EP1121974A1 - Mischverfahren und -vorrichtung - Google Patents
Mischverfahren und -vorrichtung Download PDFInfo
- Publication number
- EP1121974A1 EP1121974A1 EP00114789A EP00114789A EP1121974A1 EP 1121974 A1 EP1121974 A1 EP 1121974A1 EP 00114789 A EP00114789 A EP 00114789A EP 00114789 A EP00114789 A EP 00114789A EP 1121974 A1 EP1121974 A1 EP 1121974A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- stream
- premixing chamber
- reagent
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000002156 mixing Methods 0.000 title claims abstract description 33
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 62
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 239000000126 substance Substances 0.000 claims abstract description 23
- 239000000839 emulsion Substances 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 239000006185 dispersion Substances 0.000 claims abstract description 12
- 239000000047 product Substances 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 31
- 230000003068 static effect Effects 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 7
- 230000010349 pulsation Effects 0.000 claims description 7
- 235000011837 pasties Nutrition 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 238000010008 shearing Methods 0.000 abstract 2
- 239000001993 wax Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000002245 particle Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000118 hair dye Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 230000037308 hair color Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000005070 ripening Effects 0.000 description 3
- 229930003427 Vitamin E Natural products 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- KIZFHUJKFSNWKO-UHFFFAOYSA-M calcium monohydroxide Chemical compound [Ca]O KIZFHUJKFSNWKO-UHFFFAOYSA-M 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 239000003130 blood coagulation factor inhibitor Substances 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000008268 mayonnaise Substances 0.000 description 1
- 235000010746 mayonnaise Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/95—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with stirrers having planetary motion, i.e. rotating about their own axis and about a sun axis
- B01F27/951—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with stirrers having planetary motion, i.e. rotating about their own axis and about a sun axis with at least one stirrer mounted on the sun axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
Definitions
- the invention relates to a method and an apparatus for mixing flowable substances, in particular by dispersing and emulsifying, according to the Preamble of claim 1 or claim 9 and claim 16.
- Process engineering is generally used to produce desired end products from a recipe-based ratio. For example, for mixing pasty masses and emulsions, especially with droplet sizes in the ⁇ m range, it can be advantageous if two or more reagents are used in the agitator Process in other proportions can be brought together to the creation of the desired product in terms of mixing time, total amount and optimize temperature. Especially when a large amount of a first Reagent is to be combined with a smaller amount of a second reagent, thermodynamic and flow processes can lead to a different procedure make it useful or even necessary.
- the object of the present invention is to provide an agitator in an economical manner to achieve optimal mixing of such reagents, at least initially have to be at different temperatures, or at all have different temperature behavior.
- Operational Permanently reliable means of production should be as simple as possible in the construction, Can be manufactured and assembled with minimal effort and can be used conveniently and trouble-free be, without sacrificing product quality. With regard to environmental protection how to save costs, energy consumption must be minimized, both in Batch operation as well as generally in a continuous process.
- the invention relates to a two-stage dispersion process in which one from a main stream of a reagent I coming from a container Branches off and this a second partial stream (side stream) of a mixture with a reagent II, which is generated in a premixing chamber, whereupon the mixture of the two partial streams by a rotatingly driven disperser in the rest of the main stream.
- This process is extremely economical and highly effective. Small partial flows can be easily and with very little Adjust the inertia as required, easiest using a dosing pump.
- the Partial flow technology also has the advantage that the concentration of the Addition reagent must only have the quantitative ratio related to the partial flow. This also applies to the otherwise often difficult phase emulsion emulsification in the Hot / cold process.
- cyclical pressure differences support such a disperser the rapid and even distribution of the reagents by phasing high pressure each reagent I is conveyed into the premixing chamber, which in each subsequent phases of lower pressure with the reagent II with swirling in the antechamber dispersed evenly under pulsation.
- the mixing therefore goes procedurally optimal in front of you, regardless of those to be set for the end product Quantitative ratios. Thanks to the extremely short residence time, it takes place in the premixing chamber from e.g. only 5 ms only a minimal heat exchange takes place, so that a hot reagent II cools very little while it reagent I is mixed thoroughly.
- An important feature of the invention according to claim 4 is that main stream and partial flows receive different energy densities, resulting in optimal dispersion and emulsion formation with the smallest possible particle or droplet sizes contributes significantly.
- the mixture of the partial streams in the premixing chamber an energy density that is significantly - e.g. by at least one Magnitude - is higher than the energy density in the main stream.
- the energy density and residence time in the partial flow i.e. the volume and time-related energy input is changeable, in particular by setting such that one leading to an emulsion envelope critical energy density is not achieved, for example for the production of Mayonnaise, dressing sauces, etc. is very important.
- the mixture (R I + II) in terms of temperature and ratio adjusted without being exposed to significant shear stress, what an area of maximum shear given by the rotor / stator system connects, especially on the long tooth edge of the rotor.
- the adjusted partial flow process This design goes far beyond conventional technology. It can be further developed according to claim 8 that a from the reagents Mixed phases due to different speeds and different static Pressures are generated in the premixing chamber, with a phase I directly in the latter is promoted and a phase II by pulsation due to cyclical pressure differences reaches the premixing chamber via inlet channels.
- the invention looks for the independent Claim 9 a two-stage generation and mixing of defined partial flows, in a first process step from a reagent or wax solution Intermediate product generated and this in a second process step to the carrier substance stream will be added.
- wax is part of the present Invention for all substances that are solid at room temperature and at elevated temperature are liquid or flowable, e.g. also fats, paraffins, esters and the like.
- the new procedure is that the carrier is not Wax melting temperature must be brought, but keep room temperature can.
- the resulting product still has a very high degree of homogeneity because can control the droplet size by adjusting the energy density according to the product; it therefore fulfills all quality requirements.
- the measure of claim 11, according to which the method is self-metering, is very advantageous is designed by the hot supplied below the rotor / stator arrangement Partial reagent stream (side stream) in a premixing chamber with a first one Partial stream of the carrier substance dispersed and the resulting precursor over a Recycle diluted with the main stream flowing in from above and into one Final stream is mixed. It is advantageous if in accordance with claim 12 In the premixing chamber an inverted drum is created, the negative pressure of which is Dosage of the partial reagent stream or side stream contributes.
- the mixing of partial and main stream can according to claim 13 by control of the static pressures are supported, in particular in the second partial flow static pressure is generated that exceeds that of the main flow. That leaves achieve surprisingly well that the premixing chamber the lower and assigned radially outer parts of the rotor and the preliminary product from there initially is diverted to the outside before being accelerated at the top of the stator and the main stream flowing radially further inside. Poses the pressure in the main room one expediently by dimensioning and choosing the ratio of the inlet / outlet cross sections on.
- the present process separates mixing and shear in terms of time and location. Thanks to the introduction into the premixing chamber, an optimal emulsion can be created be by presenting a homogeneous phase mixture. In contrast in known dispersing devices, a considerable part of the highest range Shear used for mixing.
