CN202018442U - Nondestructive detecting system for pulsed magnetic flux leakage defect and stress - Google Patents
Nondestructive detecting system for pulsed magnetic flux leakage defect and stress Download PDFInfo
- Publication number
- CN202018442U CN202018442U CN2011200767890U CN201120076789U CN202018442U CN 202018442 U CN202018442 U CN 202018442U CN 2011200767890 U CN2011200767890 U CN 2011200767890U CN 201120076789 U CN201120076789 U CN 201120076789U CN 202018442 U CN202018442 U CN 202018442U
- Authority
- CN
- China
- Prior art keywords
- signal
- stress
- magnetic flux
- flux leakage
- data acquisition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 39
- 230000007547 defect Effects 0.000 title claims abstract description 29
- 230000004907 flux Effects 0.000 title claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 29
- 230000005284 excitation Effects 0.000 claims abstract description 21
- 230000003321 amplification Effects 0.000 claims abstract description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 9
- 230000001066 destructive effect Effects 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 abstract description 8
- 239000003302 ferromagnetic material Substances 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract 1
- 230000004927 fusion Effects 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 abstract 1
- 238000003911 water pollution Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009659 non-destructive testing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
本实用新型涉及一种脉冲漏磁缺陷与应力的无损检测系统,属于无损检测领域。包括信号发生器、功率放大器、激励线圈、霍尔传感器、信号放大电路、数据采集卡以及计算机。本实用新型在脉冲漏磁检测的基础上,针对铁磁性材料,根据脉冲激励瞬时上升段与上升后持续高电平两个阶段,分段进行信号处理,实现应力信号与缺陷信号分离,分别进行信号特征提取与数据融合,实现铁磁性材料表面、亚表面缺陷以及应力、微观结构状态的同时在线检测,并实现铁磁性材料隐性缺陷判别和尚未形成的缺陷的预估。可长期可靠工作、灵敏度高、抗干扰能力强、响应速度快、不受油水污染等介质的影响。
The utility model relates to a non-destructive detection system for pulse magnetic flux leakage defect and stress, which belongs to the field of non-destructive detection. Including signal generator, power amplifier, excitation coil, Hall sensor, signal amplification circuit, data acquisition card and computer. On the basis of pulse magnetic flux leakage detection, the utility model, aiming at ferromagnetic materials, performs signal processing in sections according to the two stages of pulse excitation, the instantaneous rising period and the continuous high level after rising, and realizes the separation of stress signal and defect signal, respectively. Signal feature extraction and data fusion realize simultaneous online detection of ferromagnetic material surface and subsurface defects, stress, and microstructure state, and realize the identification of hidden defects of ferromagnetic materials and the prediction of unformed defects. It can work reliably for a long time, has high sensitivity, strong anti-interference ability, fast response speed, and is not affected by media such as oil and water pollution.
Description
技术领域technical field
本实用新型涉及无损检测领域,尤其涉及根据脉冲激励信号实现缺陷与应力信号分离,实现铁磁性材料缺陷与应力的无损检测系统。The utility model relates to the field of non-destructive detection, in particular to a non-destructive detection system which realizes the separation of defects and stress signals according to pulse excitation signals and realizes the defects and stress of ferromagnetic materials.
