CN201699986U - Indoor Positioning Device Based on WLAN - Google Patents
Indoor Positioning Device Based on WLAN Download PDFInfo
- Publication number
- CN201699986U CN201699986U CN2009201671703U CN200920167170U CN201699986U CN 201699986 U CN201699986 U CN 201699986U CN 2009201671703 U CN2009201671703 U CN 2009201671703U CN 200920167170 U CN200920167170 U CN 200920167170U CN 201699986 U CN201699986 U CN 201699986U
- Authority
- CN
- China
- Prior art keywords
- positioning
- module
- local area
- area network
- wireless local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012544 monitoring process Methods 0.000 claims abstract description 18
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000011835 investigation Methods 0.000 abstract description 15
- 238000000034 method Methods 0.000 description 25
- 238000005070 sampling Methods 0.000 description 16
- 238000001914 filtration Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 241000288673 Chiroptera Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000060 site-specific infrared dichroism spectroscopy Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本实用新型涉及基于无线局域网的室内定位设备领域。它是基于无线局域网的室内定位设备,包括进行实时接收各客户端定位模块发送的位置信息并在地图上实时显示该用户的位置信息的服务端监控模块,进行定义子空间、位置参考点、路径等各类信息并测试分析、实时跟踪、无线网卡设置等的位置调查模块,计算用户当前位置并将位置信息发送给服务端监控系统的客户端定位模块;服务端监控模块、位置调查模块、客户端定位模块相互之间通过无线局域网进行通讯,无线局域网络为802.11无线局域网。本实用新型的优点是成本低、定位精度高。在典型的办公楼环境下能够达到80%定位精度在3米以内,90%定位精度在5米以内;并且单次定位时间短,系统单次定位时间少于25秒。
The utility model relates to the field of indoor positioning equipment based on a wireless local area network. It is an indoor positioning device based on wireless LAN, including a server monitoring module that receives the location information sent by each client positioning module in real time and displays the user's location information on the map in real time, and defines subspaces, location reference points, and paths. The location investigation module of various information and test analysis, real-time tracking, wireless network card setting, etc., calculates the current location of the user and sends the location information to the client positioning module of the server monitoring system; the server monitoring module, location investigation module, customer The terminal positioning modules communicate with each other through a wireless local area network, and the wireless local area network is an 802.11 wireless local area network. The utility model has the advantages of low cost and high positioning accuracy. In a typical office building environment, 80% of the positioning accuracy can be achieved within 3 meters, and 90% of the positioning accuracy is within 5 meters; and the single positioning time is short, and the single positioning time of the system is less than 25 seconds.
Description
技术领域technical field
本实用新型属于通信领域,具体地说是涉及基于无线局域网的室内定位设备领域。The utility model belongs to the field of communication, in particular to the field of indoor positioning equipment based on a wireless local area network.
背景技术Background technique
卫星导航定位技术的产生及发展,使人们拥有了在全球广阔的室外空间中获取事物空间位置属性的技术方法,基本上解决了在室外对空通视条件良好的空间中进行定位的问题,并已在军事、交通、资源环境、农牧渔业、测绘等领域以及人们日常生活中得到了广泛的应用。室外空间虽然广阔,但大部分时间里,人们的活动还是在室内进行,而在目前的技术条件下,由于GPS的标准误差相对于较小的室内环境来说比较大,同时由于室内环境信号受到遮蔽,定位精度将受到更大的影响,卫星导航定位技术还难以满足室内环境下进行定位的要求。因此,针对室内这一特殊环境,必须研究专门的定位方法来进行室内定位。The emergence and development of satellite navigation and positioning technology has enabled people to have a technical method to obtain the spatial location attributes of things in the vast outdoor space around the world, basically solving the problem of positioning in an outdoor space with good air-to-air conditions, and It has been widely used in the fields of military affairs, transportation, resources and environment, agriculture, animal husbandry and fishery, surveying and mapping, and people's daily life. Although the outdoor space is vast, people's activities are still carried out indoors most of the time. Under the current technical conditions, the standard error of GPS is relatively large compared with the small indoor environment, and because the indoor environment signal is affected The positioning accuracy will be greatly affected by shadowing, and the satellite navigation and positioning technology is still difficult to meet the positioning requirements in the indoor environment. Therefore, for the special indoor environment, it is necessary to study a special positioning method for indoor positioning.