- the one that has passed through the rotor / stator system Product can be used as an exit stream according to claim 14 in another Convey containers in which the product is kept homogeneous, e.g. by means of a slow-speed agitator. This saves energy and continues the Oswald ripening opposite.
- the invention further relates to a device for homogenizing Fabrics, e.g. B. pasty masses, and / or to produce emulsions with droplet sizes in the ⁇ m range and with a disperser on or in a container has at least one rotor-stator system near the bottom of the container, with one Product inflow at the top and optionally with at least one in it arranged in the upper area, especially for carrying out the method according to one of the preceding claims.
- a feed for particularly hot reagent into a premixing chamber below the rotor which have an outlet duct with a main space at the bottom of the Rotor / stator arrangement is fluidly connected.
- the premixing chamber is in the outer region of the rotor its underside and the limiting housing side arranged or formed, specifically such that it extends from the center of the underside of the rotor to a premixing chamber outlet enough. With minimal space requirement, this prechamber is on top of this Optimally housed on the rotor / stator system.
- the outer Stator ring according to claim 18 stator teeth projecting downward from the main space have, which overlap the rotor circumference with a minimum distance and the bottom flange, which is centrally opposite the bottom of the rotor pass. This formation causes the generation of an increased static pressure in the premixing chamber or at least contributes to it. The latter thereby becomes a limited small volume, in which an intensive predispersion - for example of supplied Hot reagent - without annoying cooling.
- a feed line opens into a e.g. oblique Inlet duct, which is integrated into the bottom flange as a parallel radial duct, namely opposite the outer rotor underside.
- a feed line opens into a e.g. oblique Inlet duct, which is integrated into the bottom flange as a parallel radial duct, namely opposite the outer rotor underside.
- a very intensive radial delivery of the medium is achieved if in line with Claim 20 on the rotor underside a deflecting body from one to the area of Antechamber-reaching flat cone with at least one cone-shaped or concave Outer surface is formed with a steeper cone or center angle, the transition between adjacent deflection surfaces preferably designed as a sharp tear-off edge is to create an additional swirl. So at least two conical and / or curved surfaces adjoining each other at an obtuse angle form a step surface enclose the rotor hub peripherally and angles that become steeper towards the outside to have. These deflection surfaces guide the partial flow particularly effectively into the main room about.
- the powerful centrifugal flow on the outer stator ring therefore already has one Axially parallel component, which makes the partial flow entry into the main room highly effective supported.
- a preferred design has a stator with a hood, which delimits a deflection chamber outside the outer stator ring, which is close the bottom flange is provided with outlet openings distributed over the circumference, the conveying member being formed directly above the center of the hood Inlet sits near the rotor.
- Dispersers are typically manufactured with very tight tolerances and assembled precisely. Considering the small minimum distances in the axially adjustable rotor / Stator system, which can be up to 0.1 mm, is according to claim 22 as a hollow shaft motor trained drive extremely useful, that on the bottom flange and is mounted on a rectangular support flange. So that in the hollow shaft The non-positively inserted drive shaft remains dimensionally stable during operation Rotor shaft preferred through stops and disc springs within a mechanical seal axially supported so that an elongation of the hollow shaft and thus the Drive shaft is only possible in the direction away from the base flange. This will be on Surprisingly simple way reliably compensates for heat effects from the engine underneath.
- the pressure distribution is in order to set a pulsation effect Disperser controllable on the outlet side, preferably by choosing the flow path and the flow path or the wrap angle in the outlet channel behind the Outlet connection or by the area dimensioning and the arrangement of the outlet openings, so that an adaptation to special operating conditions on relatively simple Way can be made.
- an attachment which can be flanged onto the container bottom has a the feed pipe enclosing the conveying element, which makes the medium particularly powerful is sucked in.
- a line leads from an outlet connection, which e.g. via a valve is switchable and returns to or in the upper part of the container, if desired with such a tangent angle that a product rotation generated by the stirring or conveying element is braked.
- an outlet connection which e.g. via a valve is switchable and returns to or in the upper part of the container, if desired with such a tangent angle that a product rotation generated by the stirring or conveying element is braked.
- the return line can at least partially outside of the Container, which in a laboratory version e.g. 16 l and industrial e.g. Hold 10,000 I. can be installed and tempered as required. With high dispersion rates, around 30 to 50 kW, is the new possibility of external cooling of great advantage.
- a further reduction in droplet sizes is achieved according to claim 26 by that one or both stages of the disperser can be subjected to ultrasound are for which the rotor forms an intermittent reflector.
- the one next to the stator teeth rotating rotor teeth cause an intermittent-continuous Uniformity in the product.
- claim 27 is significant, according to which the passage volume in Area of the premixing chamber or its volume itself adjustable or changeable is, especially by changing the rotor shape and / or the stator shape with unchanged Shear edge length. If you change the stator openings in the second stage (at otherwise the same device), the shear gradient and thus the volume-related Energy is affected while the shear edge delimits the premixing chamber Stator teeth remain the same. In order to influence the partial current energy density and the length of stay can, conversely, according to claim 28, the shear edge length with unchanged Premixing chamber volume can be adjusted or changed. With relatively simple equipment Means can be an optimal adaptation of the procedure to the achieve the respective mixing task.
- the device can be designed according to Claim 29 be designed as a separately attachable predispersion stage, especially for economical Retrofitting existing homogenizing or dispersing systems.
- Such separate dispersing device is continuously only with that part R I "of Main stream charged, the reagent R II in the in the premixing chamber Total current R I is metered in an appropriate amount, whereby one Excess concentration of R II in the outlet stream of the dispersing device has been reached.
- the An over-concentrated mixture can be created by a considerably smaller high-pressure homogenizer processed and then with the remaining reagent stream R I ' to be mixed.
- Fig. 1 shows a schematic overview of a mixing plant that a container F with built-in agitator R and with a bar stirrer that can be driven in opposite directions W has an inlet pipe 19 at the lower end.
- This stands on a floor flange 14 (FIG. 5) opposite, with which a pipe socket 16 of a disperser 10 on Housing 12 of a container F is attached, for which FIGS. 5 and 6 different Offer examples.
- a feed line 30 with connection 32 opens out with an inlet 38 (Fig. 3) on the bottom flange 14.
- the disperser 10 is by a return or Recirculation line Z connected to the upper part of the container F, in the Cover a lockable printing system with spray heads that protrudes for periodic Cleaning is provided.
- the disperser can also be designed 5 can be used without a recirculation line.
- Container F holds a carrier substance (reagent I) according to the recipe ready.
- a storage container (also not shown) provides an addition means (Reagent II); according to claim 10, this can be a hot wax.
- the display case is via a metering device with the inlet 30 to a premixing chamber 60 connected to the dispersing device 10.
- reagent I flows through the dispersing device 10 and via the recirculation line Z (or directly) back into the container F. Die Dosing device on the storage container is switched on, so that reagent II as Partial stream R II enters the premixing chamber 60 of the disperser 10 and settles therein mixed with the partial flow R I 'of reagent I in an extremely short time.