背景技术Background technique
漏磁检测技术是管道等铁磁性材料无损评估的一种重要方法。随着管线的增多、管龄的增长,由于腐蚀、磨损、意外损伤等原因导致的管线泄漏管道事件频发,而且日趋严重,由于所输介质的危险性和污染性,一旦发生事故会造成巨大的生命财产损失和环境污染。管道在线检测技术是目前应用最为广泛也是最有效的管道检测方法,它利用漏磁、超声波、射线等探伤原理,在不影响正常生产的情况下,通过智能检测器在管道内行走,对油气管道的管壁或涂层的缺陷:如变形、损伤、腐蚀、穿孔、管壁失重及厚度变化等,进行在线检测与分析,以获得准确可靠的检测数据。漏磁检测技术与X射线检测技术相比,对人体无辐射危害,能在恶劣环境下工作,设备价格较便宜,测试操作的技术水平要求也较低;与超声波检测技术相比,无需使用耦合剂。脉冲漏磁检测技术是一种新型的漏磁检测技术,可以用来对表面和近表面裂纹进行定量检测。由于它采用脉冲作为激励信号,激励信号中含有很宽的频谱,因此只需一次扫描就可以检测出被测试件上不同深度的裂纹。Magnetic flux leakage detection technology is an important method for non-destructive evaluation of ferromagnetic materials such as pipelines. With the increase of pipelines and the growth of pipeline age, pipeline leakage incidents caused by corrosion, wear, accidental damage and other reasons occur frequently and become more and more serious. Due to the danger and pollution of the transported medium, once an accident occurs, it will cause huge loss of life and property and environmental pollution. Pipeline on-line detection technology is the most widely used and most effective pipeline detection method at present. It uses the principles of magnetic flux leakage, ultrasonic, ray and other flaw detection. The defects of pipe wall or coating: such as deformation, damage, corrosion, perforation, weight loss of pipe wall and thickness change, etc., are detected and analyzed online to obtain accurate and reliable detection data. Compared with X-ray detection technology, magnetic flux leakage detection technology has no radiation hazards to the human body, can work in harsh environments, the equipment price is cheaper, and the technical level requirements for test operations are also lower; compared with ultrasonic detection technology, there is no need to use coupling agent. Pulse magnetic flux leakage detection technology is a new type of magnetic flux leakage detection technology, which can be used to quantitatively detect surface and near-surface cracks. Because it uses pulse as the excitation signal, the excitation signal contains a wide frequency spectrum, so only one scan can detect cracks of different depths on the tested piece.
为了获得完整的管道结构健康检测和寿命估计的所需信息,除了需要对结构中具有的缺陷进行检测和评估,另一个需要获得的重要参数是结构所受的应力状态以及微观组织状态。传统的漏磁检测理论依据是铁磁性材料在外磁场感应作用下被磁化,在材料缺陷处,由于磁导率变化,致使磁力线发生弯曲,一部分磁力线泄漏出材料表面形成漏磁,一般用于缺陷的检测。采用脉冲漏磁检测技术,由于脉冲能够在管道内形成交变的磁场,因此,脉冲漏磁检测技术能够在管道内形成涡流。通过大量的材料拉伸实验,加载时应力应变和涡流信号间的关系表明,弹性范围内,涡流信号和应力应变有较好的线性关系。因此采用脉冲漏磁检测技术能够有效检测管道缺陷与应力,根据脉冲信号的上升阶段与高电平阶段,采用信号分离技术,将漏磁信号与涡流信号分离,实现管道的隐性缺陷和寿命评估。In order to obtain the required information for complete pipeline structure health detection and life estimation, in addition to the detection and evaluation of defects in the structure, another important parameter that needs to be obtained is the stress state and microstructure state of the structure. The traditional theory of magnetic flux leakage detection is based on the fact that ferromagnetic materials are magnetized under the action of external magnetic field induction. At the material defect, due to the change of magnetic permeability, the magnetic force line is bent, and a part of the magnetic force line leaks out of the material surface to form magnetic flux leakage. It is generally used for defect detection. detection. Using the pulse magnetic flux leakage detection technology, because the pulse can form an alternating magnetic field in the pipeline, the pulse magnetic flux leakage detection technology can form an eddy current in the pipeline. Through a large number of material tensile experiments, the relationship between stress-strain and eddy current signal during loading shows that in the elastic range, the eddy current signal and stress-strain have a good linear relationship. Therefore, the use of pulsed magnetic flux leakage detection technology can effectively detect pipeline defects and stress. According to the rising phase and high level phase of the pulse signal, the signal separation technology is used to separate the magnetic flux leakage signal from the eddy current signal, so as to realize the hidden defect and life evaluation of the pipeline. .
