CN116731396B - Preparation method and application of high-performance asphalt odor-removal flame-retardant synergist - Google Patents
Preparation method and application of high-performance asphalt odor-removal flame-retardant synergist Download PDFInfo
- Publication number
- CN116731396B CN116731396B CN202310843994.2A CN202310843994A CN116731396B CN 116731396 B CN116731396 B CN 116731396B CN 202310843994 A CN202310843994 A CN 202310843994A CN 116731396 B CN116731396 B CN 116731396B
- Authority
- CN
- China
- Prior art keywords
- asphalt
- calcium carbonate
- odor
- zinc stannate
- carbonate powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 209
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 239000003063 flame retardant Substances 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 232
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 114
- BNEMLSQAJOPTGK-UHFFFAOYSA-N zinc;dioxido(oxo)tin Chemical compound [Zn+2].[O-][Sn]([O-])=O BNEMLSQAJOPTGK-UHFFFAOYSA-N 0.000 claims abstract description 77
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000000576 coating method Methods 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims description 65
- 238000003756 stirring Methods 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 21
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 19
- 239000006185 dispersion Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 14
- 239000004202 carbamide Substances 0.000 claims description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- -1 ester compound Chemical class 0.000 claims description 12
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 7
- 239000003607 modifier Substances 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- 239000000779 smoke Substances 0.000 abstract description 30
- 239000000463 material Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 4
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 53
- 238000012360 testing method Methods 0.000 description 33
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 28
- 239000003546 flue gas Substances 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 21
- 239000002131 composite material Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000002156 mixing Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 238000010276 construction Methods 0.000 description 7
- 239000013067 intermediate product Substances 0.000 description 7
- BHTBHKFULNTCHQ-UHFFFAOYSA-H zinc;tin(4+);hexahydroxide Chemical group [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Zn+2].[Sn+4] BHTBHKFULNTCHQ-UHFFFAOYSA-H 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910052984 zinc sulfide Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000009965 odorless effect Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229940071182 stannate Drugs 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 239000002879 Lewis base Substances 0.000 description 2
- 238000010669 acid-base reaction Methods 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 150000007527 lewis bases Chemical class 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 125000005402 stannate group Chemical group 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- PRKQVKDSMLBJBJ-UHFFFAOYSA-N ammonium carbonate Chemical compound N.N.OC(O)=O PRKQVKDSMLBJBJ-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 150000004291 polyenes Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000974 shear rheometry Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- GZCWPZJOEIAXRU-UHFFFAOYSA-N tin zinc Chemical compound [Zn].[Sn] GZCWPZJOEIAXRU-UHFFFAOYSA-N 0.000 description 1
- DZXKSFDSPBRJPS-UHFFFAOYSA-N tin(2+);sulfide Chemical compound [S-2].[Sn+2] DZXKSFDSPBRJPS-UHFFFAOYSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/08—Oxygen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域Technical field
本发明涉及材料技术领域,特别是涉及一种高性能沥青净味阻燃协效剂的制备方法及应用。The invention relates to the field of material technology, and in particular to a preparation method and application of a high-performance asphalt odor-free flame retardant synergist.
背景技术Background technique
沥青主要由碳氢化合物及其非金属衍生物组成,是一种稠状半固态的复杂混合物,它由于具有粘性、延展性、温变性等优良的性能,被广泛应用在防水、涂料、塑料、橡胶、道路等方面。由于沥青的熔点较高,使用过程中必须先进行加热,并且沥青的成分非常复杂,在加热的过程中不仅会产生沥青烟气,而且还需要消耗大量的能源,产生大量的二氧化碳、氮氧化物、硫氧化物等多种污染物,是大气污染的重要来源。Asphalt is mainly composed of hydrocarbons and their non-metallic derivatives. It is a thick, semi-solid and complex mixture. It is widely used in waterproofing, coatings, plastics, etc. due to its excellent properties such as viscosity, ductility, and temperature deformation. Rubber, roads, etc. Due to the high melting point of asphalt, it must be heated first during use, and the composition of asphalt is very complex. During the heating process, not only will asphalt smoke be produced, but a large amount of energy will also be consumed, and a large amount of carbon dioxide and nitrogen oxides will be produced. , sulfur oxides and other pollutants are important sources of air pollution.
沥青烟气主要来源于沥青、石油、煤炭等,它是这些原料在高温生产过程中,扩散到空气中的一种烟雾状的物质。这些原料在高温下时会因氧气供应不足,不能深度氧化而产生沥青烟气。沥青的成分较复杂,不同的地域、厂家、生产工艺条件下所生产的沥青成分差别都很大,但沥青烟的组成基本上与沥青接近,它通常以气溶胶形式存在,其粒径多在0.1~1.0μm之间,对环境的污染危害较大。Asphalt flue gas mainly comes from asphalt, petroleum, coal, etc. It is a smog-like substance that diffuses into the air during the high-temperature production process of these raw materials. When these raw materials are exposed to high temperatures, due to insufficient oxygen supply, they cannot be deeply oxidized and produce asphalt fumes. The composition of asphalt is complex, and the composition of asphalt produced under different regions, manufacturers, and production process conditions varies greatly. However, the composition of asphalt smoke is basically close to that of asphalt. It usually exists in the form of aerosol, and its particle size is mostly in the Between 0.1 and 1.0μm, it is more harmful to environmental pollution.
目前,道路交通建设正在迅速发展,且多用沥青铺设路面。采用沥青混合料来铺设路面,不仅可以降低路面噪音,还可以提高路面的行驶舒适性。但在一些封闭而又长的隧道中或高温天气施工时,沥青烟气严重威胁着施工人员的身心健康。与此同时,沥青作为普遍适用的建筑材料,其广泛使用带来的环境污染问题已经成为不可回避的环境问题。因此,研究沥青烟气的组成并抑制沥青烟气的产生,可以减少对施工人员的伤害,降低沥青烟气造成的环境公害。At present, road traffic construction is developing rapidly, and asphalt is often used to pave roads. Using asphalt mixture to pave the road can not only reduce road noise, but also improve the driving comfort of the road. However, when constructing in some closed and long tunnels or in hot weather, asphalt smoke seriously threatens the physical and mental health of construction workers. At the same time, asphalt is a universal building material, and the environmental pollution caused by its widespread use has become an unavoidable environmental problem. Therefore, studying the composition of asphalt smoke and suppressing the generation of asphalt smoke can reduce the harm to construction workers and reduce the environmental pollution caused by asphalt smoke.
发明内容Contents of the invention
本发明的目的是提供一种高性能沥青净味阻燃协效剂的制备方法及应用,以降低沥青施工过程中的烟气危害问题。本发明研制出一种基于高碳醇偶联的锡酸锌包覆碳酸钙作为高性能沥青净味阻燃协效剂,通过将碳酸钙经过锡酸锡包覆使其具有阻燃性能,而后通过硅烷偶联剂分子的其中一端与碳酸钙表面的羟基反应,形成氢键,并在一定条件下缩合、脱水和固化,形成共价键;另一端与高碳醇结合,从而使高分子材料(高碳醇)—硅烷偶联剂—无机材料之间(锡酸锌包覆碳酸钙)产生一种良好的界面结合,在碳酸钙表面形成具有多孔隙、高比表面的结构。本材料借助碳酸钙表面部分包覆的锡酸锌来提升沥青的阻燃性能,通过表面的多孔隙、高比表面的结构来吸收沥青高温时释放的小分子烟气物质,同时硅烷偶联剂增强了本材料与沥青的相容性,因此本材料作为沥青净味阻燃协效剂应用于沥青施工中,可达到提高沥青高温性能和阻燃性能,减少沥青烟气和恶臭气体排放的作用。The purpose of the present invention is to provide a preparation method and application of a high-performance asphalt odor-free flame retardant synergist to reduce smoke hazards during asphalt construction. The present invention develops a zinc stannate-coated calcium carbonate based on high-carbon alcohol coupling as a high-performance asphalt odor-cleaning flame retardant synergist. The calcium carbonate is coated with tin stannate to make it have flame retardant properties, and then One end of the silane coupling agent molecule reacts with the hydroxyl group on the surface of calcium carbonate to form a hydrogen bond, and is condensed, dehydrated and solidified under certain conditions to form a covalent bond; the other end is combined with a high-carbon alcohol, thereby making the polymer material (High carbon alcohol) - silane coupling agent - inorganic material (zinc stannate coated calcium carbonate) produces a good interface bond, forming a porous and high specific surface structure on the surface of calcium carbonate. This material uses zinc stannate partially coated on the surface of calcium carbonate to improve the flame retardant properties of asphalt. The porous and high specific surface structure of the surface absorbs the small molecule smoke substances released by asphalt at high temperatures. At the same time, the silane coupling agent The compatibility of this material with asphalt is enhanced. Therefore, this material is used in asphalt construction as an odor-free flame retardant synergist for asphalt. It can improve the high temperature performance and flame retardant performance of asphalt and reduce the emission of asphalt smoke and odorous gases. .