- the components (R I + R II) are intimately dispersed in the premixing chamber 60, depending on the process conditions selected, a fine to very fine distribution results.
- the resulting partial flow R I + II combines and mixes due to the static pressure differences and the geometry of the premixing chamber 60 with the rest Main stream R I "of reagent I of the dispersing device 10.
- This product III consisting of reagent I enriched with reagent II, the final stream E in returned the container F. It is often the finished product. Its round about the dispersing device 10 are continued until the product III Recipe concentration of Reagent II in Reagent I has. Usually adding one Emulsifier not necessary or only necessary in small doses. - By the way, have attempts show that other formulation-bound substances are also processed in smaller quantities can be.
- FIGS. 5 and 6 show details of the mixing area and the pre-chamber 60, which in connection with the following explanation of the basic structure based on the Examples of FIGS. 5 and 6 will become clear.
- a rotor shaft 24 passes through an inlet pipe 19. It has a recess at the lower end 27, with which it is connected to the shaft 22 (FIG. 10a, 10b) a drive motor 20 fastened to a support flange 18 is connected.
- a drive motor 20 fastened to a support flange 18 is connected.
- 5 and 6 are dashed lines in outline of the - which is quite heavy at high power - Motor 20 indicated, also (right) a side terminal box for (not shown) electrical connections.
- the motor shaft 22 is second at the upper end Bearing a cone bearing 23 for stabilizing the rotor shaft 24, which is via disc springs 13 with a fixed bearing on the bottom flange 14 and with a loose bearing on Support flange 18 which supports the pipe socket 16 and additionally by spacers 28 is supported on the bottom flange 14.
- the container is sealed by means of a mechanical seal 26.
- the rotor shaft 24 carries the hub 51 of a rotor 50 and is at the free end above it with a stirring shaft 43 rotatably connected, the stirring element 44 in the form of a Propellers.
- the bottom of the rotor 50 is the bottom flange 14 directly across from.
- an inlet channel 38 - in particular at an angle - is arranged in the a feed line 30 opens, which preferably in the flange 14 parallel to the floor is integrated, for example in the radial direction. However, it can also formed as an outer tube and obliquely to the mouth of the inlet channel 38 be introduced.
- a shut-off device 34 e.g. a rotary valve or a valve that is equipped with a - optionally also arranged differently - Lever 36 is operated.
- the bottom flange 14 is integrally or rigidly connected to a stator 40, which overlaps the rotor 50 from above and has a suction opening 45, below which there is a main space 15 is located, which is from the top or top surface 53 of the rotor 50 is capped.
- the stator 40 and the rotor 50 each have axially parallel Sprockets that are nested with the least radial play. So he owns Stator 40 an inner stator ring 41 with inner stator teeth 46 and an outer Stator ring 42 with outer stator teeth 48.
- the rotor is located radially further inside inner lugs or teeth 63 and with outer lugs or teeth 65 provided, between which there are radial passages 66 (Fig. 11a).
- His hub has 51 a central bore 52 and a flat end face 54, to which a stepped step surface 55 can connect parallel to the top surface 53.
- the step surface 55 goes in a flat cone 56, of which a concave on a sharp tear-off edge 57 Outer surface 58 comes off, which at a steeper angle on the peripheral edge 59 near or on the top surface 53 runs out.
- the rotor 50 which is its largest here Diameter and on the circumference a number, preferably concavely curved or has curved outlet channels 68, from the outer stator teeth 48 with a minimum gap overlapped (see FIGS. 3 and 4).
- the premixing chamber 60 arranged, which for the mixing and dispersing of central Meaning is.
- this becomes from the feeder 30 Coming hot reagent II after deflection on the flat cone, which acts as a baffle 56 with the medium I already present in the main room 15 to form a mixture swirled.
- FIG. 6 is basically constructed in the same way, which is why corresponding Components are identified with the reference numbers already mentioned.
- the stator 40 is not designed as a hood, but as a cover plate, which is aligned with the central one Provided suction opening 45 and rigidly connected to a cylindrical housing 70 is that also rigidly attached bottom flange 14 closes below.
- the preferably inclined inlet 38 is in turn with the connection 32 through a parallel to the floor Radial channel in the flange 14 formed feed 30 connected to save space.
- the housing 70 has a connection piece 69 (FIGS. 6 and 7b) a connection 72 for a (not shown here) return line to the top of the Container F.
- the stator plate 40 carries an attachment 17, which is attached to it with a fastening flange 71 is mountable and surrounds the stirring element 44 in an inlet pipe 19 (FIG. 7a). That with the inlet pipe 19 welded to the flange 71 is rigid with an upper flange 29 connected, onto which a flange ring 39 - shown separately in FIG. 7a - can be placed is the one on the housing 12 or on a flange attachment connected to it can screw.
- a particular problem is that for the development of new recipes first, of course, in smaller laboratory facilities e.g. 3 ... 16 I content with dispersers correspondingly low power (for example 1.5 ... 5.5 kW) is worked.
- the Implementation on an industrial scale makes conventionally large and time consuming Trouble because of the different thermal conditions and different Ratios of surfaces to volumes transition to large volumes of e.g. Design 500 ... 5000 I quite complicated, especially if a translation factor of 300 is exceeded.
- Many recipes are made by mixing the hot Wax additive with the comparatively cold carrier substance significantly influenced. The process takes place here in the predispersion room, the volume of which is mainly depends on the rotor diameter, which in turn is the 5th power consumption of the rotor.
- Example of use A fatty acid-lime milk mixture
- fatty acid as reagent II is metered into the pre-chamber 60.
- the in Solution of the CaOH complex of the partial stream R I 'from reagent I milk of lime
- the CaOH in suspension again reaches the saturation concentration.
- the Extremely disruptive formation of lime-fatty acid agglomerates is caused by the partial flow process successfully avoided.
- Example of use B Flocculant addition in water treatment
- flocculants and Coagulation inhibitors e.g. aluminum sulfate
- Add the flocculant or anticoagulant using the partial flow method The recirculation line Z leads directly back into the processing basin of the total water volume. So the addition takes place there in the considerably more favorable mixing ratio from 1:10 to 1: 100.
- the extremely short residence time of the flocculants in the shear area the dispersing device prevents destruction of the molecular chains of the Flocculant.
- a larger gap between the rotor and stator can be advantageous.
- the quantitative ratio of reagent I and Reagent II can be set exactly to each other and so that the cooling of the recirculation line Z corresponds to the heat quantity of the heat of reaction.
- the speed of the disperser motor should e.g. by specifying frequency and / or constant output current. So the energy brought in simply kept constant even when the viscosity fluctuates during the process become.
- the spout When emulsions or viscous products are made, the spout is run the recirculation expediently below the liquid level in the container in order to To prevent air entry.
- the unit should have an external recirculation line (Z), which can be heated and / or cooled as required.