从20世纪90年代末期起,许多高校和研究机构开始了室内定位技术的研究,具有代表性的有AT&T Cambridge主持的Active Badges项目,之后进一步改进为Active Bats、Cricke,微软公司的Easy Living项目以及Georgia Tech公司的Smart Floor项目等。上述项目虽然取得了一定的效果,有的还可以达到毫米级的精度,但这些定位系统均需要添加新的硬件,系统部署复杂,维护成本高,可扩展性差。Since the late 1990s, many universities and research institutions have started research on indoor positioning technology. The representative one is the Active Badges project hosted by AT&T Cambridge, which was further improved to Active Bats, Cricke, Microsoft's Easy Living project and Georgia Tech's Smart Floor project, etc. Although the above-mentioned projects have achieved certain results, and some can achieve millimeter-level accuracy, these positioning systems all need to add new hardware, the system deployment is complicated, the maintenance cost is high, and the scalability is poor.
实用新型内容Utility model content
本发明的目的在于解决上述问题,提供一种成本低、定位精度高、系统部署简单、可扩展性好的室内定位设备。The purpose of the present invention is to solve the above problems and provide an indoor positioning device with low cost, high positioning accuracy, simple system deployment and good scalability.
本实用新型是这样实现的:The utility model is achieved in that:
基于无线局域网的室内定位设备,它包括进行实时接收各客户端定位模块发送的位置信息并在地图上实时显示该用户的位置信息的服务端监控模块,进行定义子空间、位置参考点、路径等各类信息并测试分析、实时跟踪、无线网卡设置等的位置调查模块,计算用户当前位置并将位置信息发送给服务端监控系统的客户端定位模块;服务端监控模块、位置调查模块、客户端定位模块相互之间通过无线局域网进行通讯。Indoor positioning equipment based on wireless local area network, which includes a server monitoring module that receives the location information sent by each client positioning module in real time and displays the user's location information on the map in real time, and defines subspaces, location reference points, paths, etc. The location investigation module of various information and test analysis, real-time tracking, wireless network card settings, etc., calculates the current location of the user and sends the location information to the client positioning module of the server monitoring system; server monitoring module, location investigation module, client The positioning modules communicate with each other through the wireless local area network.
该所述的无线局域网络为802.11无线局域网。The wireless local area network mentioned above is an 802.11 wireless local area network.
所述的客户端定位模块在读取信号强度数据时采取信号强度滤波方法。The client positioning module adopts a signal strength filtering method when reading signal strength data.
所述的客户端定位模块处理用户位置信息时采用用户位置滤波方法。The client positioning module adopts a user location filtering method when processing user location information.
所述的位置调查模块定义子空间、位置参考点、路径等各类信息时,采用室内环境的路径信息对定位算法的搜索子空间进行合理优化,即路径跟踪辅助的方法。When the location investigation module defines various information such as subspaces, location reference points, paths, etc., the path information of the indoor environment is used to rationally optimize the search subspace of the positioning algorithm, that is, the method of path tracking assistance.
所述的服务端监控模块运行的操作系统平台为Windows XP,Windows 2003 Server;位置调查模块运行的操作系统平台为Windows XP;客户端定位模块运行的操作系统平台为Windows XP/2000。The operating system platform that the server monitoring module operates is Windows XP, Windows 2003 Server; the operating system platform that the position investigation module operates is Windows XP; the operating system platform that the client positioning module operates is Windows XP/2000.
当前,基于802.11b/g协议的无线局域网已广泛分布在校园、办公大楼和家庭,各类掌上电脑、笔记本等移动设备中也都内置了无线网卡,基于接收信号强度(RSS)的无线局域网定位是根据接收信号强度随距离变化而变化的规律进行定位,与基于信号到达时间(TOA)和信号到达角度(AOA)的无线局域网定位技术相比,它不需要添加额外的硬件设备来进行精确的时间同步和角度测量,能充分利用现有的无线网设施,将定位系统的应用范围扩大到楼群和室内,从而大大降低了成本,因此成为室内定位技术的研究热点。At present, wireless local area networks based on 802.11b/g protocols have been widely distributed in campuses, office buildings and homes. Mobile devices such as handheld computers and notebooks also have built-in wireless network cards. Wireless local area network positioning based on received signal strength (RSS) Positioning is based on the law that the strength of the received signal changes with the distance. Compared with the wireless local area network positioning technology based on signal time of arrival (TOA) and signal angle of arrival (AOA), it does not need to add additional hardware devices for accurate positioning. Time synchronization and angle measurement can make full use of the existing wireless network facilities and expand the application range of the positioning system to buildings and indoors, thereby greatly reducing the cost, so it has become a research hotspot in indoor positioning technology.