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following solutions:
本发明的技术方案之一:一种沥青净味阻燃协效剂的制备方法,包括,在碳酸钙表面依次包覆锡酸锌和高碳醇,得到高碳醇偶联的锡酸锌包覆碳酸钙,即为所述沥青净味阻燃协效剂。One of the technical solutions of the present invention: a method for preparing an asphalt odor-free flame retardant synergist, which includes sequentially coating zinc stannate and higher alcohol on the surface of calcium carbonate to obtain a high alcohol-coupled zinc stannate coating. Coated with calcium carbonate, it is the asphalt odor-free flame retardant synergist.
进一步地,所述在碳酸钙表面包覆锡酸锌的方法还包括:Further, the method of coating zinc stannate on the surface of calcium carbonate also includes:
将碳酸钙粉末和尿素(CO(NH)2)加入水中,加热搅拌,分散,得到预处理碳酸钙水分散液;Add calcium carbonate powder and urea (CO(NH) 2 ) to water, heat, stir, and disperse to obtain a pretreated calcium carbonate aqueous dispersion;
将锡酸锌、氧化锌和碱金属化合物与水混合,加热搅拌,然后加入所述预处理碳酸钙水分散液,继续加热搅拌反应,反应结束后将所得乳液过滤、干燥、煅烧,得到锡酸锌包覆碳酸钙粉末。Mix zinc stannate, zinc oxide and an alkali metal compound with water, heat and stir, then add the pre-treated calcium carbonate aqueous dispersion, continue heating and stirring the reaction, after the reaction is completed, the obtained emulsion is filtered, dried and calcined to obtain stannic acid Zinc coated calcium carbonate powder.
进一步地,所述在碳酸钙表面包覆高碳醇的方法还包括:Further, the method of coating higher carbon alcohol on the surface of calcium carbonate also includes:
将所述锡酸锌包覆碳酸钙粉末溶于酯类化合物溶液中,然后加入硅烷偶联剂,加热搅拌,再加入高碳醇粉末,继续加热搅拌反应,反应结束后过滤、干燥、研磨,得到高碳醇偶联的锡酸锌包覆碳酸钙,即为所述沥青净味阻燃协效剂。Dissolve the zinc stannate-coated calcium carbonate powder in the ester compound solution, then add a silane coupling agent, heat and stir, then add high-carbon alcohol powder, continue to heat and stir the reaction, filter, dry and grind after the reaction is completed. The high-carbon alcohol-coupled zinc stannate-coated calcium carbonate is obtained, which is the asphalt odor-cleaning flame retardant synergist.
进一步地,所述将碳酸钙粉末和尿素加入水中,加热搅拌,分散,得到预处理碳酸钙水分散液的方法还包括:Further, the method of adding calcium carbonate powder and urea to water, heating, stirring, and dispersing to obtain a pretreated calcium carbonate aqueous dispersion also includes:
所述碳酸钙粉末的粒径为200-400目;所述碳酸钙粉末与尿素的质量比为(3.5-5):1,碳酸钙粉末与水的用量比为(1-1.5)g:10ml;所述加热搅拌的温度为35-65℃,搅拌时间为40-80min。The particle size of the calcium carbonate powder is 200-400 mesh; the mass ratio of the calcium carbonate powder to urea is (3.5-5):1, and the dosage ratio of calcium carbonate powder to water is (1-1.5)g:10ml ; The heating and stirring temperature is 35-65°C, and the stirring time is 40-80min.
所述分散为超声分散,时间为50-100min。The dispersion is ultrasonic dispersion, and the time is 50-100 minutes.
进一步地,所述将锡酸锌、氧化锌和碱金属化合物与水混合,加热搅拌,然后加入所述预处理碳酸钙水分散液,继续加热搅拌反应,反应结束后将所得乳液过滤、干燥、煅烧,得到锡酸锌包覆碳酸钙粉末的方法还包括:Furthermore, the method of mixing zinc stannate, zinc oxide and an alkali metal compound with water, heating and stirring, then adding the pretreated calcium carbonate aqueous dispersion, continuing heating and stirring to react, filtering, drying and calcining the obtained emulsion after the reaction is completed, and obtaining the zinc stannate coated calcium carbonate powder also includes:
所述锡酸锌为羟基锡酸锌(Na2Sn(OH)6),所述碱金属氧化物优选为氢氧化钠(NaOH)。The zinc stannate is zinc hydroxystannate (Na 2 Sn(OH) 6 ), and the alkali metal oxide is preferably sodium hydroxide (NaOH).
所述锡酸锌与水的用量比为(1-2)g:7-10ml。The dosage ratio of the zinc stannate to water is (1-2)g:7-10ml.
按质量比计,锡酸锌:氧化锌:碱金属化合物:碳酸钙粉末=(1.0-2.0):(0.3-0.8):(1.0-2.2):10;所述煅烧的温度为500-700℃,时间为0.8-2.2h。The mass ratio of zinc stannate: zinc oxide: alkali metal compound: calcium carbonate powder is (1.0-2.0): (0.3-0.8): (1.0-2.2): 10; the calcination temperature is 500-700° C., and the calcination time is 0.8-2.2 h.
预处理碳酸钙水分散液加入前后加热搅拌的温度均为50-90℃,转速均为300-550rpm,总的搅拌时间为5-12h。The heating and stirring temperature before and after the addition of the pretreated calcium carbonate aqueous dispersion is 50-90°C, the rotation speed is 300-550 rpm, and the total stirring time is 5-12 hours.
进一步地,所述将锡酸锌包覆碳酸钙粉末溶于酯类化合物溶液中,然后加入硅烷偶联剂,加热搅拌,再加入高碳醇粉末,继续加热搅拌反应,反应结束后过滤、干燥、研磨,得到高碳醇偶联的锡酸锌包覆碳酸钙,即为所述沥青净味阻燃协效剂的方法还包括:Further, the zinc stannate-coated calcium carbonate powder is dissolved in the ester compound solution, then a silane coupling agent is added, heated and stirred, then high-carbon alcohol powder is added, the heating and stirring reaction is continued, and after the reaction is completed, it is filtered and dried. , grinding to obtain high-carbon alcohol-coupled zinc stannate-coated calcium carbonate, which is the asphalt odor-cleaning flame retardant synergist. The method also includes:
所述酯类化合物溶液为乙酸乙酯或乙酸异戊酯。The ester compound solution is ethyl acetate or isoamyl acetate.
高碳醇粉末加入前后加热搅拌的温度均为40-85℃,转速均为300-350rpm,总的搅拌时间为6-10h。The heating and stirring temperature before and after adding the high-carbon alcohol powder is 40-85°C, the rotation speed is 300-350 rpm, and the total stirring time is 6-10 hours.
所述干燥的温度为45-75℃。The drying temperature is 45-75°C.
所述研磨是将固体产物研磨至粒径为200-400目。The grinding is to grind the solid product to a particle size of 200-400 mesh.
进一步地,所述高碳醇的碳原子数量为16-18。Further, the number of carbon atoms of the higher carbon alcohol is 16-18.
进一步地,所述碳酸钙粉末与所述硅烷偶联剂的质量比为20:(0.15-0.22);所述碳酸钙粉末与所述高碳醇的质量比为25:(0.1-0.3)。Further, the mass ratio of the calcium carbonate powder to the silane coupling agent is 20: (0.15-0.22); the mass ratio of the calcium carbonate powder to the higher alcohol is 25: (0.1-0.3).
生成锡酸锌包覆碳酸钙粉末的原理是通过羟基锡酸锌在碱性条件下(碱性条件由碱金属氧化物、尿素提供)反应生成晶型稳定的锡酸锌颗粒并均匀沉淀在碳酸钙表面,而后通过煅烧去除杂质并使包覆后的碳酸钙粉末更加稳定。The principle of generating zinc stannate-coated calcium carbonate powder is to react with zinc hydroxystannate under alkaline conditions (the alkaline conditions are provided by alkali metal oxides and urea) to generate zinc stannate particles with stable crystal form and uniformly precipitate in carbonic acid. The calcium surface is then calcined to remove impurities and make the coated calcium carbonate powder more stable.
尿素对反应的控制起着非常重要的作用,它可以慢慢释放出羟氢离子,从而可以精确地控制反应速度,使得到的产物颗粒大小均匀、形状规则。这是由于尿素在加热的过程中会发生水解,生成氨和碳酸二氨,然后释放羟基离子,这个过程比较缓慢,可以作为反应的缓冲剂。Urea plays a very important role in controlling the reaction. It can slowly release hydroxyl hydrogen ions, thereby accurately controlling the reaction speed and making the resulting product particles uniform in size and regular in shape. This is because urea will hydrolyze during the heating process to generate ammonia and diamine carbonate, and then release hydroxyl ions. This process is relatively slow and can be used as a buffer for the reaction.