- Interposing a high-pressure homogenizer is also a two-stage individual dispersing device 10 possible, provided only a suitable partial flow connection is available.
- the ingredients of the hot phase - among them beeswax - are in a container melted and brought to 80 ... 85 ° C.
- the amount is for 2000 kg of end product around 600 kg.
- the hot phase is then added via the connection 30, 32, which leads directly into the premixing chamber 60.
- the disperser 10 runs at about 3000 min -1 .
- the motor current must be kept constant at, for example, 40 A, which, with variable viscosities, does cause changes in speed, but causes constant energy input.
- the mixture is then stirred for a further 5 minutes, with the disperser 10 switched off and with the switch on 10.
- the energy balance is as follows: Heating of both product phases to 80 ... 85 ° C 116 kWh Dispersing operation for 0.5 h 15.5 kWh 2.5 h slow running of the agitator 13 kWh Cool to 35 ° C at least 116 kWh Total consumption 260.5 kWh.
- the process sequence according to the invention is a in this example Energy savings of around 210 kWh and additionally due to the short Production time more than tripled production capacity.
- a hair dye base is made, which is for all colors of the same type are the same and determine the total amount of water required. Then you make the actual hair dye by incorporating the desired coloring substances in a reduced amount of the hair color base forth.
- Part of the color base material is then transferred to a smaller plant, e.g. 250 I. pumped around, equipped with a dispersing device 10 including premixing chamber 60 is. Via the connection P4, the agents supplying the color are transferred to the Partial stream R II added.
- the amount of water is chosen so that under Consideration of the possibly smaller, entered in advance in the basic product Amount of water in the final product III is the recipe-based ratio for the selected one Hue is given.
- the hot / cold partial flow process can work well in Cases are used where Reagent II is not rigid at room temperature, but has a desirably low viscosity when hot, so that incorporation in reagent I at a high energy level, for example when it comes to highly concentrated surfactants or vitamin E products. Thanks to the high concentration Industry-standard cold / cold approaches can also be used in the feed stream R II be driven very economically.
- a preferred procedure for homogenizing Fabrics e.g. pasty masses, and / or for the production of emulsions with droplet sizes a disperser 10 arranged on a container F in the ⁇ m range with a ground-level rotor / stator system 40, 50 and possibly with conveying elements 44 used.
- a reagent or Wax solution produced e.g. hot intermediate product in the form of a side stream R II a metered partial flow e.g. cold carrier R I 'dispersed and in a second stage with a main stream R I "flowing in from above.
- the cooling of the wax particles taking place in the 10 ms range i.e.
- a stable mixture or emulsion is created with low, by controlling the energy input to the rotor / stator system 40, 50 droplet sizes adjustable according to the product.
- the rotor bottom is a premixing chamber 60 assigned, in which the secondary flow R II with that from above / outside supplied partial stream R I 'is swirled.
- the high speed of the rotor 50 produces one inverted trombone, the negative pressure for self-dosing of the secondary flow R II contributes.
- the wax-containing mixture R I + II from the pre-chamber 60 is diverted to the outside before being accelerated at the top of the stator and supplies the internal main flow R I ", its static pressure is exceeded.
- Man can mix powder components from above.
- a partial flow feed 30, 38 opens below the rotor 50, preferably near its outer area, into the pre-chamber 60, which is delimited by an outer stator ring 42 and via an outlet channel 68 in a main room 59 on the underside of the rotor / stator system 40, 50 leads.
- the outer stator teeth 48 protrude up to a bottom flange 14, the bottom of the rotor with a flat cone (56), a tear-off edge (57) and a steeper outer surface (58) faces.
- a stirrer 44 can be located directly above the centric in the hood formed inlet 45 near the rotor 50 or in an inlet pipe 19th sit above the rotor / stator system 40, 50, of which an outlet connection 69 goes off.
- a lockable return line Z is at least partially outside of the container F can be installed and / or tempered.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Abstract
Description
- Fig. 1
- ein schematisierter Prozessbehälter in Axialschnittansicht mit einer angeflanschten Dispergiereinrichtung,
- Fig. 2
- ein Strömungs-Fließbild,
- Fig. 3
- eine Teil-Schnittansicht einer Rotor/Stator-Anordnung mit einer Vormischkammer,
- Fig. 4
- einen vergrößerten Ausschnitt entsprechend dem Bereich IV in Fig. 3,
- Fig. 5
- eine Axialschnittansicht eines Homogenisators mit schematisch angedeutetem Antrieb,
- Fig. 6
- eine Axialschnittansicht eines ähnlichen Homogenisators mit einem Aufsatz,
- Fig. 7a, 7b, 7c
- Axialschnittansichten verschieden ausgebildeter Teile eines Aufsatzes nach Fig. 6, teilweise in auseinandergezogener Darstellung (Fig. 7a),
- Fig. 8a, 8b
- je eine Draufsicht bzw. Seitenansicht, teilweise im Schnitt, von Statorringen,
- Fig. 9a, 9b
- je eine Draufsicht bzw. Seitenansicht, teilweise im Schnitt, von Statorringen,
- Fig. 10a, 10b
- Seitenansichten einer Antriebswelle sowie einer mit ihr kuppelbaren Rührwelle und
- Fig. 11a, 11b, 11c
- je eine Draufsicht bzw. Seitenansicht eines Rotors und eines Ansatzes.