本实用新型主要由三大组件模块构成,这三大组件模块分别是服务端监控模块、WLAN位置调查模块和客户端定位模块。这三大组件模块均可以通过802.11a/b/g无线网络进行相互通讯,位置指纹数据库集中存放中心数据库中。各个模块功能描述如下:The utility model is mainly composed of three major component modules, which are respectively a server monitoring module, a WLAN position investigation module and a client positioning module. These three component modules can communicate with each other through 802.11a/b/g wireless network, and the location fingerprint database is stored in the central database. The functions of each module are described as follows:
(1)、服务端监控模块,其运行的操作系统平台为Windows XP,Windows 2003 Server,主要功能为在屏幕上实时显示所有定位设备的当前位置。服务端监控系统通过UPD协议实时接收各个客户端定位模块发送过来的位置信息,并在地图上实时更新该用户的位置信息。(1), the server monitoring module, the operating system platform of which is Windows XP, Windows 2003 Server, the main function is to display the current position of all positioning devices on the screen in real time. The server monitoring system receives the location information sent by each client positioning module in real time through the UPD protocol, and updates the user's location information on the map in real time.
(2)、WLAN位置调查模块,其运行的操作系统平台为Windows XP,主要功能包括:项目新建,项目打开,导入地图,定义子空间,定义位置参考点,定义路径信息,定义地图比例,调查校正,调查测试,信号强度分析,精度统计分析,误差向量分析,实时跟踪和无线网卡设置等。(2), WLAN location investigation module, its running operating system platform is Windows XP, the main functions include: new project, project open, import map, define subspace, define location reference point, define path information, define map scale, investigate Calibration, survey testing, signal strength analysis, precision statistical analysis, error vector analysis, real-time tracking and wireless network card settings, etc.
(3)、客户端定位模块,其运行的操作系统平台为Windows XP/2000,主要功能为在手持设备(笔记本)上实时计算用户当前所在的位置,并将位置信息(x,y)通过UDP协议发送给服务端监控模块。(3), the client positioning module, the operating system platform of its operation is Windows XP/2000, the main function is to calculate the current location of the user in real time on the handheld device (notebook), and send the location information (x, y) through UDP The protocol is sent to the server monitoring module.
本室内定位设备主要采用的技术路线原理包括:The principle of the technical route mainly adopted by the indoor positioning equipment includes:
(1)、对采样得到的原始信号强度数据进行滤波降噪处理,即信号强度滤波(1) Perform filtering and noise reduction processing on the original signal strength data obtained by sampling, that is, signal strength filtering
由于室内环境的复杂性,无线网卡所获取的信号强度(RSSI)受到各类因素的噪声干扰,如手机、微波炉的信号干扰,因墙壁和天花板阻挡所引起的反射、折射、衍射,AP之间的频段干扰,以及突然的人走动和门窗的开关等。这些随机的干扰将导致采样得到的信号强度方差较大,噪声较多,从而严重影响了室内定位系统的定位精度。为了解决这一问题,需要采用滤波算法对原始数据进行降噪处理,减小方差,以提高定位设备的定位精度。由于室内环境下的噪声干扰(如有人经过时)一般会降低RSSI,因此本室内定位设备采用最大值滤波方法来进行滤波,即每连续的多个值中取一个最大值,滤去被干扰而造成RSSI较低的值,从而减小RSSI方差,提高室内定位设备的定位精度。Due to the complexity of the indoor environment, the signal strength (RSSI) obtained by the wireless network card is subject to noise interference from various factors, such as signal interference from mobile phones and microwave ovens, reflection, refraction, and diffraction caused by walls and ceilings, and between APs. frequency band interference, as well as sudden movement of people and the opening and closing of doors and windows. These random interferences will lead to large variance and noise in the signal strength obtained by sampling, which seriously affects the positioning accuracy of the indoor positioning system. In order to solve this problem, it is necessary to use a filtering algorithm to denoise the original data, reduce the variance, and improve the positioning accuracy of the positioning equipment. Since the noise interference in the indoor environment (such as when someone passes by) will generally reduce the RSSI, the indoor positioning equipment uses the maximum value filtering method to filter, that is, take a maximum value from each continuous value, and filter out the interference. This results in a lower value of RSSI, thereby reducing the variance of RSSI and improving the positioning accuracy of indoor positioning equipment.