实用新型内容Utility model content
针对现有利用漏磁检测技术对测试信号采用稳态分析的方法,使得信号在时域的一些重要信息被忽略,且只能检测管道缺陷,不能检测管道应力,不能实现对管道的寿命进行评估的问题,申请人进行了改进研究,提供一种利用脉冲漏磁技术进行无损检测,达到对管道缺陷进行定量和寿命评估的脉冲漏磁缺陷与应力的无损检测系统。In view of the existing method of steady-state analysis of the test signal using the magnetic flux leakage detection technology, some important information of the signal in the time domain is ignored, and only the defect of the pipeline can be detected, the stress of the pipeline cannot be detected, and the life of the pipeline cannot be evaluated. To solve the problem, the applicant conducted improved research to provide a non-destructive testing system for pulsed magnetic flux leakage defects and stress that uses pulsed magnetic flux leakage technology for nondestructive testing to achieve quantitative and life assessment of pipeline defects.
本实用新型的技术方案如下:The technical scheme of the utility model is as follows:
一种脉冲漏磁缺陷与应力的无损检测系统,包括信号发生器、功率放大器、激励线圈、霍尔传感器、信号放大电路、数据采集卡以及计算机;其中信号发生器的输出端分为两路,其中一路输出连接功率放大器的输入端,功率放大器的输出连接绕制在铁芯上的激励线圈,霍尔传感器置于激励线圈中间,霍尔传感器与激励线圈和铁芯组成探头置于被测试件上,霍尔传感器的输出经信号放大电路连接数据采集卡,信号发生器的另一路输出直接连接数据采集卡,数据采集卡的输出连接计算机。A non-destructive detection system for pulse magnetic flux leakage defects and stress, including a signal generator, a power amplifier, an excitation coil, a Hall sensor, a signal amplification circuit, a data acquisition card and a computer; wherein the output of the signal generator is divided into two circuits, One of the outputs is connected to the input end of the power amplifier, and the output of the power amplifier is connected to the exciting coil wound on the iron core. The Hall sensor is placed in the middle of the exciting coil, and the Hall sensor, the exciting coil and the iron core form a probe and placed on the tested object. Above, the output of the Hall sensor is connected to the data acquisition card through the signal amplification circuit, the other output of the signal generator is directly connected to the data acquisition card, and the output of the data acquisition card is connected to the computer.
本实用新型的有益技术效果是:The beneficial technical effect of the utility model is:
本实用新型针对铁磁性材料(如管道等),利用激励脉冲信号的特点,即脉冲上升阶段与高电平两个阶段,融合了涡流技术与漏磁技术的优势,将涡流技术与漏磁技术相结合,通过脉冲信号的两个不同阶段,将涡流信号与漏磁信号分离,其中,涡流信号能够有效评估管道的应力状态,漏磁信号能够实现缺陷的定量评估,因而应用脉冲漏磁检测技术不仅可以检测到管道裂纹的大小,还可以检测管道的应力状态。因此该系统可以定量检测出管道结构不同深度的裂纹,同时可以检测出管道的应力及残余应力,可以及早对管道进行预测。The utility model aims at ferromagnetic materials (such as pipelines, etc.), utilizes the characteristics of the excitation pulse signal, that is, the two stages of the pulse rising stage and the high level, combines the advantages of the eddy current technology and the magnetic flux leakage technology, and combines the eddy current technology and the magnetic flux leakage technology Combined, through two different stages of the pulse signal, the eddy current signal and the magnetic flux leakage signal are separated. Among them, the eddy current signal can effectively evaluate the stress state of the pipeline, and the magnetic flux leakage signal can realize the quantitative evaluation of defects. Therefore, the pulse magnetic flux leakage detection technology is applied Not only the size of the crack in the pipeline can be detected, but also the stress state of the pipeline can be detected. Therefore, the system can quantitatively detect cracks at different depths in the pipeline structure, and at the same time detect the stress and residual stress of the pipeline, and can predict the pipeline early.
附图说明Description of drawings
图1是本实用新型的原理框图。Fig. 1 is a functional block diagram of the utility model.
图2是功率放大电路原理图。Figure 2 is a schematic diagram of the power amplifier circuit.
图3是信号放大电路原理图。Figure 3 is a schematic diagram of the signal amplification circuit.