25 min Lauf des 30-kW-Dispergierers inkl. Austrag, Stromverbrauch | 12,50 kWh |
40 min Langsamlauf des 5,5-kW-Rührwerks verbrauchen | 3,67 kWh |
Zum Aufheizen der heißen Phase benötigt man | 35,00 kWh |
Gesamt Energieverbrauch | 51,17 kWh. |
Aufheizen beider Produktphasen auf 80...85°C | 116 kWh |
Dispergierbetrieb während 0,5 h | 15,5 kWh |
2,5 h Langsamlauf des Rührwerks | 13 kWh |
Abkühlen auf 35 °C | mind. 116 kWh |
Gesamtverbrauch | 260,5 kWh. |
- A
- Anlage
- E
- Austrittsstrom
- F
- Behälter
- R
- Rührwerk
- W
- Balkenrührer
- Z
- Rückführung
- 10
- Dispergierer
- 12
- Gehäuse
- 13
- Tellerfedern
- 14
- Bodenflansch
- 15
- Hauptraum
- 16
- Rohrstutzen
- 17
- Aufsatz
- 18
- Tragflansch
- 19
- Einlaufrohr
- 20
- Antriebsmotor
- 21
- Motorflansch
- 22
- Motorwelle
- 23
- Konuslager
- 24
- Rotorwelle
- 25
- Kupplungsansatz
- 26
- Gleitringdichtung
- 27
- Ausnehmung
- 28
- Distanzbolzen
- 29
- oberer Flansch
- 30
- Zuführ(leit)ung
- 32
- Anschluß
- 34
- Absperrorgan
- 36
- (Bedienungs-)Hebel
- 38
- Einlaß(kanal)
- 39
- Flanschring
- 40
- Stator(haube/-platte)
- 41
- innerer Statorring
- 42
- äußerer Statorring
- 43
- Rührwelle
- 44
- Rührorgan / Propeller
- 45
- Ansaugöffnung
- 46
- innere Statorzähne
- 47
- Radialdurchlässe
- 48
- äußere Statorzähne
- 49
- Radialdurchlässe
- 50
- Rotor
- 51
- Nabe
- 52
- Zentralbohrung
- 53
- Oberseite / Deckfläche
- 54
- Naben-Stirnfläche
- 55
- Stufenfläche
- 56
- Flachkonus
- 57
- Übergang / Abreißkante
- 58
- Außenfläche
- 59
- Umfangskante
- 60
- Vor(misch)kammer
- 61
- Umlenkkammer
- 62
- Auslaß-Öffnungen (Fig. 5)
- 63
- innere Ansätze / Zähne
- 64
- Flügelfläche
- 65
- äußere Ansätze / Zähne
- 66
- Radialdurchlässe
- 67
- Schrägflächen
- 68
- Auslaßkanal
- 69
- Stutzen
- 70
- zylindrisches Gehäuse
- 71
- Befestigungsflansch
- 72
- (Anschluß für) Rückführung
Claims (29)
- Zweistufiges Dispergier-Verfahren, bei dem man von einem aus einem Behälter (F) kommenden Hauptstrom (R I) eines Reagenz I einen Teilstrom (R I') abzweigt und diesem einen zweiten Teilstrom (Nebenstrom R II) einer Mischung mit einem Reagenz II zuführt, die in einer Vormischkammer (60) eines Rotor/Stator-Systems (40, 50) erzeugt wird, worauf man das Gemisch der beiden Teilströme (R I+II) durch einen rotierend angetriebenen Dispergierer (10) in den restlichen Hauptstrom (R I") fördert.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Vermischung durch Pulsation in einem Ring- oder Auslaßkanal intensiviert, bevorzugt mit zyklischem Druck-Aufbau und -Abbau in der Vormischkammer (60).
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß in Phasen hohen Drucks Reagenz I in die Vormischkammer (60) gefördert wird und daß das Gemisch in Phasen niedrigen Drucks unter Verwirbelung mit dem Reagenz II gleichmäßig dispergiert wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Hauptstrom (R I) und die Teilströme (R I', R I", R II) unterschiedliche Energiedichten erhalten, wobei vorzugsweise dem Gemisch der Teilströme (R I+II) in der Vormischkammer (60) eine Energiedichte aufgeprägt wird, die erheblich - z.B. um wenigstens eine Größenordnung - höher ist als die Energiedichte im Hauptstrom (R I).
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Energiedichte und Verweildauer in dem bzw. jedem Teilstrom (R I', R I", R II) veränderbar ist, insbesondere durch solche Einstellung, daß eine zu einem Emulsions-Umschlag führende kritische Energiedichte nicht erreicht wird.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei Verwendung einer separaten Dispergiereinrichtung diese kontinuierlich nur mit demjenigen Teil (R I") des Hauptstromes (R I) beschickt wird, dem in der Vormischkammer (60) das Reagenz R II in der dem Gesamtstrom (R I) entsprechenden Menge dosiert zugeführt wird, wodurch man im Auslaßstrom der Dispergiereinrichtung (10) eine Überkonzentration von R II erreicht, worauf das überkonzentrierte Gemisch (R I+II) in einem klein dimensionierten Hochdruck-Homogenisator verarbeitet und mit dem verbleibenden Reagenz R I' nachvermischt wird.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in einem Vermischungsbereich (Vormischkammer 60) das Gemisch (R I+II) hinsichtlich Temperatur und Mengenverhältnis justiert wird, ohne wesentlicher Scherbeanspruchung ausgesetzt zu sein, und daß sich hieran ein durch das Rotor/Stator-System (40/50) gegebener Bereich höchster Scherung anschließt, insbesondere an der langen Zahnkante des Rotors (50).
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß aus den Reagenzien (R I, R II) ein Phasengemisch durch unterschiedliche Geschwindigkeiten und unterschiedliche statische Drücke in der Vormischkammer (60) erzeugt wird, wobei eine Phase I direkt in letztere gefördert wird und eine Phase II durch Pulsation infolge zyklischer Druckunterschiede über Einlaßkanäle in die Vormischkammer (60) gelangt.
- Verfahren zum Homogenisieren von Stoffen, z.B. pastösen Massen, und/oder zum Erzeugen von Emulsionen mit Tröpfchengrößen im µm-Bereich, unter Verwendung eines in oder an einem Behälter (F) angeordneten Dispergierers (10) mit wenigstens einem Rotor/Stator-System (40, 50), insbesondere nahe dem Behälterboden, und gegebenenfalls mit Förderorganen (R; 44) für einen Trägersubstanzstrom (R I), gekennzeichnet durch zweistufige Gestaltung des Verfahrens unter Erzeugung definierter Teilströme (R I', R I", R II) derart, daß in einem ersten Prozeßschritt aus einer Reagenz- oder Wachslösung ein Vorprodukt (R I+II) erzeugt und dieses in einem zweiten Prozeßschritt dem Trägersubstanzstrom (R I") hinzugefügt wird.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß ein heißer Reagenzstrom (Nebenstrom R II) im ersten Prozeßschritt in einer Vormischkammer (60) mit einem vom Hauptstrom (R I) der kalten Trägersubstanz dosiert abgezweigten Teilstrom (R I') vereinigt und dispergiert wird, worauf das Gemisch (R I+II) zur Erzeugung des Endprodukts (R III) im zweiten Prozeßschritt mit dem restlichen Teil (R I") des Trägersubstanz-Hauptstroms nachvermischt wird.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß es selbstdosierend gestaltet ist, indem der unterhalb des Rotor/Stator-Systems (40, 50) zugeführte Reagenz-Teilstrom (Nebenstrom R II) in der Vormischkammer (60) mit einem Teilstrom (R I') der Trägersubstanz dispergiert und das entstandene Vorprodukt (R I+II) über eine Rückführung (Z) mit dem von oben zufließenden Hauptstrom (R I) verdünnt und zu einem Endstrom (E) nachvermischt wird.
- Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß durch Schnelllauf des Rotors (50) in der Vormischkammer (60) eine umgekehrte Trombe erzeugt wird, deren Unterdruck zur Dosierung des Reagenz-Teilstroms (Nebenstrom R II) beiträgt.
- Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Vermischung der Teilströme (R I', R II) mit dem Hauptstrom (R I") durch Steuerung der statischen Drücke unterstützt wird, insbesondere indem im Nebenstrom (R II) ein statischer Druck erzeugt wird, der denjenigen des Hauptstroms (R I') übersteigt.
- Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß man den Austrittsstrom (E) vom Dispergierer (10) in einen anderen Behälter fördert, in welchem das Produkt homogengehalten wird, z.B. durch ein langsamlaufendes Rührwerk (W).
- Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß dem Hauptstrom (R I) von oben Pulverbestandteile zugemischt werden.
- Vorrichtung zum Homogenisieren von Stoffen, z. B. pastösen Massen, und/oder zur Erzeugung von Emulsionen mit Tröpfchengrößen im µm-Bereich, mit einem an oder in einem Behälter (F) angeordneten Dispergierer (10), mit wenigstens einem Rotor/Stator-System (40, 50) nahe dem Behälterboden, mit einem Produktzufluß (45) von oben und gegebenenfalls mit wenigstens einem in diesem oberen Bereich angeordneten Förderorgan (44), speziell zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß unterhalb des Rotors (50) eine Zuführung (30, 38) in eine Vormischkammer (60) für ein insbesondere heißes Reagenz (II) mündet und daß die Vormischkammer (60) über einen Auslaßkanal (68) mit einem Hauptraum (59) an der Unterseite des Rotor-Stator-Systems (40, 50) strömungsverbunden oder - verbindbar ist.
- Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Vormischkammer (60) im äußeren Bereich des Rotors (50) zwischen seiner Unterseite und einem äußeren Statorring (42) angeordnet bzw. ausgebildet ist, namentlich derart, daß sie von der Rotornabe (51, 54) bis zu einem Vormischkammer-Auslaßkanal (68) reicht.
- Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der äußere Statorring (42) aus dem Hauptraum (49) nach unten ragende Statorzähne (48) aufweist, die den Rotor-Umfang mit Minimalabstand berührungslos übergreifen und die bis an einen der Rotor-Unterseite (54 bis 57) zentrisch gegenüberstehenden Bodenflansch (14) reichen.
- Vorrichtung nach einem der Ansprüche 16 bis18, dadurch gekennzeichnet, daß eine Zuführleitung (30) in einen Einlaßkanal (38) mündet, der als bodenparalleler Radialkanal in den Bodenflansch (14) integriert ist, namentlich gegenüber der äußeren Rotor-Unterseite (55, 56).
- Vorrichtung nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß an der Rotor-Unterseite ein Umlenkkörper von einem bis zum Bereich der Vorkammer (60) reichenden Flachkonus (56) mit wenigstens einer konusförmigen oder konkaven Außenfläche (58) mit steilerem Konus- bzw. Zentriwinkel gebildet ist, wobei der Übergang zwischen benachbarten Umlenkflächen (56, 58) bevorzugt als scharfe Abreißkante (57) gestaltet ist.
- Vorrichtung nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, daß sie einen Stator (40) mit einer Haube aufweist, die außerhalb des äußeren Statorringes (42) eine Umlenkkammer (61) begrenzt, welche nahe dem Bodenflansch (14) mit über den Umfang verteilten Auslaß-Öffnungen (62) versehen ist, und daß das Förderorgan (44) unmittelbar über dem zentrisch in der Haube ausgebildeten Einlaß (45) nahe dem Rotor (50) sitzt.
- Vorrichtung nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, daß sie einen als Hohlwellen-Motor (20) ausgebildeten Antrieb aufweist, der an dem Bodenflansch (14) und an einem dazu rechtwinkeligen Tragflansch (18) gelagert ist, und daß die Rotorwelle (43) derart abgestützt ist, z.B. durch Anschläge und Tellerfedern (13), daß eine Längenausdehnung der Hohlwelle (43) und damit der Antriebswelle (22) nur in Richtung vom Bodenflansch (14) weg möglich ist.
- Vorrichtung nach einem der Ansprüche 16 bis 22, dadurch gekennzeichnet, daß zur Einstellung eines Pulsationseffekts im Dispergierer (10) die Druckverteilung auslaßseitig steuerbar ist, insbesondere durch Wahl des Strömungsweges und der Strömungsstrecke bzw. des Umschlingungswinkels in einem Auslaßkanal hinter dem Auslaßstutzen (68) oder durch Flächenbemessung und Anordnungsweise der Auslaß-Öffnungen (62).
- Vorrichtung nach einem der Ansprüche 16 bis 23, dadurch gekennzeichbet, daß ein an den Behälterboden (14) anflanschbarer Aufsatz (17) ein das Förderorgan (44) umschließendes Einlaufrohr (19) oberhalb des Rotor/Stator-Systems (40, 50) aufweist und daß von diesem ein Auslaßstutzen (68) mit einer absperrbaren Leitung (Z) abgeht, die - bevorzugt unterhalb des Produktniveaus - im Behälter (F) zurückführt.
- Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, daß die Rückführleitung (Z) zumindest streckenweise außerhalb des Behälters (F) installierbar und/oder temperierbar ist.
- Vorrichtung nach einem der Ansprüche 16 bis 25, dadurch gekennzeichnet, daß eine oder beide Stufen des Dispergierers mit Ultraschall beaufschlagbar sind, für die der Rotor (50) einen intermittierenden Reflektor bildet.
- Vorrichtung nach einem der Ansprüche 16 bis 26, dadurch gekennzeichnet, daß das Durchlaßvolumen im Bereich der Vormischkammer (60) oder deren Volumen selbst einstell- bzw. veränderbar ist, namentlich durch Änderung der Rotorform und/oder der Statorform bei unveränderter Scherkantenlänge.
- Vorrichtung nach einem der Ansprüche 16 bis 27, dadurch gekennzeichnet, daß zwecks Beeinflussung von Teilstrom-Energiedichte und Verweildauer die Scherkantenlänge bei unverändertem Vormischkammer-Volumen einstell-bzw. veränderbar ist.