此外,尿素还可以提供一个适合生成锡酸锌晶体的碱性环境。当尿素与溶液中的离子反应时,可以形成相应的锡酸盐和锌酸盐,这两种物质在溶液中的浓度会逐渐增加,直到超过饱和度,从而形成锡酸锌晶体。这种方法可以得到具有优良晶体性能的锡酸锌。In addition, urea can provide an alkaline environment suitable for the formation of zinc stannate crystals. When urea reacts with ions in the solution, the corresponding stannate and zincate can be formed. The concentration of these two substances in the solution will gradually increase until it exceeds saturation, thus forming zinc stannate crystals. This method can produce zinc stannate with excellent crystal properties.
另外,本发明通过控制碳酸钙粉末与羟基锡酸锌的用量比控制锡酸锌在碳酸钙表面包覆面积,以实现锡酸锌在碳酸钙表面的部分包覆。另外,高碳醇的包覆面积则通过控制碳酸钙粉末、羟基锡酸锌、高碳醇粉末三者的用量比控制,且因为硅烷偶联剂是一种能够连接不同材料表面的物质,它具有广泛的接枝性能,所以硅烷偶联剂既可以包覆在经过锡酸锌包覆过的碳酸钙表面,也可以直接包覆在未被锡酸锌包覆过的碳酸钙表面。In addition, the present invention controls the coating area of zinc stannate on the surface of calcium carbonate by controlling the dosage ratio of calcium carbonate powder and zinc hydroxystannate, so as to achieve partial coating of zinc stannate on the surface of calcium carbonate. In addition, the coating area of high-carbon alcohol is controlled by controlling the dosage ratio of calcium carbonate powder, zinc hydroxystannate, and high-carbon alcohol powder, and because the silane coupling agent is a substance that can connect the surfaces of different materials, it It has a wide range of grafting properties, so the silane coupling agent can be coated on the surface of calcium carbonate coated with zinc stannate, or directly coated on the surface of calcium carbonate that has not been coated with zinc stannate.
本发明的技术方案之二:一种根据上述制备方法制备得到的沥青净味阻燃协效剂。The second technical solution of the present invention: an asphalt odor-free flame retardant synergist prepared according to the above preparation method.
进一步地,所述高碳醇偶联的锡酸锌包覆碳酸钙表面具有多孔隙、高比表面的结构,所述高碳醇偶联的锡酸锌包覆碳酸钙的孔隙率可达19.87%,比表面积可达42.1332m2/g。Furthermore, the surface of the high carbon alcohol coupled zinc stannate coated calcium carbonate has a porous structure with a high specific surface area, and the porosity of the high carbon alcohol coupled zinc stannate coated calcium carbonate can reach 19.87%, and the specific surface area can reach 42.1332 m 2 /g.
本发明的技术方案之三:一种改性沥青的制备方法,将上述沥青净味阻燃协效剂和改性剂加入沥青中,剪切分散均匀,得到所述改性沥青。The third technical solution of the present invention: a method for preparing modified asphalt. The above-mentioned asphalt odor-free flame retardant synergist and modifier are added to the asphalt, and the mixture is sheared and dispersed evenly to obtain the modified asphalt.
进一步地,所述沥青净味阻燃协效剂的掺入量为沥青总质量的3.0-15.0‰。Further, the blending amount of the asphalt clean smell flame retardant synergist is 3.0-15.0‰ of the total mass of asphalt.
进一步地,所述改性剂为SBS(苯乙烯-丁二烯-苯乙烯嵌段共聚物)。Further, the modifier is SBS (styrene-butadiene-styrene block copolymer).
进一步地,所述改性剂的掺入量为沥青总质量的5%。Furthermore, the amount of the modifier added is 5% of the total mass of the asphalt.
进一步地,在加入沥青净味阻燃协效剂和改性剂前,先将沥青以135℃的温度烘干2h。Furthermore, before adding the asphalt odor-free flame retardant synergist and modifier, the asphalt was dried at 135°C for 2 hours.
进一步地,所述剪切分散的具体操作为:保持175℃恒温,先以5000rpm的转速剪切分散1-2h,再以350-750rpm的转速剪切分散1-2h。Further, the specific operation of the shearing and dispersing is: maintaining a constant temperature of 175°C, first shearing and dispersing at a rotation speed of 5000rpm for 1-2h, and then shearing and dispersing at a rotational speed of 350-750rpm for 1-2h.
本发明的技术方案之四:一种根据上述制备方法制得的改性沥青。The fourth technical solution of the present invention: a modified asphalt prepared according to the above preparation method.
本发明的反应原理:Reaction principle of the present invention:
基于高碳醇偶联的锡酸锌包覆碳酸钙,通过将锡酸锌中的Zn2+与沥青中释放的H2S气体反应生成ZnS。而ZnS可以捕捉沥青烟气气相中活性较强的OH-、H+自由基,干扰中断燃烧的连锁反应,在固相中能促进沥青表面形成致密而又坚固的碳化层。同时,在高温下ZnS在可燃的沥青表面形成类玻璃涂层,既可以起到隔热的作用,又能隔绝空气中的氧气。除此之外,锡酸锌中的SnO3 2-离子能与H2S反应生成锡酸H2SnO3和H2O,H2O在高温下能吸收热量并稀释氧气浓度,H2SnO3能在沥青表层形成涂层且能与H2S反应生成SnS2,ZnS与SnS2都是路易斯酸,它们能够催化沥青中的长链烷烃物质脱氢生成反式多烯结构,这种反式结构不能环化生成苯,从而大大减少了芳香族化合物质的生成,就减少了沥青在高温下的发烟量;同时,ZnS与SnS2还能进一步促进分子间发生交联和碳化反应,提高沥青高温下的成碳量,从而降低成烟量,阻止燃烧继续进行,而烟气中的H2S由于被消耗所以也大大降低了沥青烟气中的刺激性臭味。Based on high-carbon alcohol-coupled zinc stannate-coated calcium carbonate, ZnS is generated by reacting Zn 2+ in zinc stannate with H 2 S gas released from asphalt. ZnS can capture the highly active OH - and H + radicals in the gas phase of asphalt flue gas, interfere with the chain reaction that interrupts combustion, and promote the formation of a dense and strong carbonized layer on the asphalt surface in the solid phase. At the same time, at high temperatures, ZnS forms a glass-like coating on the surface of combustible asphalt, which can not only play a role in heat insulation, but also isolate oxygen in the air. In addition, the SnO 3 2- ions in zinc stannate can react with H 2 S to form stannate H 2 SnO 3 and H 2 O. H 2 O can absorb heat at high temperatures and dilute the oxygen concentration. H 2 SnO 3 can form a coating on the surface of asphalt and can react with H 2 S to generate SnS 2 . ZnS and SnS 2 are both Lewis acids. They can catalyze the dehydrogenation of long-chain alkane substances in asphalt to generate trans polyene structures. This reaction The formula structure cannot be cyclized to generate benzene, thus greatly reducing the generation of aromatic compounds and reducing the amount of smoke produced by asphalt at high temperatures; at the same time, ZnS and SnS 2 can further promote cross-linking and carbonization reactions between molecules, It increases the amount of carbon formed in asphalt at high temperatures, thereby reducing the amount of smoke formed and preventing combustion from continuing. The H 2 S in the flue gas is consumed, so the pungent odor in the asphalt flue gas is also greatly reduced.
经锡酸锌包覆的碳酸钙表面为针状或片状结构,大大提升了碳酸钙表面比表面积与孔隙率,这些空隙对于沥青烟气中的大分子颗粒物有很好的拦截效果。同时高比表面积也增强了碳酸钙与沥青的接触面积,增强了相容性。但碳酸钙作为无机物粉末,由于强极性的关系导致其与沥青的相容性仍然不佳,因此本发明通过在锡酸锌包覆碳酸钙的基础之上继续进行表面改性。硅烷偶联剂作为一种常见的表面改性剂,其主要应用于高分子复合材料中的无机填料的表面改性,本发明通过硅烷偶联剂分子的其中一端与碳酸钙表面的羟基反应,形成氢键,并在一定条件下缩合、脱水和固化,形成共价键;另一端与高碳醇结合,从而使高分子材料(高碳醇)—硅烷偶联剂—无机材料之间(锡酸锌包覆碳酸钙)产生一种良好的界面结合。与此同时,沥青烟气中的主要恶臭物质为硫化物,而硫原子的电子层最外层有空轨道,能够接收外来电子,其属于一种路易斯酸,高碳醇作为一种路易斯碱,能与含S物质发生路易斯酸碱反应,从而减少沥青烟的臭味。The surface of calcium carbonate coated with zinc stannate has a needle-like or flaky structure, which greatly increases the surface area and porosity of calcium carbonate. These voids have a good interception effect on macromolecular particles in asphalt flue gas. At the same time, the high specific surface area also enhances the contact area between calcium carbonate and asphalt, enhancing the compatibility. However, as an inorganic powder, calcium carbonate still has poor compatibility with asphalt due to its strong polarity. Therefore, the present invention continues surface modification by coating calcium carbonate with zinc stannate. As a common surface modifier, silane coupling agent is mainly used to modify the surface of inorganic fillers in polymer composite materials. In the present invention, one end of the silane coupling agent molecule reacts with the hydroxyl group on the surface of calcium carbonate. Form hydrogen bonds, and condense, dehydrate and solidify under certain conditions to form covalent bonds; the other end is combined with higher-carbon alcohols, thereby making the polymer material (higher-carbon alcohol) - silane coupling agent - inorganic material (tin Zinc acid coated calcium carbonate) produces a good interfacial bonding. At the same time, the main odorous substance in asphalt flue gas is sulfide, and the outermost electron layer of the sulfur atom has an empty orbit and can receive external electrons. It is a Lewis acid, and high-carbon alcohol is a Lewis base. It can undergo Lewis acid-base reaction with S-containing substances, thereby reducing the odor of asphalt smoke.