图1中附图标记说明:1、信号发生器;2、功率放大电路;3、激励线圈;4、霍尔传感器;5、信号放大电路;6、数据采集卡;7、计算机。Explanation of reference numerals in Fig. 1: 1. Signal generator; 2. Power amplifier circuit; 3. Excitation coil; 4. Hall sensor; 5. Signal amplifier circuit; 6. Data acquisition card; 7. Computer.
具体实施方式Detailed ways
下面结合附图对本实用新型的具体实施方式做进一步说明。Below in conjunction with accompanying drawing, the specific embodiment of the present utility model is described further.
如图1所示,本实用新型包括信号发生器1、功率放大电路2、激励线圈3、霍尔传感器4、信号放大电路5、数据采集卡6以及计算机7,其中信号发生器1的输出分两路相连,一路连于功率放大电路2的输入,功率放大电路2的输出连于绕制在铁芯上的激励线圈3,霍尔传感器4的输出经信号放大电路5连于数据采集卡的输入;另一路直接与数据采集卡6相连。两路信号通过数据采集卡6进入计算机7,利用计算机7强大的数据处理能力实现涡流信号与漏磁信号的分离,达到对管道的隐性缺陷和寿命评估的目的。As shown in Figure 1, the utility model comprises a signal generator 1, a power amplifier circuit 2, an
本实用新型的具体工作过程为:(a)信号发生器1产生一定频率的脉宽可调的脉冲电压,该电压经过功率放大器2驱动激励线圈3;(b)根据脉冲信号的特点,将信号分成上升段与高电平两个阶段;(c)在上升段,利用涡流的检测原理,施加在激励线圈3两端的瞬时上升电压会感生出涡流在被测管道中传播,由于涡流信号和应力应变有较好的线性关系,此感生的涡流信号中就包含管道的应力状态信息;霍尔传感器4拾取该信号,通过信号放大电路5将该信号放大;数据采集卡6采集放大后的信号,进入计算机7;(d)脉冲激励信号上升段后进入高电平阶段,该高电平为稳定电压值,由此恒定高电平信号在激励线圈3两端产生恒磁场,如果管道中存在缺陷,该恒磁场将从缺陷处漏出来,霍尔传感器4拾取该漏磁信号;该漏磁信号通过信号放大电路5及数据采集卡6后进入计算机7。(e)通过信号发生器1产生的脉冲信号另一方面直接进入数据采集卡6,此信号作为分段信号的基准,用以给放大后的信号进行信号分段。(f)利用计算机7强大的数据处理能力,通过第二路信号分段信号将第一路信号分离为涡流信号与漏磁信号,分别通过信号特征提取;(g)计算机7以图形形式显示应力及残余应力大小、缺陷大小,实现对管道的隐性缺陷和寿命的评估。The specific working process of the utility model is as follows: (a) signal generator 1 generates a pulse voltage with adjustable pulse width at a certain frequency, and the voltage
图1中信号发生器1的频率可以在2~100MHz的范围内,功率放大器2如图2所示,功率放大器芯片LM1875有五个引脚,一号、二号引脚为信号输入端,三号引脚接负电压、五号引脚接正电压,四号引脚输出功率放大后的信号。功率放大后的信号与激励线圈3的两个输入端相接,用于驱动激励线圈3。霍尔传感器4接收变化的电压信号,该信号经过信号放大电路5输出,信号放大电路5如图3所示。数据采集卡6采集此信号,最后进入计算机7。计算机7记录数据并以文件的形式存入,然后对数据进行处理,最后以图形的形式显示缺陷的形状和大小、被测试件的应力及残余应力的大小。The frequency of the signal generator 1 in Figure 1 can be in the range of 2~100MHz. The power amplifier 2 is shown in Figure 2. The power amplifier chip LM1875 has five pins, the first and second pins are signal input terminals, and the third The No. 1 pin is connected to the negative voltage, the No. 5 pin is connected to the positive voltage, and the No. 4 pin outputs the signal after power amplification. The amplified power signal is connected to two input ends of the
电路工作原理如下:当通电之后,计算机运行专为本系统编写的程序,点击计算机程序开始按钮后,系统开始工作。信号发生器1产生一定频率的方波电压,经过功率放大电路2驱动激励线圈3,由于产生的脉冲电压信号分为0到高电平间的瞬时电压与高电平两段电压信号。在瞬时电压阶段,通过激励线圈3中产生的瞬时电流在被测试件上感生出瞬时涡流,并与快速衰减的磁脉冲一并在管道材料中传播,形成一个衰减的感应场,霍尔传感器4则检测出一系列电压—时间信号,该信号通过信号放大电路5放大输出,数据采集卡6采集此信号,传送给计算机7;脉冲电压瞬时上升段后进入恒定高电平阶段,该高电平阶段在激励线圈3中产生恒定的磁场,如果管道试件中有缺陷存在,磁场信号就会通过缺陷处漏出来,霍尔传感器4就会检测到该磁场信号,该信号经过放大电路5后,通过数据采集卡6采集进入计算机7。信号发生器1产生的另一路的方波电压直接通过数据采集卡6进入计算机7,作为分段信号的基准。计算机7记录数据并以文件的形式存入,然后对数据进行处理,最后以图形的形式显示缺陷的形状和大小、被测管道试件的应力及残余应力大小。The working principle of the circuit is as follows: when the power is turned on, the computer runs the program specially written for this system, and the system starts to work after clicking the computer program start button. The signal generator 1 generates a square wave voltage of a certain frequency, and drives the