(2)、利用滤波算法对定位设备估算出的用户位置坐标进行滤波处理,即用户位置滤波(2) Use the filtering algorithm to filter the user position coordinates estimated by the positioning device, that is, user position filtering
在动态实时跟踪应用时,定位设备要达到实时的目的,一般要在5秒左右计算出用户当前的位置信息。因此,实时跟踪时无线网卡读取的信号强度样本数据较小,如5秒钟仅读取10个信号强度数据(当扫描频率定义为1秒2次时),此时直接用各种定位算法计算用户位置时,其得到的用户位置变化均较大,所以需要借助于卡尔曼滤波或粒子滤波来进一步提高室内定位设备的性能。本定位设备采用卡尔曼滤波算法(Kalman Filter)来对系统估算出的用户位置坐标进行滤波处理,卡尔曼滤波算法的观测变量为四个,即[x,y,vx,vy]。In dynamic real-time tracking applications, the positioning device needs to calculate the current location information of the user in about 5 seconds to achieve real-time goals. Therefore, the signal strength sample data read by the wireless network card during real-time tracking is relatively small, for example, only 10 signal strength data are read in 5 seconds (when the scanning frequency is defined as 2 times per second), and various positioning algorithms are directly used at this time When calculating the user's location, the obtained user's location changes greatly, so it is necessary to further improve the performance of the indoor positioning device by means of Kalman filter or particle filter. The positioning device adopts Kalman filter algorithm (Kalman Filter) to filter the user position coordinates estimated by the system. The observation variables of the Kalman filter algorithm are four, namely [x, y, v x , v y ].
(3)、利用室内环境的路径信息对定位算法的搜索子空间进行合理优化,即路径跟踪辅助(3) Use the path information of the indoor environment to reasonably optimize the search subspace of the positioning algorithm, that is, path tracking assistance
在实现应用中,用户都按照一定的路径来运动,如从走廊的一头走到另一头,从一个房间进入到另一个房间,用户不可能穿墙而过等。因此,可以事先定义用户可能的各种路径等位置信息,然后定位算法再结合这此路径信息,来提高系统的定位精度。具体方法如下:首先定义室内环境的子空间信息,然后再定义这些子空间之间可能存在的路径信息。系统首先计算出当前用户位置所在的子空间,系统在估算用户的下一个位置时,只从当前子空间和与当前子空间相连的子空间中匹配计算,因而系统估算出的位置坐标不可能跳动太大,基本上按照事先定义的路径进行移动;更不可能穿墙而过,因为穿墙而过的路径信息不存在。而且,这样优化后,定位算法所要搜索匹配的子空间大大减少(原先要搜索匹配所有的子空间),因而计算坐标位置所需的时间也大大减少。In the implementation of the application, the user moves according to a certain path, such as walking from one end of the corridor to the other, entering from one room to another, and it is impossible for the user to pass through the wall. Therefore, position information such as various possible paths of the user can be defined in advance, and then the positioning algorithm can combine the path information to improve the positioning accuracy of the system. The specific method is as follows: first define the subspace information of the indoor environment, and then define the possible path information between these subspaces. The system first calculates the subspace where the current user's location is located. When estimating the user's next location, the system only matches and calculates from the current subspace and the subspace connected to the current subspace, so the position coordinates estimated by the system cannot jump If it is too large, it basically moves according to the path defined in advance; it is even more impossible to pass through the wall, because the path information for passing through the wall does not exist. Moreover, after such optimization, the subspaces to be searched and matched by the positioning algorithm are greatly reduced (originally all subspaces to be searched and matched), and thus the time required for calculating the coordinate position is also greatly reduced.