本发明借助碳酸钙表面部分包覆的锡酸锌来提升沥青的阻燃性能,通过包覆锡酸锌和高碳醇形成的多孔隙、高比表面结构来吸收沥青高温时释放的小分子烟气物质,同时硅烷偶联剂增强了本材料与沥青的相容性,因此本材料作为沥青净味阻燃协效剂应用于沥青施工中,可达到提高沥青高温性能和阻燃性能,减少沥青烟气和恶臭气体排放的作用。This invention uses zinc stannate partially coated on the surface of calcium carbonate to improve the flame retardant properties of asphalt. The porous and high specific surface structure formed by coating zinc stannate and higher carbon alcohol absorbs the small molecule smoke released by asphalt at high temperatures. At the same time, the silane coupling agent enhances the compatibility of this material with asphalt. Therefore, this material is used in asphalt construction as an odor-free flame retardant synergist for asphalt, which can improve the high temperature performance and flame retardant performance of asphalt and reduce the asphalt The role of smoke and odorous gas emissions.
本发明公开了以下技术效果:The invention discloses the following technical effects:
(1)本发明以价格低廉的碳酸钙为基体,通过部分包覆锡酸锌颗粒来提升改性沥青的阻燃性能,同时又大大降低了锡酸锌的使用量,使用成本大大降低。同时锡酸锌可与沥青烟气反应阻断燃烧进程,并形成致密的碳化层,且锡酸锌反应后所生成的硫化亚锡、硫化锌可以减少沥青烟气中芳香族化合物的产生,增加成碳量,减少发烟量。本发明在碳酸钙表面包覆锡酸锌后又继续包覆了高碳醇,高碳醇作为一种路易斯碱,能与含S物质发生路易斯酸碱反应,从而减少沥青烟的臭味。(1) The present invention uses inexpensive calcium carbonate as a matrix and partially coats zinc stannate particles to improve the flame retardant properties of modified asphalt, while greatly reducing the amount of zinc stannate used, and the cost of use is greatly reduced. At the same time, zinc stannate can react with asphalt smoke to block the combustion process and form a dense carbonized layer. The stannous sulfide and zinc sulfide generated after the zinc stannate reaction can reduce the generation of aromatic compounds in asphalt smoke, increase the carbon content, and reduce the smoke generation. After the zinc stannate is coated on the surface of calcium carbonate, the present invention continues to coat high carbon alcohols. As a Lewis base, high carbon alcohols can react with sulfur-containing substances to produce Lewis acid-base reactions, thereby reducing the odor of asphalt smoke.
(2)本发明的沥青净味阻燃协效剂表面由于覆盖了部分片状或针状结构的锡酸锌和高碳醇物质,因此其表面相较于未改性的碳酸钙粉末具有更高的比表面积和孔隙率,这些空隙能够更好地吸附沥青烟气中的大颗粒分子;同时硅烷偶联剂的加入帮助改性碳酸钙粉末更好更均匀地分散在沥青中,很好地改善了强极性无机碳酸钙粉末与沥青的低相容性问题,同时良好的分散性使得改性碳酸钙粉末在沥青中提供了更立体的力学支撑,加强了沥青的流变学性能;而具有阻燃抑烟协效作用的锡酸锌和高碳醇又能提高沥青的高温性能。(2) Since the surface of the asphalt odor-free flame retardant synergist of the present invention is covered with zinc stannate and high carbon alcohol substances with partial flaky or needle-like structures, its surface has a higher specific surface area and porosity than the unmodified calcium carbonate powder. These voids can better adsorb large particle molecules in asphalt smoke. At the same time, the addition of silane coupling agent helps the modified calcium carbonate powder to be better and more evenly dispersed in the asphalt, which greatly improves the low compatibility problem between the highly polar inorganic calcium carbonate powder and asphalt. At the same time, the good dispersibility enables the modified calcium carbonate powder to provide more three-dimensional mechanical support in the asphalt, thereby enhancing the rheological properties of the asphalt. The zinc stannate and high carbon alcohols with flame retardant and smoke suppression synergistic effects can improve the high temperature performance of the asphalt.
(3)本发明的沥青净味阻燃协效剂可以有效与沥青兼容,既提高沥青净味阻燃性能,又能在一定程度上提高沥青的流变性能。本发明的沥青净味阻燃协效剂通过阻燃及多孔隙的化学和结构特点,吸附沥青在摊铺过程中的烟气,同时能够起到一定的阻燃效果,极大降低了沥青烟气中的有害成分对施工人员及环境的危害。同时,净味阻燃协效剂还在一定程度上提高了沥青本身的流变性能和阻燃性能,通过较为简单的制备工艺和低廉的成本达到减少沥青高温状态下气味的目的,为净味环保沥青的开发及应用提供了一种新的方法。(3) The asphalt odor-cleaning flame retardant synergist of the present invention can be effectively compatible with asphalt, which not only improves the odor-cleaning flame retardant performance of asphalt, but also improves the rheological properties of asphalt to a certain extent. The asphalt odor-free flame retardant synergist of the present invention absorbs the smoke from asphalt during the paving process through its flame retardant and porous chemical and structural characteristics. At the same time, it can have a certain flame retardant effect and greatly reduce the asphalt smoke. Harmful components in the air harm construction workers and the environment. At the same time, the odor-free flame retardant synergist also improves the rheological properties and flame retardant properties of the asphalt itself to a certain extent. Through a relatively simple preparation process and low cost, it can achieve the purpose of reducing the odor of asphalt at high temperatures, providing a way to clean the odor. The development and application of environmentally friendly asphalt provides a new method.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the drawings of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.
图1为原料碳酸钙粉末和实施例2制得的高碳醇偶联的锡酸锌包覆碳酸钙的SEM图,其中,a为原料碳酸钙粉末,b为高碳醇偶联的锡酸锌包覆碳酸钙;Figure 1 is an SEM image of the raw calcium carbonate powder and the high-carbon alcohol-coupled zinc stannate-coated calcium carbonate prepared in Example 2, where a is the raw calcium carbonate powder, and b is the high-carbon alcohol-coupled stannic acid. zinc coated calcium carbonate;
图2为本发明应用例1-3以及对比应用例1-2制得的改性沥青的复数剪切模量G*(10Hz)随温度的变化对比图;FIG2 is a comparison diagram of the complex shear modulus G*(10Hz) of the modified asphalt prepared in Application Examples 1-3 of the present invention and Comparative Application Examples 1-2 as a function of temperature;
图3为本发明应用例1-3以及对比应用例1-2制得的改性沥青的储能模量G'(10Hz)随温度的变化对比图;Figure 3 is a comparison chart of the storage modulus G' (10Hz) of the modified asphalt prepared in Application Examples 1-3 of the present invention and Comparative Application Examples 1-2 as a function of temperature;
图4为本发明应用例1-3以及对比应用例1-2制得的改性沥青的损失模量G”(10Hz)随温度的变化对比图;Figure 4 is a comparison chart of the change in loss modulus G” (10Hz) with temperature of the modified asphalt prepared in Application Examples 1-3 of the present invention and Comparative Application Examples 1-2;
图5为本发明应用例2、对比应用例2制得的改性沥青的GC-MS总气相色谱图。Figure 5 is a GC-MS total gas chromatogram of the modified asphalt prepared in Application Example 2 and Comparative Application Example 2 of the present invention.
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the invention will now be described in detail. This detailed description should not be construed as limitations of the invention, but rather as a more detailed description of certain aspects, features and embodiments of the invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only for describing special embodiments and are not intended to limit the present invention. In addition, for the numerical range in the present invention, it should be understood that each intermediate value between the upper and lower limits of the scope is also specifically disclosed. Each smaller range between the intermediate value in any stated value or stated range and any other stated value or intermediate value in the described range is also included in the present invention. The upper and lower limits of these smaller ranges can be independently included or excluded in the scope.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention. All documents mentioned in this specification are incorporated by reference to disclose and describe the methods and/or materials in connection with which the documents relate. In the event of conflict with any incorporated document, the contents of this specification shall prevail.