- Vorrichtung nach einem der Ansprüche 16 bis 28, dadurch gekennzeichnet, daß sie als separat anbaubare Vordispergierstufe ausbildbar oder ausgebildet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10004104 | 2000-01-31 | ||
DE10004104 | 2000-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1121974A1 true EP1121974A1 (de) | 2001-08-08 |
EP1121974B1 EP1121974B1 (de) | 2013-06-12 |
Family
ID=7629297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00114789.1A Expired - Lifetime EP1121974B1 (de) | 2000-01-31 | 2000-07-10 | Mischvorrichtung und Verwendung |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1121974B1 (de) |
JP (1) | JP4975929B2 (de) |
WO (1) | WO2001056687A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10204921C1 (de) * | 2002-02-07 | 2003-10-16 | Romaco Ag Frymakoruma Rheinfel | Dispergier-Vorrichtung |
DE102004025281A1 (de) * | 2004-05-19 | 2005-12-15 | Henkel Kgaa | Verfahren zur Herstellung von Mitteln zur Färbung keratinischer Fasern |
DE102007016445A1 (de) * | 2007-04-04 | 2008-10-09 | Beiersdorf Ag | Verfahren zur Herstellung fließfähiger kationischer Emulsionen |
WO2009135624A2 (de) * | 2008-05-06 | 2009-11-12 | Axel Wittek | Rotor-stator-system zum herstellen von dispersionen |
WO2010025913A3 (de) * | 2008-09-05 | 2010-07-15 | Axel Wittek | Anlagenkomponenten für eine anlage zur herstellung von dispersionen, umfassend u.a. zwei einlaufstutzen, ein zwischenstück, eine rotor-stator-dispergiermaschine und eine auslasseinrichtung |
EP3202489A3 (de) * | 2016-01-14 | 2017-12-20 | symex GmbH & Co. KG | Pump- und/oder mischeinrichtung zum fördern, homogenisieren und/oder dispergieren fliessfähiger produkte |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1396114B1 (it) * | 2009-09-23 | 2012-11-16 | Samia S P A | Impianto per la produzione di composizioni, quali stucchi, leganti e simili, particolarmente adatti all'impiego nell'industria conciaria e procedimento per la produzione di tali composizioni mediante un tale impianto. |
JP6150280B2 (ja) * | 2013-05-23 | 2017-06-21 | 三菱重工業株式会社 | 洗浄装置 |
CN104788006B (zh) * | 2015-04-15 | 2017-03-01 | 大连迈克环境科技工程有限公司 | 一种强化污泥与药剂混合效果的方法及专用设备 |
KR102415240B1 (ko) * | 2021-02-16 | 2022-06-30 | 이정현 | 만두형 어묵 제조 장치 |
CN114307819A (zh) * | 2022-03-04 | 2022-04-12 | 山东永创材料科技有限公司 | 一种树脂生产加工用废水处理装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE639769C (de) | 1930-08-23 | 1936-12-16 | Hermann Hildebrandt | Vorrichtung zum Mischen, Zerkleinern o. dgl. |
US2641453A (en) | 1951-04-21 | 1953-06-09 | Nat Gypsum Co | Pin mixer |
DE2004143A1 (de) | 1970-01-30 | 1971-08-19 | Bayer Ag | Vorrichtung zur Herstellung von Emulsionen bzw. Suspensionen |
US4175873A (en) * | 1976-09-10 | 1979-11-27 | Funken Co., Ltd. | Process and apparatus for mechanically mixing two immiscible liquids and one or more other substances |
EP0036067A2 (de) | 1980-03-14 | 1981-09-23 | Haagen & Rinau | Vorrichtung zum Mischen und Homogenisieren wenigstens zweier Medien |
DE3611048A1 (de) * | 1986-04-02 | 1987-10-08 | Gyproc Gmbh Baustoffproduktion | Mischer |
DE29608713U1 (de) | 1996-05-14 | 1996-08-08 | Wittek, Axel, 25582 Hohenaspe | Dispergiereinrichtung |
DE29608712U1 (de) | 1996-05-14 | 1996-09-05 | Wittek Axel | Homogenisiereinrichtung |
EP0760254A1 (de) * | 1995-08-29 | 1997-03-05 | Vakumix Rühr- und Homogenisiertechnik Aktiengesellschaft | Vorrichtung zum Homogenisieren fliessfähiger Stoffe |
EP0769254A2 (de) | 1995-10-19 | 1997-04-23 | Anita INTERNATIONAL, Dr. Helbig GmbH & Co. KG | Miederhose |
DE19829646A1 (de) | 1998-07-02 | 2000-01-05 | Wella Ag | Verfahren zur Herstellung von wäßrigen Lösungen von Alkylethersulfaten |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56168829A (en) * | 1980-06-02 | 1981-12-25 | Masahide Ichikawa | Emulsifying device for liquids of different specific gravity |
JPS5747230U (de) * | 1980-08-29 | 1982-03-16 | ||
DE3033000A1 (de) * | 1980-09-02 | 1982-04-15 | Agfa-Gevaert Ag, 5090 Leverkusen | Verfahren zur herstellung von dispersionen und fotografische materialien |
JPS5940494B2 (ja) * | 1981-03-13 | 1984-10-01 | 富士産業株式会社 | 「かく」拌機におけるホモジナイザ−機構 |
JPH0459032A (ja) * | 1990-06-21 | 1992-02-25 | Nippon Steel Corp | 超音波乳化装置 |
JPH0660433U (ja) * | 1993-01-22 | 1994-08-23 | 三井鉱山株式会社 | 乳化分散機 |
JPH0871390A (ja) * | 1994-09-09 | 1996-03-19 | Nanomaizaa Kk | 物質の分散及び乳化方法 |
JPH08157831A (ja) * | 1994-12-07 | 1996-06-18 | Maruzen Petrochem Co Ltd | 高軟化点ピッチの微細粒子の製造法 |
JPH1157437A (ja) * | 1997-08-26 | 1999-03-02 | Lion Corp | 乳化液体の製造方法 |
JPH11209477A (ja) * | 1998-01-29 | 1999-08-03 | Arakawa Chem Ind Co Ltd | 水性樹脂エマルションの連続的製造方法及びその装置 |
-
2000
- 2000-07-10 EP EP00114789.1A patent/EP1121974B1/de not_active Expired - Lifetime
- 2000-11-24 JP JP2001556575A patent/JP4975929B2/ja not_active Expired - Fee Related
- 2000-11-24 WO PCT/EP2000/011700 patent/WO2001056687A1/en not_active Application Discontinuation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE639769C (de) | 1930-08-23 | 1936-12-16 | Hermann Hildebrandt | Vorrichtung zum Mischen, Zerkleinern o. dgl. |
US2641453A (en) | 1951-04-21 | 1953-06-09 | Nat Gypsum Co | Pin mixer |
DE2004143A1 (de) | 1970-01-30 | 1971-08-19 | Bayer Ag | Vorrichtung zur Herstellung von Emulsionen bzw. Suspensionen |
US4175873A (en) * | 1976-09-10 | 1979-11-27 | Funken Co., Ltd. | Process and apparatus for mechanically mixing two immiscible liquids and one or more other substances |
EP0036067A2 (de) | 1980-03-14 | 1981-09-23 | Haagen & Rinau | Vorrichtung zum Mischen und Homogenisieren wenigstens zweier Medien |
DE3611048A1 (de) * | 1986-04-02 | 1987-10-08 | Gyproc Gmbh Baustoffproduktion | Mischer |
EP0760254A1 (de) * | 1995-08-29 | 1997-03-05 | Vakumix Rühr- und Homogenisiertechnik Aktiengesellschaft | Vorrichtung zum Homogenisieren fliessfähiger Stoffe |
EP0769254A2 (de) | 1995-10-19 | 1997-04-23 | Anita INTERNATIONAL, Dr. Helbig GmbH & Co. KG | Miederhose |
DE29608713U1 (de) | 1996-05-14 | 1996-08-08 | Wittek, Axel, 25582 Hohenaspe | Dispergiereinrichtung |
DE29608712U1 (de) | 1996-05-14 | 1996-09-05 | Wittek Axel | Homogenisiereinrichtung |
DE19829646A1 (de) | 1998-07-02 | 2000-01-05 | Wella Ag | Verfahren zur Herstellung von wäßrigen Lösungen von Alkylethersulfaten |
Non-Patent Citations (1)
Title |
---|
"BECOMIX DUO-HOMOGENISATOR", PROSPEKT BECOMIX, XX, XX, 1 January 1900 (1900-01-01), XX, pages 01 - 04, XP002905865 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10204921C1 (de) * | 2002-02-07 | 2003-10-16 | Romaco Ag Frymakoruma Rheinfel | Dispergier-Vorrichtung |