本室内定位设备的部署一般可分为以下6个步骤:The deployment of this indoor positioning device can generally be divided into the following six steps:
(1)、确定要进行室内定位的场地并绘制场地的地图文件;(1) Determine the venue for indoor positioning and draw a map file of the venue;
(2)、确定无线接入点(AP)的型号、数量,并对AP的布局进行合理优化;(2) Determine the model and quantity of wireless access points (APs), and rationally optimize the layout of APs;
(3)、在地图上定义子空间信息、位置参考点信息和子空间的路径信息;(3), define subspace information, position reference point information and path information of subspace on the map;
(4)、确定用户的运动路径,并利用WLAN位置调查模块进行调查校正和调查测试;(4), determine the motion path of the user, and use the WLAN position investigation module to perform investigation correction and investigation test;
(5)、分析系统的定位精度,并根据定位误差向量图对超出3米误差的点进行分析,确定误差的原因(如AP数量不够、AP布局不合理、采样点太少、采样点间距太大、采样时间太短、环境的干扰太严重等),并对AP重新调整和对该点重新采样,直到系统的定位精度满足用户的需求为止;(5) Analyze the positioning accuracy of the system, and analyze the points exceeding the 3-meter error according to the positioning error vector diagram, and determine the cause of the error (such as insufficient number of APs, unreasonable AP layout, too few sampling points, too much spacing between sampling points large, the sampling time is too short, the environmental interference is too serious, etc.), and re-adjust the AP and re-sample the point until the positioning accuracy of the system meets the user's needs;
(6)、进行实时跟踪实验,以验证系统的实际性能和可靠性。(6) Carry out real-time tracking experiments to verify the actual performance and reliability of the system.
本实用新型具有以下优点:The utility model has the following advantages:
本实用新型可以基于现有的无线局域网络(802.11a/b/g),定位方法采用基于接收信号强度(RSS)的定位算法,与其它的室内定位系统或设备相比而言,它不需要添加额外的硬件设备来进行精确的时间同步和角度测量,充分利用现有的无线网络设施,因此大大降低了设备的硬件成本。The utility model can be based on the existing wireless local area network (802.11a/b/g), and the positioning method adopts a positioning algorithm based on received signal strength (RSS). Compared with other indoor positioning systems or equipment, it does not require Adding additional hardware devices for precise time synchronization and angle measurement makes full use of existing wireless network facilities, thus greatly reducing the hardware cost of the device.
本室内定位设备的技术指标和水平:The technical index and level of this indoor positioning equipment:
(1)基于802.11无线局域网的室内定位设备;(1) Indoor positioning equipment based on 802.11 wireless local area network;
(2)在典型的办公楼环境下能够达到80%定位精度在3米以内,90%定位精度在5米以内;(2) In a typical office building environment, 80% of the positioning accuracy can be within 3 meters, and 90% of the positioning accuracy can be within 5 meters;
(3)系统单次定位时间短,一般少于25秒。(3) The single positioning time of the system is short, generally less than 25 seconds.
附图说明Description of drawings
下面结合附图和实施例对本实用新型做进一步说明。Below in conjunction with accompanying drawing and embodiment the utility model is described further.
图1为本实用新型示意图Fig. 1 is a schematic diagram of the utility model
图2为本实用新型定位算法流程示意图Fig. 2 is the schematic flow chart of positioning algorithm of the utility model
图3为实验场地的采样路径和AP布局示意图Figure 3 is a schematic diagram of the sampling path and AP layout of the experimental site
图4为本实用新型采用最近邻域法和概率方法两种定位算法实验结果的比较Fig. 4 is that the utility model adopts the comparison of two kinds of positioning algorithm experimental results of nearest neighbor method and probability method
具体实施方式Detailed ways
基于无线局域网的室内定位设备,它包括进行实时接收各客户端定位模块发送的位置信息并在地图上实时显示该用户的位置信息的服务端监控模块1,进行定义子空间、位置参考点、路径等各类信息并测试分析、实时跟踪、无线网卡设置等的位置调查模块2,计算用户当前位置并将位置信息发送给服务端监控系统的客户端定位模块3;中心数据库为4。服务端监控模块、位置调查模块、客户端定位模块相互之间通过无线局域网进行通讯。无线局域网络为802.11无线局域网。位置指纹数据库集中存放中心数据库中。见图1。An indoor positioning device based on a wireless local area network, which includes a
客户端定位模块在读取信号强度数据时采取信号强度滤波方法。客户端定位模块处理用户位置信息时采用用户位置滤波方法。位置调查模块定义子空间、位置参考点、路径等各类信息时,采用室内环境的路径信息对定位算法的搜索子空间进行合理优化,即路径跟踪辅助的方法。服务端监控模块运行的操作系统平台为Windows XP,Windows 2003Server位置调查模块运行的操作系统平台为Windows XP;客户端定位模块运行的操作系统平台为WindowsXP/2000。The client positioning module adopts a signal strength filtering method when reading signal strength data. The client location module adopts the user location filtering method when processing the user location information. When the location investigation module defines various information such as subspace, location reference point, path, etc., the path information of the indoor environment is used to rationally optimize the search subspace of the positioning algorithm, that is, the method of path tracking assistance. The operating system platform of the server monitoring module is Windows XP, the operating system platform of the Windows 2003Server location investigation module is Windows XP; the operating system platform of the client positioning module is WindowsXP/2000.