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and changes can be made to the specific embodiments described herein without departing from the scope or spirit of the invention. Other embodiments will be apparent to the skilled person from the description of the invention. The specification and examples are intended to be illustrative only.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。The words "includes", "includes", "has", "contains", etc. used in this article are all open terms, which mean including but not limited to.
以下实施例和对比例中使用的碳酸钙粉末的粒径范围为200-400目,使用的高碳醇的碳原子数量为18。The particle size range of the calcium carbonate powder used in the following examples and comparative examples is 200-400 mesh, and the carbon atom number of the high carbon alcohol used is 18.
实施例1Example 1
(1)称取50g筛至200-400目的碳酸钙粉末于500ml的水溶液中,加入10g的尿素,在50℃恒温下,搅拌1h,转速为350rpm,而后超声1h,得到预处理碳酸钙水分散液备用;(1) Weigh 50 g of calcium carbonate powder sieved to 200-400 mesh and add it to 500 ml of aqueous solution, add 10 g of urea, stir for 1 h at a constant temperature of 50° C. and a rotation speed of 350 rpm, and then ultrasonicate for 1 h to obtain a pretreated calcium carbonate aqueous dispersion for use;
(2)称取5.578g羟基锡酸锌(Na2Sn(OH)6)、1.75g氧化锌(ZnO)、5.749g碱金属化合物(NaOH),加入350ml水溶液中,在60℃恒温下加热搅拌1h,转速为350rpm,而后加入步骤(1)中的预处理碳酸钙水分散液,在85℃恒温下搅拌反应6h,转速为450rpm;反应结束后将得到的乳液冷却至室温,过滤,使用去离子水反复冲洗3次后,在60℃烘箱中烘干4h,然后在500℃的马弗炉中煅烧1h,得到锡酸锌包覆的碳酸钙粉末;(2) Weigh 5.578 g of zinc hydroxystannate (Na 2 Sn(OH) 6 ), 1.75 g of zinc oxide (ZnO), and 5.749 g of an alkali metal compound (NaOH), add them to 350 ml of an aqueous solution, heat and stir at 60° C. for 1 h at a speed of 350 rpm, then add the pretreated calcium carbonate aqueous dispersion in step (1), stir and react at 85° C. for 6 h at a speed of 450 rpm; after the reaction, cool the obtained emulsion to room temperature, filter, rinse with deionized water for 3 times, dry in an oven at 60° C. for 4 h, and then calcine in a muffle furnace at 500° C. for 1 h to obtain calcium carbonate powder coated with zinc stannate;
(3)将步骤(2)中得到的锡酸锌包覆碳酸钙粉末溶于酯类化合物溶液(乙酸乙酯)中,并加入0.375g的硅烷偶联剂(KH-550),在50℃温度下以350rpm的转速搅拌30min后再加入0.2g的高碳醇,继续在350rpm的转速下搅拌6h,过滤,使用乙醇和水反复冲洗3次后置于60℃烘箱中烘干4h,研磨至粒径为200-400目,得到沥青净味阻燃协效剂(高碳醇偶联的锡酸锌包覆碳酸钙,NFRC)。(3) The zinc stannate-coated calcium carbonate powder obtained in step (2) is dissolved in an ester compound solution (ethyl acetate), and 0.375 g of a silane coupling agent (KH-550) is added. The mixture is stirred at 350 rpm for 30 min at 50°C, and then 0.2 g of a high-carbon alcohol is added. The mixture is stirred at 350 rpm for 6 h. The mixture is filtered, rinsed three times with ethanol and water, and dried in an oven at 60°C for 4 h. The mixture is ground to a particle size of 200-400 mesh to obtain an asphalt odorless flame retardant synergist (high-carbon alcohol-coupled zinc stannate-coated calcium carbonate, NFRC).
实施例2Example 2
(1)称取50g筛至200-400目的碳酸钙粉末于500ml的水溶液中,加入12.5g的尿素,在50℃恒温下,搅拌1h,转速为350rpm,而后超声1h,得到预处理碳酸钙水分散液备用;(1) Weigh 50 g of calcium carbonate powder sieved to 200-400 mesh and add it to 500 ml of aqueous solution, add 12.5 g of urea, stir for 1 h at a constant temperature of 50° C. and a rotation speed of 350 rpm, and then ultrasonicate for 1 h to obtain a pretreated calcium carbonate aqueous dispersion for use;
(2)称取5.314g羟基锡酸锌(Na2Sn(OH)6)、1.55g氧化锌(ZnO)、5.536g碱金属化合物(NaOH),加入350ml水溶液中,在60℃恒温下加热搅拌1h,转速为350rpm,而后加入步骤(1)中的预处理碳酸钙水分散液,在85℃恒温下搅拌6h,转速为450rpm;反应结束后将得到的乳液冷却至室温,过滤,使用去离子水反复冲洗3次后,在60℃烘箱中烘干4h,然后在500℃的马弗炉中煅烧1h后,得到锡酸锌包覆的碳酸钙粉末;(2) Weigh 5.314g of zinc hydroxystannate (Na 2 Sn(OH) 6 ), 1.55g of zinc oxide (ZnO), and 5.536g of alkali metal compound (NaOH), add them to 350 ml of aqueous solution, and heat and stir at a constant temperature of 60°C 1h, the rotation speed is 350rpm, then add the pretreated calcium carbonate aqueous dispersion in step (1), stir at a constant temperature of 85°C for 6h, the rotation speed is 450rpm; after the reaction is completed, the obtained emulsion is cooled to room temperature, filtered, and deionized using After being repeatedly rinsed with water three times, dried in an oven at 60°C for 4 hours, and then calcined in a muffle furnace at 500°C for 1 hour, zinc stannate-coated calcium carbonate powder was obtained;
(3)将步骤(2)中得到的锡酸锌包覆碳酸钙粉末溶于酯类化合物溶液(乙酸乙酯)中,并加入0.5g的硅烷偶联剂(KH-550),在50℃温度下以350rpm的转速搅拌30min后加入0.4g的高碳醇,继续在350rpm的转速下搅拌7.5h,过滤,使用乙醇和水反复冲洗3次后置于65℃烘箱中烘干4h,研磨至粒径为200-400目,得到沥青净味阻燃协效剂(NFRC)。(3) The zinc stannate-coated calcium carbonate powder obtained in step (2) is dissolved in an ester compound solution (ethyl acetate), and 0.5 g of a silane coupling agent (KH-550) is added. After stirring at 350 rpm for 30 min at 50°C, 0.4 g of a high-carbon alcohol is added, and stirring is continued at 350 rpm for 7.5 h. The mixture is filtered, rinsed three times with ethanol and water, and dried in an oven at 65°C for 4 h. The mixture is ground to a particle size of 200-400 mesh to obtain an asphalt odorless flame retardant synergist (NFRC).
实施例3Example 3
(1)称取75g筛至200-400目的碳酸钙粉末于500ml的水溶液中,加入21.43g的尿素,在50℃恒温下,搅拌1h,转速为400rpm,而后超声1h,得到预处理碳酸钙水分散液备用;(1) Weigh 75g of calcium carbonate powder sieved to 200-400 mesh into 500ml of aqueous solution, add 21.43g of urea, stir for 1 hour at a constant temperature of 50°C, with a rotation speed of 400 rpm, and then ultrasonic for 1 hour to obtain pretreated calcium carbonate water The dispersion is ready for use;
(2)称取9g羟基锡酸锌(Na2Sn(OH)6)、3.75g氧化锌(ZnO)、10.5g(NaOH),加入500ml水溶液中,在60℃恒温下加热搅拌1h,转速为450rpm,而后加入步骤(1)中的预处理碳酸钙水分散液,在85℃恒温下搅拌6h,转速为450rpm;反应结束后将得到的乳液冷却至室温,过滤,使用去离子水反复冲洗3次后,在60℃烘箱中烘干4h,然后在500℃的马弗炉中煅烧1h,得到锡酸锌包覆的碳酸钙粉末;(2) Weigh 9 g of zinc hydroxystannate ( Na2Sn (OH)6), 3.75 g of zinc oxide (ZnO), and 10.5 g of (NaOH), add them to 500 ml of aqueous solution, heat and stir at 60°C for 1 h, and rotate at 450 rpm, then add the pretreated calcium carbonate aqueous dispersion in step (1), and stir at 85°C for 6 h, and rotate at 450 rpm; after the reaction is completed, cool the obtained emulsion to room temperature, filter, rinse with deionized water for 3 times, dry in an oven at 60°C for 4 h, and then calcine in a muffle furnace at 500°C for 1 h to obtain calcium carbonate powder coated with zinc stannate;
(3)将步骤(2)中得到的锡酸锌包覆碳酸钙粉末溶于酯类化合物溶液(乙酸乙酯)中,并加入0.55g的硅烷偶联剂(KH-550),在50℃温度下以450rpm的转速搅拌30min后加入0.6g的高碳醇,继续在450rpm的转速下搅拌8h,过滤,使用乙醇和水反复冲洗3次后置于75℃烘箱中烘干4h,研磨至粒径为200-400目,得到沥青净味阻燃协效剂(NFRC)。(3) The zinc stannate-coated calcium carbonate powder obtained in step (2) is dissolved in an ester compound solution (ethyl acetate), and 0.55 g of a silane coupling agent (KH-550) is added. After stirring at 450 rpm for 30 min at 50 ° C, 0.6 g of a high-carbon alcohol is added, and stirring is continued at 450 rpm for 8 h. The mixture is filtered, rinsed repeatedly with ethanol and water for 3 times, and then placed in an oven at 75 ° C for 4 h. The mixture is ground to a particle size of 200-400 mesh to obtain an asphalt odorless flame retardant synergist (NFRC).