以上所述的仅是本实用新型的优选实施方式,本实用新型不限于以上实施例。可以理解,本领域技术人员在不脱离本实用新型的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本实用新型的保护范围之内。The above are only preferred implementations of the utility model, and the utility model is not limited to the above examples. It can be understood that other improvements and changes directly derived or conceived by those skilled in the art without departing from the spirit and concept of the present utility model shall be considered to be included in the protection scope of the present utility model.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011200767890U CN202018442U (en) | 2011-03-22 | 2011-03-22 | Nondestructive detecting system for pulsed magnetic flux leakage defect and stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011200767890U CN202018442U (en) | 2011-03-22 | 2011-03-22 | Nondestructive detecting system for pulsed magnetic flux leakage defect and stress |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202018442U true CN202018442U (en) | 2011-10-26 |
Family
ID=44812111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011200767890U Expired - Fee Related CN202018442U (en) | 2011-03-22 | 2011-03-22 | Nondestructive detecting system for pulsed magnetic flux leakage defect and stress |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202018442U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102182933A (en) * | 2011-03-22 | 2011-09-14 | 江南大学 | Nondestructive detection system and method for pulsed magnetic flux leakage defects and stresses |
WO2013078981A1 (en) * | 2011-11-30 | 2013-06-06 | 浙江大学 | Stress monitoring device of magneto-elastic and magneto-electric effect type |
CN105021693A (en) * | 2015-07-07 | 2015-11-04 | 中国石油大学(华东) | Whole-circumferential electromagnetic field based system for on-line quantitative detection of steel pipe crack |
CN106124612A (en) * | 2016-06-28 | 2016-11-16 | 中国计量大学 | A kind of Portable ferromagnetic fault in material based on low frequency electromagnetic detection device |
CN109856242A (en) * | 2019-01-23 | 2019-06-07 | 中国计量大学 | Combination of ultrasound leakage field ferrimagnet defect detecting system |
CN111458400A (en) * | 2020-04-09 | 2020-07-28 | 中北大学 | A metal material defect detection system based on electromagnetic induction |
CN112903162A (en) * | 2021-01-20 | 2021-06-04 | 中国石油大学(华东) | Method for evaluating residual stress distribution characteristics of natural gas pipeline circumferential weld by using coercive force |
-
2011
- 2011-03-22 CN CN2011200767890U patent/CN202018442U/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102182933A (en) * | 2011-03-22 | 2011-09-14 | 江南大学 | Nondestructive detection system and method for pulsed magnetic flux leakage defects and stresses |
WO2013078981A1 (en) * | 2011-11-30 | 2013-06-06 | 浙江大学 | Stress monitoring device of magneto-elastic and magneto-electric effect type |
CN105021693A (en) * | 2015-07-07 | 2015-11-04 | 中国石油大学(华东) | Whole-circumferential electromagnetic field based system for on-line quantitative detection of steel pipe crack |
CN105021693B (en) * | 2015-07-07 | 2017-02-15 | 中国石油大学(华东) | Whole-circumferential electromagnetic field based system for on-line quantitative detection of steel pipe crack |
CN106124612A (en) * | 2016-06-28 | 2016-11-16 | 中国计量大学 | A kind of Portable ferromagnetic fault in material based on low frequency electromagnetic detection device |
CN109856242A (en) * | 2019-01-23 | 2019-06-07 | 中国计量大学 | Combination of ultrasound leakage field ferrimagnet defect detecting system |
CN109856242B (en) * | 2019-01-23 | 2023-10-20 | 中国计量大学 | Ultrasonic combined leakage magnet magnetic material defect detection system |
