engineering Company | Primary loop start-up method for a high pressure expander process |
SG11202101058QA (en) | 2018-08-22 | 2021-03-30 | Exxonmobil Upstream Res Co | Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same |
US11215410B2 (en) | 2018-11-20 | 2022-01-04 | Exxonmobil Upstream Research Company | Methods and apparatus for improving multi-plate scraped heat exchangers |
US11578545B2 (en) | 2018-11-20 | 2023-02-14 | Exxonmobil Upstream Research Company | Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers |
EP3918261A1 (en) | 2019-01-30 | 2021-12-08 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Methods for removal of moisture from lng refrigerant |
US11668524B2 (en) | 2019-01-30 | 2023-06-06 | Exxonmobil Upstream Research Company | Methods for removal of moisture from LNG refrigerant |
FR3097012B1 (fr) * | 2019-06-06 | 2022-01-21 | Safran Aircraft Engines | Procédé de régulation d’une accélération d’une turbomachine |
US11465093B2 (en) | 2019-08-19 | 2022-10-11 | Exxonmobil Upstream Research Company | Compliant composite heat exchangers |
US20210063083A1 (en) | 2019-08-29 | 2021-03-04 | Exxonmobil Upstream Research Company | Liquefaction of Production Gas |
EP4031822A1 (en) | 2019-09-19 | 2022-07-27 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
JP7326484B2 (ja) | 2019-09-19 | 2023-08-15 | エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー | 高圧圧縮及び膨張による天然ガスの前処理及び予冷 |
JP7326485B2 (ja) | 2019-09-19 | 2023-08-15 | エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー | 高圧圧縮及び膨張による天然ガスの前処理、予冷及び凝縮物回収 |
WO2021055074A1 (en) | 2019-09-20 | 2021-03-25 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with o2 enrichment for acid gas capture and sequestration |
WO2021061253A1 (en) | 2019-09-24 | 2021-04-01 | Exxonmobil Upstream Research Company | Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for lng and liquid nitrogen |
GB201915308D0 (en) * | 2019-10-23 | 2019-12-04 | Rolls Royce Plc | Turboshaft |
GB201915310D0 (en) * | 2019-10-23 | 2019-12-04 | Rolls Royce Plc | Turboelectric generator system |
FR3104542B1 (fr) * | 2019-12-13 | 2021-12-03 | Safran Power Units | Groupe auxiliaire de puissance comprenant un générateur de gaz à entrainement direct avec un générateur électrique et un boîtier d’accessoires |
CN115461531A (zh) * | 2020-05-04 | 2022-12-09 | 诺沃皮尼奥内技术股份有限公司 | 机械驱动应用中的气体涡轮及其操作方法 |
IT202100028562A1 (it) * | 2021-11-10 | 2023-05-10 | Nuovo Pignone Tecnologie Srl | Power Plant for Controlling the Renewable Energy Use in an LNG Train |
IT202100028559A1 (it) * | 2021-11-10 | 2023-05-10 | Nuovo Pignone Tecnologie Srl | Method of Controlling the Renewable Energy Use in an LNG Train |
US11619140B1 (en) * | 2022-04-08 | 2023-04-04 | Sapphire Technologies, Inc. | Producing power with turboexpander generators based on specified output conditions |
US12104493B2 (en) | 2022-04-08 | 2024-10-01 | Sapphire Technologies, Inc. | Producing power with turboexpander generators based on specified output conditions |
US12286953B2 (en) | 2022-07-25 | 2025-04-29 | Sapphire Technologies, Inc. | Energy recovery from a gas well |
US12258887B2 (en) | 2022-07-25 | 2025-03-25 | Sapphire Technologies, Inc. | Cooling gas recovered from a well |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014020104A1 (en) * | 2012-08-03 | 2014-02-06 | Nuovo Pignone Srl | Dual-end drive gas turbine |
WO2014072433A1 (en) * | 2012-11-08 | 2014-05-15 | Nuovo Pignone Srl | Gas turbine in mechanical drive applications and operating methods |
WO2014102127A1 (en) * | 2012-12-24 | 2014-07-03 | Nuovo Pignone Srl | Gas turbines in mechanical drive applications and operating methods |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2608822A (en) * | 1944-10-07 | 1952-09-02 | Turbolectric Corp | Method of operation and regulation of thermal power plants |