应用例1Application example 1
称取200g的SK-70A沥青,在135℃烘箱中烘干2h以除去多余的水分,将实施例1得到的NFRC与SBS加入沥青中,保持150℃恒温,在5000rpm高速剪切机下剪切1h,并在400rpm高速剪切机下分散1h,即得到NFRC/SBS复合改性的沥青;NFRC掺入量为沥青总质量(沥青除水前的质量)的3‰,SBS掺入量为沥青总质量的5%。Weigh 200g of SK-70A asphalt and dry it in a 135°C oven for 2 hours to remove excess moisture. Add the NFRC and SBS obtained in Example 1 to the asphalt, maintain a constant temperature of 150°C, and shear it with a 5000rpm high-speed shearing machine. 1h, and dispersed under a 400rpm high-speed shear for 1h to obtain NFRC/SBS composite modified asphalt; the NFRC blending amount is 3‰ of the total mass of asphalt (the mass of asphalt before water removal), and the SBS blending amount is 3% of the asphalt. 5% of total mass.
应用例2Application example 2
称取200g的SK-70A沥青,在135℃烘箱中烘干2h以除去多余的水分,将实施例2得到的NFRC与SBS加入沥青中,保持165℃恒温,在5000rpm高速剪切机下剪切1.5h,并在450rpm高速剪切机下分散1.5h,即得到NFRC/SBS复合改性的沥青;NFRC掺入量为沥青总质量(沥青除水前的质量)的5‰,SBS掺入量为沥青总质量的5%。Weigh 200g of SK-70A asphalt and dry it in a 135°C oven for 2 hours to remove excess moisture. Add the NFRC and SBS obtained in Example 2 to the asphalt, maintain a constant temperature of 165°C, and shear it with a 5000rpm high-speed shearer. 1.5h, and dispersed under a 450rpm high-speed shear for 1.5h to obtain NFRC/SBS composite modified asphalt; the NFRC blending amount is 5‰ of the total mass of asphalt (the mass of asphalt before water removal), and the SBS blending amount is It is 5% of the total mass of asphalt.
应用例3Application example 3
称取200g的SK-70A沥青,在135℃烘箱中烘干2h以除去多余的水分,将实施例3得到的NFRC与SBS加入沥青中,保持175℃恒温,在5000rpm高速剪切机下剪切2h,并在500rpm高速剪切机下分散2h,即得到NFRC/SBS复合改性的沥青;NFRC掺入量为沥青总质量(沥青除水前的质量)的9‰,SBS掺入量为沥青总质量的5%。Weigh 200g of SK-70A asphalt and dry it in a 135°C oven for 2 hours to remove excess moisture. Add the NFRC and SBS obtained in Example 3 to the asphalt, maintain a constant temperature of 175°C, and shear it with a 5000rpm high-speed shearer. 2h, and dispersed for 2h under a 500rpm high-speed shear to obtain NFRC/SBS composite modified asphalt; the NFRC blending amount is 9‰ of the total mass of asphalt (the mass of asphalt before water removal), and the SBS blending amount is 5% of total mass.
对比应用例1Comparative application example 1
同应用例2,区别仅在于,省略NFRC的使用,只添加SBS一种改性剂,制得SBS改性的沥青。Same as Application Example 2, the only difference is that the use of NFRC is omitted and only SBS is added as a modifier to prepare SBS modified asphalt.
对比应用例2Comparative application example 2
称取200g的SK-70A沥青,在135℃烘箱中烘干2h以除去多余的水分,将实施例2得到的中间产品锡酸锌包覆碳酸钙粉末(研磨至粒径为200-400目)与SBS加入沥青中,保持165℃恒温,在5000rpm高速剪切机下剪切1.5h,并在450rpm高速剪切机下分散1.5h,即得到NFRC/SBS复合改性的沥青;NFRC掺入量为沥青总质量的5‰,SBS掺入量为沥青总质量的5%。Weigh 200g of SK-70A asphalt, dry it in a 135°C oven for 2 hours to remove excess moisture, and grind the intermediate product zinc stannate-coated calcium carbonate powder obtained in Example 2 (grinded to a particle size of 200-400 mesh) Add SBS to the asphalt, maintain a constant temperature of 165°C, shear it with a 5000rpm high-speed shear for 1.5h, and disperse it with a 450rpm high-speed shearer for 1.5h to obtain the NFRC/SBS composite modified asphalt; NFRC blending amount is 5‰ of the total asphalt mass, and the SBS blending amount is 5% of the total asphalt mass.
效果验证Effect verification
1、形貌结构1. Morphology and structure
取实施例2中的原料碳酸钙粉末、中间产物锡酸锌包覆的碳酸钙粉末以及最终产物高碳醇偶联的锡酸锌包覆碳酸钙测试孔隙率和比表面积(将原料碳酸钙粉末和中间产物锡酸锌包覆的碳酸钙粉末研磨至粒径与最终产物高碳醇偶联的锡酸锌包覆碳酸钙一致),结果如表1所示:Take the raw material calcium carbonate powder in Example 2, the intermediate product zinc stannate-coated calcium carbonate powder, and the final product high-carbon alcohol-coupled zinc stannate-coated calcium carbonate to test the porosity and specific surface area (the raw material calcium carbonate powder Grind the intermediate product zinc stannate-coated calcium carbonate powder until the particle size is consistent with the final product high-carbon alcohol-coupled zinc stannate-coated calcium carbonate), and the results are shown in Table 1:
表1Table 1
由表1可知,在碳酸钙表面包覆锡酸锌可显著提高碳酸钙的比表面积和孔隙率,包覆锡酸锌后继续包覆高碳醇则可进一步提高其比表面积和孔隙率。As can be seen from Table 1, coating zinc stannate on the surface of calcium carbonate can significantly increase the specific surface area and porosity of calcium carbonate. After coating zinc stannate, continuing to coat high-carbon alcohol can further increase its specific surface area and porosity.
另外利用扫描电子显微镜对原料碳酸钙粉末和最终产物高碳醇偶联的锡酸锌包覆碳酸钙进行形貌表征,二者的SEM图如图1所示,其中,a为原料碳酸钙粉末,b为高碳醇偶联的锡酸锌包覆碳酸钙;由图1可知,未经改性的碳酸钙粉末呈现规则的立方体形貌(方解石晶型),而经过高碳醇偶联的锡酸锌包覆碳酸钙表面被针状的锡酸锌颗粒及小圆球状的高碳醇包裹,且包裹比较均匀。In addition, a scanning electron microscope was used to characterize the morphology of the raw calcium carbonate powder and the final product high-carbon alcohol-coupled zinc stannate-coated calcium carbonate. The SEM images of the two are shown in Figure 1, where a is the raw calcium carbonate powder. , b is high-carbon alcohol-coupled zinc stannate-coated calcium carbonate; as can be seen from Figure 1, the unmodified calcium carbonate powder exhibits a regular cubic morphology (calcite crystal form), while the high-carbon alcohol-coupled calcium carbonate powder has a regular cubic morphology (calcite crystal form). The surface of zinc stannate-coated calcium carbonate is wrapped by needle-shaped zinc stannate particles and small spherical high-carbon alcohols, and the wrapping is relatively uniform.
2、动态剪切流变试验(DSR)2. Dynamic shear rheology test (DSR)
将应用例1-3以及对比应用例1-2制得的改性沥青进行DSR测试,具体方法为:将1.0g沥青浇注在直径为25mm的试验板中心,移动试验板挤压两个试验板间的沥青,加热试件修整器,修正周边多余的沥青,然后调整间隙到1mm的试验间隙。温度平衡时,设备将自动以10rad/s的频率和选择的应力目标值进行试验,记录和计算均由数据采集系统完成。The modified asphalt prepared in Application Examples 1-3 and Comparative Application Examples 1-2 was subjected to DSR testing. The specific method was: pour 1.0g of asphalt in the center of a test plate with a diameter of 25mm, move the test plate and squeeze the two test plates. Asphalt in between, heat the specimen dresser to correct the excess asphalt around it, and then adjust the gap to the test gap of 1mm. When the temperature is balanced, the equipment will automatically conduct tests at a frequency of 10rad/s and the selected stress target value, and the recording and calculation are completed by the data acquisition system.