CN111458400A (en) * | 2020-04-09 | 2020-07-28 | 中北大学 | A metal material defect detection system based on electromagnetic induction |
CN112903162A (en) * | 2021-01-20 | 2021-06-04 | 中国石油大学(华东) | Method for evaluating residual stress distribution characteristics of natural gas pipeline circumferential weld by using coercive force |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102182933B (en) | Non-destructive testing system and non-destructive testing method for pulse magnetic flux leakage defect and stress | |
CN202018442U (en) | Nondestructive detecting system for pulsed magnetic flux leakage defect and stress | |
CN110196276B (en) | Ferromagnetic material large-range damage low-frequency electromagnetic detection method based on broadband excitation | |
Xie et al. | A novel magnetic force transmission eddy current array probe and its application for nondestructive testing of defects in pipeline structures | |
CN103499404B (en) | Ferromagnetic component alterante stress measurement mechanism and measuring method thereof | |
CN101178385B (en) | Eddy current nondestructive testing system based on strain gauge | |
CN101178384A (en) | Composite Magnetic Measurement System Based on Barkhausen Noise and Metal Magnetic Memory | |
CN106124612A (en) | A kind of Portable ferromagnetic fault in material based on low frequency electromagnetic detection device | |
CN110057904B (en) | A method and device for quantitative detection of defects in moving metal components | |
CN103353479A (en) | Electromagnetic ultrasonic longitudinal guided wave and magnetic leakage detection compounded detection method | |
CN105092696B (en) | A kind of low-frequency ac flux-leakage detection method for the detection of ferromagnetic pipeline inner surface cracks | |
CN203643399U (en) | A pulsed eddy current defect detection system | |
CN103063124B (en) | A kind of detection method of austenitic stainless steel amount of plastic deformation | |
CN204044110U (en) | A kind of the cannot-harm-detection device for metallic conduit | |
CN102393419A (en) | Nondestructive detection method for early damage of ferromagnetic material | |
KR101150486B1 (en) | Apparatus and Method for detecting the wall thinning of pipeline using pulse magnetic field | |
CN105548349A (en) | Rectangular probe pulsed eddy current detecting method for realizing defect reconstruction technology | |
CN107576722A (en) | A kind of ferromagnetic material grinding burn detection method based on barkhausen | |
Piao et al. | High-speed inspection method fusing pulsed eddy current and magnetic flux leakage | |
CN106442707A (en) | Metal pipeline defect detecting device based on low-frequency electromagnetism | |
CN105784839A (en) | Method for detecting micro-defects on surfaces of metal container | |
CN105738465B (en) | Defect detection equipment and method for boiler water-cooled wall tubes based on low-frequency electromagnetic technology | |
Chen et al. | A novel identification approach for corrosion and gouging of oil and gas pipelines based on low magnetisation level MFL inspection | |
CN206270293U (en) | A metal pipeline defect detection device based on low-frequency electromagnetic | |
CN205643250U (en) | Small defect detecting device in metal container surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111026 Termination date: 20120322 |