本实用新型定位算法的流程见图2,具体描述如下:The flow chart of the positioning algorithm of the utility model is shown in Fig. 2, and is specifically described as follows:
首先,系统通过无线网卡驱动读取各个接入点(AP)的信号强度,再分别进入采样阶段5和定位阶段6;在采样阶段5时,读取的信号强度经过信号强度滤波、特征信息提取之后保存到指纹数据库中,指纹数据库的内容包括各个采样点的位置坐标和该点对应的各个接入点(AP)的信号强度;在定位阶段6时,读取的信号强度经过信号强度滤波后,通过最近邻居法计算出用户的初始估算位置,再通过用户位置滤波、路径跟踪辅助模块对该估算位置进行修正处理,最后将修正后的用户位置坐标输出,供上层应用软件调用。First, the system reads the signal strength of each access point (AP) through the wireless network card driver, and then enters the
本实用新型的应用实验:Application experiment of the present utility model:
本实用新型室内定位的实验场地为樱花大厦的11楼,该环境为典型的办公楼环境。在本文的实验中,我们仅对405平方米的半层楼进行AP部署实验。该区域的长度为27米,宽度为15米,包括15间小房间,一条走廊,一个卫生间,一个楼梯和一个电梯,为典型的办公楼环境。The experimental site for the indoor positioning of the utility model is the 11th floor of the Sakura Building, and the environment is a typical office building environment. In the experiments in this paper, we only conduct AP deployment experiments on a half-floor building of 405 square meters. The area has a length of 27 meters and a width of 15 meters, including 15 small rooms, a corridor, a toilet, a staircase and an elevator, for a typical office building environment.
该区域我们一共部署了8个接入点AP(Access Point),其中AP的型号为国内最常见的TP-LINK TL-WA501G型号,AP的布局应该呈非对称状布局,或者呈之字状布局,不能放置在一条直线上,且AP之间的距离也不应该太小。We deployed a total of 8 access points (Access Point) in this area. The AP model is the most common TP-LINK TL-WA501G model in China. The AP layout should be asymmetrical or zigzag. , cannot be placed in a straight line, and the distance between APs should not be too small.
无线网卡的信号强度获取我们采用微软公司的Windows XP driver development kit(DDK)和California大学的Wireless Research API(WRAPI)。WRAPI是2002年开发的软件库,主要用于移动终端设备查询IEEE802.11网络相关信息,包括MAC地址、SSID和接收信号强度等。本实用新型的部署一般可分为以下6个步骤:To obtain the signal strength of the wireless network card, we use Microsoft's Windows XP driver development kit (DDK) and the Wireless Research API (WRAPI) of the University of California. WRAPI is a software library developed in 2002. It is mainly used for mobile terminal equipment to query IEEE802.11 network related information, including MAC address, SSID and received signal strength. The deployment of the present utility model can generally be divided into following 6 steps:
确定要进行室内定位的场地并绘制场地的地图文件;Determine the venue for indoor positioning and draw a map file of the venue;
确定AP的型号、数量,并对AP的布局进行合理优化;Determine the model and quantity of APs, and rationally optimize the layout of APs;
在地图上定义子空间信息和位置参考点信息;Define subspace information and location reference point information on the map;
确定用户的运动路径,并利用位置调查程序进行调查校正和调查测试;Determine the user's movement path and use the location survey program to conduct survey corrections and survey tests;
分析系统的定位精度,并根据定位误差向量图对超出3米误差的点进行分析,确定误差的原因,并对AP重新调整和对该点重新采样,直到系统的定位精度满足用户的需求为止;Analyze the positioning accuracy of the system, and analyze the points exceeding the 3-meter error according to the positioning error vector diagram, determine the cause of the error, and readjust the AP and re-sample the point until the positioning accuracy of the system meets the user's needs;
进行实时跟踪实验,以验证系统的实际性能和可靠性。Conduct real-time tracking experiments to verify the actual performance and reliability of the system.
实验场地的采样路径和AP布局见图3所示,7为接入点AP。The sampling path and AP layout of the experimental site are shown in Figure 3, and 7 is the access point AP.