试验结果:图2是应用例1-3以及对比应用例1-2制得的改性沥青的复数剪切模量G*(10Hz)随温度的变化对比图,由图2可知,在相同温度下,添加NFRC的SBS改性沥青(NFRC/SBS复合改性的沥青)的复数剪切模量G*均大于未添加NFRC的SBS改性沥青的复数剪切模量G*,这说明NFRC的加入能提升SBS改性沥青的抵抗形变能力,而中间产品锡酸锌包覆碳酸钙粉末的加入反而会使SBS改性沥青的抵抗形变能力略微降低;图3是应用例1-3以及对比应用例1-2制得的改性沥青的储能模量G'(10Hz)随温度的变化对比图,由图3可知,在相同温度下,NFRC/SBS复合改性沥青的G'均大于SBS改性沥青,这说明NFRC的加入能够提升SBS改性沥青的弹性性能,而中间产品锡酸锌包覆碳酸钙粉末的加入反而会使SBS改性沥青的弹性性能略微降低;图4是应用例1-3以及对比应用例1-2制得的改性沥青的损失模量G”(10Hz)随温度的变化对比图,从图4中可以看出,在相同温度下,NFRC/SBS改性沥青的损失模量G”均高于SBS改性沥青的损失模量,这说明NFRC的加入能够有效增强SBS改性沥青的粘性性能,而中间产品锡酸锌包覆碳酸钙粉末的加入反而会使SBS改性沥青的粘性性能略微降低。Test results: Figure 2 is a comparison chart of the change of the complex shear modulus G* (10Hz) with temperature of the modified asphalt prepared in Application Examples 1-3 and Comparative Application Examples 1-2. It can be seen from Figure 2 that at the same temperature Under , the complex shear modulus G* of SBS modified asphalt with NFRC added (NFRC/SBS composite modified asphalt) is greater than the complex shear modulus G* of SBS modified asphalt without NFRC, which shows that the NFRC The addition can improve the deformation resistance of SBS modified asphalt, while the addition of the intermediate product zinc stannate-coated calcium carbonate powder will slightly reduce the deformation resistance of SBS modified asphalt; Figure 3 shows application examples 1-3 and comparative applications. The storage modulus G' (10Hz) of the modified asphalt prepared in Example 1-2 changes with temperature. From Figure 3, it can be seen that at the same temperature, the G' of the NFRC/SBS composite modified asphalt is greater than that of SBS. Modified asphalt, this shows that the addition of NFRC can improve the elastic properties of SBS modified asphalt, while the addition of the intermediate product zinc stannate-coated calcium carbonate powder will slightly reduce the elastic properties of SBS modified asphalt; Figure 4 is an application example 1-3 and Comparative Application Example 1-2. The loss modulus G” (10Hz) of the modified asphalt prepared in Comparative Application Example 1-2 is compared with the temperature change. It can be seen from Figure 4 that at the same temperature, NFRC/SBS modification The loss modulus G" of asphalt is higher than that of SBS modified asphalt, which shows that the addition of NFRC can effectively enhance the viscosity properties of SBS modified asphalt, while the addition of the intermediate product zinc stannate coated calcium carbonate powder will actually Slightly reduce the viscosity properties of SBS modified asphalt.
和未加入NFRC的SBS改性沥青相比,加入中间产品锡酸锌包覆碳酸钙粉末和SBS的复合改性沥青的抵抗形变能力、弹性性能和粘性性能等路用性能反而略微下降的原因是:中间产品锡酸锌包覆碳酸钙粉末是无机物质,而无机物质在沥青高分子中很容易发生离析(即两者界面间作用力差造成无机粉末沉积在沥青底部),从而影响了沥青整体性能的一致性,更直接影响其路用性能。制备高碳醇偶联的锡酸锌包覆碳酸钙过程中,在锡酸锌包覆碳酸钙粉末表面进一步引入的偶联剂是解决离析问题的关键,所以添加未引入硅烷偶联剂的中间产品锡酸锌包覆碳酸钙粉末的沥青性能反而下降。Compared with SBS modified asphalt without adding NFRC, the reason why the road properties such as deformation resistance, elasticity and viscosity of the composite modified asphalt with intermediate zinc stannate coated calcium carbonate powder and SBS are slightly reduced is that : The intermediate product zinc stannate-coated calcium carbonate powder is an inorganic substance, and inorganic substances can easily segregate in asphalt polymers (that is, the difference in force between the two interfaces causes the inorganic powder to be deposited at the bottom of the asphalt), thus affecting the overall asphalt The consistency of performance more directly affects its road performance. In the process of preparing high-carbon alcohol-coupled zinc stannate-coated calcium carbonate, the coupling agent further introduced on the surface of the zinc stannate-coated calcium carbonate powder is the key to solving the segregation problem, so adding a silane coupling agent in the middle The asphalt performance of the product zinc stannate coated calcium carbonate powder decreased.
3、烟气收集及烟气中成分测试3. Smoke collection and smoke component testing
将应用例1-3以及对比应用例1-2制得的改性沥青进行烟气收集测试,并测试分析烟气中的成分,具体方法为:取80.0g沥青于定制的分体三口烧瓶中,将沥青加热至温拌温度180-200℃,并以250rpm的转速搅拌1h,使用氮气作为载气,将沥青温拌时产生的气体通过设计的管道通入25ml的苯溶液中,最终得到收集的沥青烟气有机成分。将所得到的沥青烟气液体稀释100倍后,使用气象色谱质谱联用仪(GC-MS)对沥青烟气成分进行分析。另外,在搅拌时间为20min、40min、60min三个时间时采用体积为1L的锡箔气体采样袋收集沥青经苯吸收后的无机烟气,然后使用烟气分析仪对三个时间点无机气体中的主要恶臭气体硫化氢的浓度进行测试后取平均值作为最终测试结果。The modified asphalt prepared in Application Examples 1-3 and Comparative Application Examples 1-2 was subjected to a flue gas collection test, and the components in the flue gas were tested and analyzed. The specific method is: take 80.0g of asphalt in a customized split three-necked flask. , heat the asphalt to the warm mixing temperature of 180-200°C, and stir at 250 rpm for 1 hour. Use nitrogen as the carrier gas. Pass the gas generated during the warm mixing of the asphalt into 25 ml of benzene solution through the designed pipeline, and finally collect it. The organic components of asphalt flue gas. After diluting the obtained asphalt flue gas liquid 100 times, the components of the asphalt flue gas were analyzed using a gas chromatography mass spectrometer (GC-MS). In addition, when the mixing time is 20min, 40min, and 60min, a tin foil gas sampling bag with a volume of 1L is used to collect the inorganic flue gas after benzene absorption of the asphalt, and then a flue gas analyzer is used to analyze the inorganic gas at the three time points. The concentration of the main odorous gas hydrogen sulfide was tested and the average value was taken as the final test result.
试验结果:图5为应用例2、对比应用例2制得的改性沥青的GC-MS总气象色谱图,在控制其余试验条件相同的情况下,保留时间相同的位置峰值越大,说明该成分含量越高,由图5可知,SBS改性沥青产生的烟气中有机成分最多且含量最高,而NFRC/SBS复合改性沥青烟气中所含的有机成分数量和浓度都大大降低。在色谱柱中不同的保留时间代表物质的化学成分不同,根据GC-MS总气相色谱图结合美国国家标准与技术研究所(NIST)片段库(NIST17)对检测到的化合物进行定性验证,对烟气中各成分浓度进行相对比较,结合仪器报告得到表2。由表2可知,SBS改性沥青(对比应用例1)产生的烟气中所含的有机成分合计40种,而NFRC/SBS复合改性沥青(应用例2)中所含的有机成分只有6种,相较于SBS改性沥青降低了85%,说明NFRC沥青阻燃净味协效剂起到了良好的净味抑烟效果。Test results: Figure 5 shows the GC-MS total gas chromatogram of the modified asphalt prepared in Application Example 2 and Comparative Application Example 2. Under the condition that the other test conditions are the same, the peaks at the positions with the same retention time are larger, indicating that the The higher the component content, as shown in Figure 5, the flue gas generated by SBS modified asphalt has the most organic components and the highest content, while the number and concentration of organic components in the flue gas of NFRC/SBS composite modified asphalt are greatly reduced. Different retention times in the chromatographic column represent different chemical compositions of substances. Qualitative verification of the detected compounds is performed based on the GC-MS total gas chromatogram combined with the National Institute of Standards and Technology (NIST) fragment library (NIST17), and the smoke The concentrations of each component in the gas are relatively compared, and combined with the instrument report, Table 2 is obtained. It can be seen from Table 2 that the flue gas generated by SBS modified asphalt (Comparative Application Example 1) contains a total of 40 organic components, while the organic components contained in the NFRC/SBS composite modified asphalt (Application Example 2) are only 6 Compared with SBS modified asphalt, it is reduced by 85%, indicating that the NFRC asphalt flame retardant and odor-reducing synergist has a good odor-reducing and smoke-suppressing effect.