US3418806A (en) * | 1966-11-14 | 1968-12-31 | Westinghouse Electric Corp | Elastic fluid turbine apparatus |
US4117343A (en) * | 1973-11-08 | 1978-09-26 | Brown Boveri-Sulzer Turbomaschinen Ag. | Turbo-machine plant having optional operating modes |
US4347706A (en) * | 1981-01-07 | 1982-09-07 | The United States Of America As Represented By The United States Department Of Energy | Electric power generating plant having direct coupled steam and compressed air cycles |
US5058373A (en) * | 1989-01-26 | 1991-10-22 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5199256A (en) * | 1989-01-26 | 1993-04-06 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5069030A (en) * | 1989-01-26 | 1991-12-03 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5099643A (en) * | 1989-01-26 | 1992-03-31 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US6750557B2 (en) | 2001-09-06 | 2004-06-15 | Energy Transfer Group, L.L.C. | Redundant prime mover system |
US7526926B2 (en) | 2003-11-06 | 2009-05-05 | Exxonmobil Upstream Research Company | Method for efficient nonsynchronous LNG production |
US7188475B2 (en) * | 2003-12-18 | 2007-03-13 | Honeywell International, Inc. | Starting and controlling speed of a two spool gas turbine engine |
US7513120B2 (en) | 2005-04-08 | 2009-04-07 | United Technologies Corporation | Electrically coupled supercharger for a gas turbine engine |
US7726114B2 (en) | 2005-12-07 | 2010-06-01 | General Electric Company | Integrated combustor-heat exchanger and systems for power generation using the same |
EP2119891B1 (en) * | 2008-05-15 | 2023-09-13 | Mitsubishi Heavy Industries, Ltd. | Control of working fluid flow of a two-shaft gas turbine |
US8049353B1 (en) * | 2008-06-13 | 2011-11-01 | Florida Turbine Technologies, Inc. | Stackable generator arrangement |
JP4726930B2 (ja) * | 2008-07-10 | 2011-07-20 | 株式会社日立製作所 | 2軸式ガスタービン |
US20100150713A1 (en) | 2008-12-13 | 2010-06-17 | Branko Stankovic | Rotating-Plate Radial Turbine in Gas-Turbine-Cycle Configurations |
JP2010168957A (ja) * | 2009-01-21 | 2010-08-05 | Hitachi Ltd | 2軸式ガスタービンと、2軸式ガスタービン用の燃焼器の予混合燃焼開始方法 |
US8468835B2 (en) | 2009-03-27 | 2013-06-25 | Solar Turbines Inc. | Hybrid gas turbine engine—electric motor/generator drive system |
US8164208B2 (en) | 2009-04-15 | 2012-04-24 | General Electric Company | Systems involving multi-spool generators and variable speed electrical generators |
WO2011094414A2 (en) | 2010-01-27 | 2011-08-04 | Dresser-Rand Company | Advanced topologies for offshore power systems |
EP2395205A1 (en) * | 2010-06-10 | 2011-12-14 | Alstom Technology Ltd | Power Plant with CO2 Capture and Compression |
ITCO20110031A1 (it) | 2011-07-28 | 2013-01-29 | Nuovo Pignone Spa | Treno di turbocompressori con supporti rotanti e metodo |
JP5639568B2 (ja) * | 2011-11-15 | 2014-12-10 | 三菱日立パワーシステムズ株式会社 | 2軸式ガスタービン |
ITFI20130130A1 (it) * | 2013-05-31 | 2014-12-01 | Nuovo Pignone Srl | "gas turbines in mechanical drive applications and operating methods" |
US10006315B2 (en) * | 2014-03-28 | 2018-06-26 | General Electric Company | System and method for improved control of a combined cycle power plant |
RU2731144C2 (ru) * | 2015-04-24 | 2020-08-31 | Нуово Пиньоне Текнолоджи Срл | Компрессор с приводом от установки для утилизации тепла с органическим циклом Ренкина и способ регулирования |
US20170248036A1 (en) * | 2016-02-29 | 2017-08-31 | General Electric Company | System and method for managing heat recovery steam generator inlet temperature |
US10731568B2 (en) * | 2016-11-23 | 2020-08-04 | General Electric Company | Systems and methods for reducing airflow imbalances in turbines |