每个采样点之间的间距为1.5米左右,每个采样点的采样时间为25秒,即每个采样点读取信号强度50次(本系统的信号强度扫描频率为2次/秒)。The distance between each sampling point is about 1.5 meters, and the sampling time of each sampling point is 25 seconds, that is, the signal strength of each sampling point is read 50 times (the signal strength scanning frequency of this system is 2 times/second).
另外,子空间的划分标准为:每个小房间为一个子空间,房间外走廊、房间内走廊、卫生间处、楼梯处和电梯处分别为单独的子空间,因此本实验环境中一共有20个子空间。In addition, the subspace division standard is: each small room is a subspace, and the corridor outside the room, the corridor inside the room, the bathroom, the stairs and the elevator are separate subspaces, so there are 20 subspaces in this experimental environment. space.
本实用新型的定位算法采用公知的最近邻域法(kNN)和概率方法(Probabilistic Method)。The location algorithm of the utility model adopts known nearest neighbor method (kNN) and probability method (Probabilistic Method).
本文中,室内定位系统的精确度评价标准主要参照Ekahau定位系统,分别为平均误差(AvgError)、90%定位误差(90%Error)、子空间精确度(Zone Accuracy)和3米以内精确度(Accuracy in3 meters)。In this paper, the accuracy evaluation criteria of the indoor positioning system mainly refer to the Ekahau positioning system, which are the average error (AvgError), 90% positioning error (90% Error), subspace accuracy (Zone Accuracy) and accuracy within 3 meters ( Accuracy in3 meters).
两种定位算法的实验结果如图4所示。实验结果表明,最近邻域法(kNN)能够获得90%2.7米以内的定位精度,而概率方法(Probabilistic Method)能够获得90%2.8米以内的定位精度,两种定位算法的90%定位误差比较相近,但对平均误差,子空间精确度和3米以内精确度而言,最近邻域法远比概率方法精度高,分析其原因在于室内的信号强度受到环境的干扰比较严重,且系统的采样时间较短(每个采样点仅为25秒),从而使得信号强度的高斯分布特性并不明显所致。The experimental results of the two localization algorithms are shown in Fig. 4. The experimental results show that the nearest neighbor method (kNN) can obtain 90% of the positioning accuracy within 2.7 meters, and the probabilistic method (Probabilistic Method) can obtain 90% of the positioning accuracy within 2.8 meters. The 90% positioning error of the two positioning algorithms is compared It is similar, but in terms of average error, subspace accuracy and accuracy within 3 meters, the nearest neighbor method is far more accurate than the probability method. The reason for this analysis is that the indoor signal strength is seriously interfered by the environment, and the sampling of the system The time is short (only 25 seconds for each sampling point), so that the Gaussian distribution characteristic of the signal intensity is not obvious.
即,本实用新型在典型的办公楼实验环境下,对于最近邻域法而言达到了3米以内96%的定位精度,对于概率方法而言达到了3米以内91%的定位精度。That is, in a typical office building experimental environment, the utility model has achieved a positioning accuracy of 96% within 3 meters for the nearest neighbor method, and a positioning accuracy of 91% within 3 meters for the probabilistic method.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201671703U CN201699986U (en) | 2009-08-03 | 2009-08-03 | Indoor Positioning Device Based on WLAN |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201671703U CN201699986U (en) | 2009-08-03 | 2009-08-03 | Indoor Positioning Device Based on WLAN |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201699986U true CN201699986U (en) | 2011-01-05 |
Family
ID=43401234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009201671703U Expired - Fee Related CN201699986U (en) | 2009-08-03 | 2009-08-03 | Indoor Positioning Device Based on WLAN |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201699986U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185746A (en) * | 2011-04-27 | 2011-09-14 | 深圳和而泰智能控制股份有限公司 | Automatic layout method and system for indoor equipment |
CN102833671A (en) * | 2011-06-17 | 2012-12-19 | 国民技术股份有限公司 | Method and system for positioning robot vision |
TWI462619B (en) * | 2011-03-04 | 2014-11-21 | Qualcomm Inc | Rssi-based indoor positioning in the presence of dynamic transmission power control access points |
CN104813185A (en) * | 2012-12-14 | 2015-07-29 | 苹果公司 | Location determination using a state space estimator |
CN105007624A (en) * | 2015-08-13 | 2015-10-28 | 南京理工大学 | Indoor positioning method based on received signal strength |
CN111693938A (en) * | 2020-06-10 | 2020-09-22 | 北京云迹科技有限公司 | Floor positioning method and device of robot, robot and readable storage medium |
CN113115224A (en) * | 2021-04-06 | 2021-07-13 | 中移(上海)信息通信科技有限公司 | Indoor positioning method and indoor positioning device |