US7331540B2 (en) | 2002-02-07 | 2008-02-19 | Frymakoruma Ag | Dispersing device |
DE102004025281A1 (de) * | 2004-05-19 | 2005-12-15 | Henkel Kgaa | Verfahren zur Herstellung von Mitteln zur Färbung keratinischer Fasern |
DE102004025281B4 (de) * | 2004-05-19 | 2008-09-04 | Henkel Ag & Co. Kgaa | Verfahren zur Herstellung von Mitteln zur Färbung keratinischer Fasern |
DE102007016445A1 (de) * | 2007-04-04 | 2008-10-09 | Beiersdorf Ag | Verfahren zur Herstellung fließfähiger kationischer Emulsionen |
WO2009135624A3 (de) * | 2008-05-06 | 2010-04-15 | Axel Wittek | Rotor-stator-system und verfahren zum herstellen von dispersionen |
WO2009135624A2 (de) * | 2008-05-06 | 2009-11-12 | Axel Wittek | Rotor-stator-system zum herstellen von dispersionen |
US9527048B2 (en) | 2008-05-06 | 2016-12-27 | Axel Wittek | Rotor-stator system for the production of dispersions |
WO2010025913A3 (de) * | 2008-09-05 | 2010-07-15 | Axel Wittek | Anlagenkomponenten für eine anlage zur herstellung von dispersionen, umfassend u.a. zwei einlaufstutzen, ein zwischenstück, eine rotor-stator-dispergiermaschine und eine auslasseinrichtung |
EP2572777A1 (de) * | 2008-09-05 | 2013-03-27 | Axel Wittek | Auslasseinrichtung einer Rotor-Stator-Dispergiermaschine |
US8820796B2 (en) | 2008-09-05 | 2014-09-02 | Axel Wittek | Transitional elements for the transfer of dispersions during processing in a rotor-stator dispersion machine |
US9249910B2 (en) | 2008-09-05 | 2016-02-02 | Axel Wittek | Transitional elements for the transfer of dispersions during processing in a rotor-stator dispersion machine |
EP3202489A3 (de) * | 2016-01-14 | 2017-12-20 | symex GmbH & Co. KG | Pump- und/oder mischeinrichtung zum fördern, homogenisieren und/oder dispergieren fliessfähiger produkte |
Also Published As
Publication number | Publication date |
---|---|
WO2001056687A1 (en) | 2001-08-09 |
JP4975929B2 (ja) | 2012-07-11 |
JP2004524131A (ja) | 2004-08-12 |
EP1121974B1 (de) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT414101B (de) | Verfahren und vorrichtung zum mischen fliessfähiger stoffe | |
EP1943009B1 (de) | Vorrichtung und verfaheren zum mischen von flüssigfarben sowie verwendung eines solchen verfahrens zum einfärben von kunststoffen | |
EP0291820B1 (de) | Mischer zum Vermischen mindestens zweier fliessfähiger Stoffe, insbesondere unter Durchführung bzw. Einleitung einer Reaktion während der Vermischung | |
EP2331244B1 (de) | Zwischenstück für eine rotor-stator-dispergiermaschine | |
DE102010028774A1 (de) | Emulgiereinrichtung zur kontinuierlichen Herstellung von Emulsionen und/oder Dispersionen | |
EP0729780A2 (de) | Anlage zum Mischen von Flüssigkeit und Feststoff | |
DE202009017944U1 (de) | Rotor-Stator-System zum Herstellen von Dispersionen | |
EP2720783A1 (de) | Anlage zur dispersion von feindispersen feststoffen in hochviskose produkte | |
DE3874114T2 (de) | Ruehrvorrichtung fuer mischapparate fuer pulverfoermige, teigige oder koernige produkte. | |
EP1121974B1 (de) | Mischvorrichtung und Verwendung | |
EP3202489B1 (de) | Vorrichtung zum homogenisieren und/oder dispergieren fliessfähiger produkte | |
DE10354888B4 (de) | Kolloidalmischer und Verfahren zur kolloidalen Aufbereitung einer Mischung | |
DE19537303A1 (de) | Vorrichtung zum Homogenisieren fließfähiger Stoffe | |
EP0760254B1 (de) | Vorrichtung zum Homogenisieren fliessfähiger Stoffe | |
EP1964604A2 (de) | Vorrichtung und Verfahren zur kontinuierlichen Herstellung einer Mischung aus wenigstens zwei fließfähigen Phasen | |
EP0620778A1 (de) | Vorrichtung zur herstellung eines vernetzten extrudierten produktes. | |
EP0645179B1 (de) | Reibmühle und Mischer, der diese Reibmühle enthält | |
DE2300475A1 (de) | Verfahren und vorrichtung zum mischen von materialien | |
EP1616487A1 (de) | Verfahren und Vorrichtung zum kontinuierlichen Aufbereiten von zu verarbeitenden fetthaltigen Massen | |
CN2456828Y (zh) | 液体混合装置 | |
DE19916053B4 (de) | Vorrichtung zum Homogenisieren fließfähiger Stoffe | |
DE19628104A1 (de) | Verfahren und Vorrichtung zum kontinuierlichen Aufbereiten von zu verarbeitenden fetthaltigen Massen | |
DE20002959U1 (de) | Homogenisiervorrichtung | |
AT5184U1 (de) | Homogenisiervorrichtung | |
AT256046B (de) | Verfahren und Vorrichtung zum kontinuierlichen Dispergieren vorwiegend viskoser Substanzen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010519 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AXX | Extension fees paid |
Free format text: RO PAYMENT 20010807;SI PAYMENT 20010807 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TETRA LAVAL HOLDING & FINANCE S.A. |
|
17Q | First examination report despatched |
Effective date: 20030404 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TETRA LAVAL HOLDINGS & FINANCE S.A. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: RO SI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 616462 Country of ref document: AT Kind code of ref document: T Effective date: 20130615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50016323 Country of ref document: DE Effective date: 20130801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130923 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130913 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130612 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130612 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130612 |
|
BERE | Be: lapsed |
Owner name: TETRA LAVAL HOLDINGS & FINANCE S.A. Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130612 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130612 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130612 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
26N | No opposition filed |
Effective date: 20140313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130612 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50016323 Country of ref document: DE Effective date: 20140313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 616462 Country of ref document: AT Kind code of ref document: T Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180612 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180704 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190625 Year of fee payment: 20 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50016323 Country of ref document: DE |