US10437241B2 (en) * | 2016-12-16 | 2019-10-08 | General Electric Company | Systems and methods for generating maintenance packages |
US10704427B2 (en) * | 2017-01-04 | 2020-07-07 | General Electric Company | Method to diagnose power plant degradation using efficiency models |
US10697318B2 (en) * | 2017-01-12 | 2020-06-30 | General Electric Company | Efficiency maps for tracking component degradation |
US11181041B2 (en) * | 2017-02-02 | 2021-11-23 | General Electric Company | Heat recovery steam generator with electrical heater system and method |
US20180340473A1 (en) * | 2017-05-19 | 2018-11-29 | General Electric Company | Combined cycle power plant system arrangements |
US10823016B2 (en) * | 2017-06-02 | 2020-11-03 | General Electric Company | System and method for risk categorization |
-
2015
- 2015-10-20 IT ITUB2015A005049A patent/ITUB20155049A1/it unknown
-
2016
- 2016-10-17 RU RU2018113492A patent/RU2718735C2/ru active
- 2016-10-17 US US15/768,187 patent/US10815882B2/en active Active
- 2016-10-17 WO PCT/EP2016/074836 patent/WO2017067871A1/en active Application Filing
-
2018
- 2018-04-15 SA SA518391367A patent/SA518391367B1/ar unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014020104A1 (en) * | 2012-08-03 | 2014-02-06 | Nuovo Pignone Srl | Dual-end drive gas turbine |
WO2014072433A1 (en) * | 2012-11-08 | 2014-05-15 | Nuovo Pignone Srl | Gas turbine in mechanical drive applications and operating methods |
WO2014102127A1 (en) * | 2012-12-24 | 2014-07-03 | Nuovo Pignone Srl | Gas turbines in mechanical drive applications and operating methods |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113513375A (zh) * | 2020-04-09 | 2021-10-19 | 通用电气公司 | 用于改装发电系统以结合无离合器同步冷凝的系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180306109A1 (en) | 2018-10-25 |
WO2017067871A1 (en) | 2017-04-27 |
SA518391367B1 (ar) | 2021-09-04 |
RU2018113492A3 (it) | 2020-01-24 |
RU2018113492A (ru) | 2019-11-21 |
RU2718735C2 (ru) | 2020-04-14 |
US10815882B2 (en) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ITUB20155049A1 (it) | Treno integrato di generazione di potenza e compressione, e metodo | |
IT201700008681A1 (it) | Sistema di turbina a gas | |
US8461704B2 (en) | Gas turbine engine apparatus | |
EP2935802B1 (en) | Drive system and method for driving a load with a gas turbine | |
US8978352B2 (en) | Apparatus and method for operating a gas turbine engine during windmilling | |
EP4095369B1 (en) | Dual cycle intercooled hydrogen engine architecture | |
US20120047906A1 (en) | Combustion turbine cooling media supply method | |
AU2013273476B2 (en) | Combination of two gas turbines to drive a load | |
ITFI20120245A1 (it) | "gas turbine in mechanical drive applications and operating methods" | |
US7681402B2 (en) | Aeroengine oil tank fire protection system | |
CN105579690A (zh) | 机械驱动应用中的燃气轮机和操作方法 | |
ITFI20110269A1 (it) | "turning gear for gas turbine arrangements" | |
US20230250754A1 (en) | Multiple turboexpander system having selective coupler | |
US20210080172A1 (en) | Compressor train arrangements | |
US11761378B2 (en) | Bleed air charged cooling system with turbo-generator | |
US20200400036A1 (en) | Gas turbine engine system | |
EP4303416A1 (en) | Turbo expanders for turbine engines having hydrogen fuel systems | |
US12228077B2 (en) | Fuel system including driving turbine | |
RU2334892C1 (ru) | Турбовинтовой газотурбинный двигатель | |
Turner et al. | Development of a novel gas turbine driven centrifugal compressor | |
RU2424438C1 (ru) | Турбовинтовой газотурбинный двигатель с ядерной силовой установкой | |
OA17439A (en) | Gas turbines in mechanical drive applications and operating methods. |