-
2009
- 2009-08-03 CN CN2009201671703U patent/CN201699986U/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI462619B (en) * | 2011-03-04 | 2014-11-21 | Qualcomm Inc | Rssi-based indoor positioning in the presence of dynamic transmission power control access points |
US9081080B2 (en) | 2011-03-04 | 2015-07-14 | Qualcomm Incorporated | RSSI-based indoor positioning in the presence of dynamic transmission power control access points |
US9560622B2 (en) | 2011-03-04 | 2017-01-31 | Qualcomm Incorporated | Indoor positioning in the presence of dynamic transmission power control access points |
CN102185746A (en) * | 2011-04-27 | 2011-09-14 | 深圳和而泰智能控制股份有限公司 | Automatic layout method and system for indoor equipment |
CN102833671A (en) * | 2011-06-17 | 2012-12-19 | 国民技术股份有限公司 | Method and system for positioning robot vision |
CN104813185A (en) * | 2012-12-14 | 2015-07-29 | 苹果公司 | Location determination using a state space estimator |
CN104813185B (en) * | 2012-12-14 | 2018-02-23 | 苹果公司 | Use state spatial estimator carries out position determination |
CN105007624A (en) * | 2015-08-13 | 2015-10-28 | 南京理工大学 | Indoor positioning method based on received signal strength |
CN111693938A (en) * | 2020-06-10 | 2020-09-22 | 北京云迹科技有限公司 | Floor positioning method and device of robot, robot and readable storage medium |
CN113115224A (en) * | 2021-04-06 | 2021-07-13 | 中移(上海)信息通信科技有限公司 | Indoor positioning method and indoor positioning device |
CN113115224B (en) * | 2021-04-06 | 2021-11-09 | 中移(上海)信息通信科技有限公司 | Indoor positioning method and indoor positioning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Molina et al. | A multimodal fingerprint-based indoor positioning system for airports | |
CN201699986U (en) | Indoor Positioning Device Based on WLAN | |
Elbakly et al. | A robust zero-calibration RF-based localization system for realistic environments | |
Marques et al. | Combining similarity functions and majority rules for multi-building, multi-floor, WiFi positioning | |
CN109275095B (en) | Bluetooth-based indoor positioning system, positioning equipment and positioning method | |
CN104853317B (en) | The structure and update method of fingerprint base in a kind of WiFi indoor positionings | |
US20060087425A1 (en) | System and method for localization over a wireless network | |
CN101778399A (en) | Method for optimizing WLAN (Wireless Local Area Network) indoor ANN (Artificial Neural Network) positioning based on FCM (fuzzy C-mean) and least-squares curve surface fitting methods | |
CN107801147A (en) | One kind is based on the adaptive indoor orientation method of the improved multizone of RSSI rangings | |
CN103997717A (en) | Real-time indoor positioning system and method | |
CN102325369A (en) | Indoor single-source linear WKNN positioning method for WLAN based on reference point location optimization | |
CN107580313A (en) | Indoor positioning system and its positioning method combining Bluetooth Beacon and smart phone | |
Yao et al. | Location estimation in ZigBee network based on fingerprinting | |
CN104780606A (en) | Indoor positioning system and method based on WLAN (wireless local area network) | |
Kolakowski | Automatic radio map creation in a fingerprinting‐based ble/uwb localisation system | |
Hu | Wi-Fi based indoor positioning system using smartphones | |
CN103841639A (en) | Wireless local area network technology for indoor positioning | |
CN106455051B (en) | Pass through the method for range calibration equipment lifting WiFi positioning accuracy | |
Hansen et al. | Algorithmic strategies for adapting to environmental changes in 802.11 location fingerprinting | |
Retscher et al. | Performance and accuracy test of the WLAN indoor positioning system" ipos" | |
Chan et al. | Wireless tracking analysis in location fingerprinting | |
Rozum et al. | Bluetooth low power portable indoor positioning system using simo approach | |
Bozkurt et al. | A novel multi-sensor and multi-topological database for indoor positioning on fingerprint techniques | |
Qi et al. | BLE-based floor positioning method for multi-level atrium spatial environments | |
CN108521631A (en) | A mobile AP identification method for indoor positioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110105 Termination date: 20110803 |