表2Table 2
表3为应用例1-3与对比应用例1-2的无机烟气中硫化氢浓度的测试结果,表3显示NFRC的加入使得SBS改性沥青烟气中的硫化氢浓度明显降低,从178.0mg/m3降至45.0mg/m3,降幅为74.72%。说明NFRC在降低SBS改性沥青烟气中的有机成分的同时也能够有效减少沥青烟气中的恶臭气味气体。Table 3 shows the test results of the hydrogen sulfide concentration in the inorganic flue gas of Application Examples 1-3 and Comparative Application Examples 1-2. Table 3 shows that the addition of NFRC significantly reduces the hydrogen sulfide concentration in the SBS modified asphalt flue gas, from 178.0 mg/m 3 dropped to 45.0mg/m 3 , a decrease of 74.72%. It shows that NFRC can effectively reduce the odor gas in asphalt flue gas while reducing the organic components in SBS modified asphalt flue gas.
表3table 3
4、烟气收集及烟气中固体颗粒产生量测试4. Flue gas collection and testing of solid particle production in flue gas
将应用例1-3以及对比应用例1-2制得的改性沥青进行烟气收集测试并测试烟气中固体颗粒产生量,具体方法为:取80.0g沥青于定制的分体三口烧瓶中,将沥青加热至温拌温度180-200℃,并以250rpm的转速搅拌1h。在搅拌期间,使用自行设计的玻璃纤维套筒吸附装置,在三颈烧瓶的出口处吸附沥青烟气中的大分子物质,吸附时间为1h,比较吸附烟气后玻璃纤维套筒的重量变化,即比较NFRC/SBS复合改性沥青与SBS改性沥青烟气中大分子物质含量。上述玻璃纤维套筒需要经过高温处理保持其质量稳定后方可使用。The modified asphalt obtained in Application Examples 1-3 and Comparative Application Examples 1-2 was subjected to flue gas collection test and the amount of solid particles generated in the flue gas was tested. The specific method is as follows: 80.0g of asphalt was taken into a customized split three-necked flask, heated to a warm mixing temperature of 180-200°C, and stirred at a speed of 250rpm for 1h. During the stirring period, a self-designed glass fiber sleeve adsorption device was used to adsorb macromolecular substances in the asphalt flue gas at the outlet of the three-necked flask. The adsorption time was 1h, and the weight change of the glass fiber sleeve after adsorption of the flue gas was compared, that is, the content of macromolecular substances in the flue gas of NFRC/SBS composite modified asphalt and SBS modified asphalt was compared. The above-mentioned glass fiber sleeve needs to be treated at high temperature to keep its quality stable before it can be used.
试验结果:表4为应用例1-3与对比应用例1-2的沥青烟气收集前后玻璃纤维套筒的质量变化,由表4可知,沥青阻燃净味协效剂(NFRC)可以减少沥青烟气固体颗粒产生量。当掺入NFRC后,NFRC/SBS复合改性沥青(应用例2)的烟气颗粒相较于SBS改性沥青减少约77%,说明NFRC能提高SBS改性沥青的热稳定性,使其高温条件下产生的烟气中的大分子颗粒物更少。Test results: Table 4 shows the mass changes of the glass fiber sleeve before and after asphalt flue gas collection in Application Examples 1-3 and Comparative Application Examples 1-2. From Table 4, it can be seen that the asphalt flame retardant odor synergist (NFRC) can reduce The amount of solid particles produced in asphalt smoke. When NFRC is incorporated, the smoke particles of NFRC/SBS composite modified asphalt (Application Example 2) are reduced by about 77% compared to SBS modified asphalt, indicating that NFRC can improve the thermal stability of SBS modified asphalt and make it high temperature There are fewer macromolecular particles in the smoke produced under these conditions.
表4Table 4
5、高温性能、水稳定性和车辙性能测试5. High temperature performance, water stability and rutting performance tests
(1)试样制备(1) Sample preparation
取一定质量的NFRC/SBS复合改性沥青,采用AC-13密集配比制备沥青混合料,骨料选择辉绿岩。根据《T0709-2011》标准内容,使用标准击实法将沥青混合料制备成(Φ101.6±0.2)mm×(63.5±1.3)mm圆柱试件8个,其中4个试件浸入60℃±1℃的恒温水槽中30min后取出备用,另外4个试件浸入60℃±1℃的恒温水槽中48h后取出备用。此外,使用轮碾法制备300mm×300mm×50mm的板块试件备用。分别以应用例1-3制得的NFRC/SBS复合改性沥青,以及对比应用例1-2制得的SBS改性沥青作为试样制备过程中的原料,制得5组试样。Take a certain quality of NFRC/SBS composite modified asphalt, use AC-13 dense proportion to prepare the asphalt mixture, and select diabase as the aggregate. According to the content of the "T0709-2011" standard, the asphalt mixture was prepared into 8 (Φ101.6±0.2)mm×(63.5±1.3)mm cylindrical specimens using the standard compaction method, of which 4 specimens were immersed in 60℃± Take it out after 30 minutes in a constant-temperature water tank at 1°C for use. The other four specimens are immersed in a constant-temperature water tank at 60°C ± 1°C for 48 hours and then take it out for use. In addition, the wheel rolling method was used to prepare 300mm×300mm×50mm plate specimens for later use. The NFRC/SBS composite modified asphalt prepared in Application Examples 1-3 and the SBS modified asphalt prepared in Comparative Application Examples 1-2 were used as raw materials in the sample preparation process to prepare 5 groups of samples.
(2)测试方法(2) Test method
将制得的5组试样进行标准马歇尔稳定度、浸水马歇尔稳定度和车辙试验。具体方法为:采用自动马歇尔试验仪对制备的马歇尔及浸水马歇尔试件进行测试,记录计算机采集的数据;将车辙板试件连同试模置于轮辙试验机的试验台上,试验轮在试件的中央部位,其行走方向须与试件碾压方向一致,开动车辙变形自动记录仪,试验时间为1h,记录变形曲线并计算车辙试验动稳定度。The five groups of specimens prepared were subjected to standard Marshall stability, immersed Marshall stability and rutting tests. The specific method is: use an automatic Marshall tester to test the prepared Marshall and immersed Marshall specimens, and record the data collected by the computer; place the rut plate specimen together with the test mold on the test bench of the wheel rutting testing machine, and the test wheel is tested. The walking direction of the central part of the piece must be consistent with the rolling direction of the test piece. Start the automatic rutting deformation recorder. The test time is 1 hour. Record the deformation curve and calculate the dynamic stability of the rutting test.
(3)试验结果(3)Test results
表5为以应用例1-3与对比应用例1-2制得的改性沥青为原料制得的试样的马歇尔稳定度、浸水马歇尔稳定度及车辙试验动稳定度的数据,如表5所示,试验结果表明NFRC/SBS复合改性沥青的马歇尔稳定度测试均超过国标(6kN),且NFRC/SBS复合改性沥青(应用例2)的马歇尔稳定度、浸水马歇尔稳定度及车辙试验动稳定度均高于SBS改性沥青,其中浸水残余强度比提升了3.46%,说明NFRC/SBS复合改性沥青的高温性能、水稳定性和车辙性能均高于SBS改性沥青,能够满足路用需求。Table 5 shows the data on the Marshall stability, water immersion Marshall stability and rutting test dynamic stability of the samples prepared using the modified asphalt prepared in Application Examples 1-3 and Comparative Application Examples 1-2 as raw materials, as shown in Table 5 As shown, the test results show that the Marshall stability test of NFRC/SBS composite modified asphalt exceeds the national standard (6kN), and the Marshall stability, water immersion Marshall stability and rutting test of NFRC/SBS composite modified asphalt (Application Example 2) The dynamic stability is higher than that of SBS modified asphalt, and the water immersion residual strength ratio is increased by 3.46%, which shows that the high temperature performance, water stability and rutting performance of NFRC/SBS composite modified asphalt are higher than that of SBS modified asphalt and can meet the road requirements. Use demand.
表5table 5
6、阻燃性能测试6. Flame retardant performance test
测试应用例1-3以及对比应用例1-2制得的改性沥青的极氧指数(LOI)以表征其阻燃性性能,测试结果如表6所示,测试结果表明,相对于SBS改性沥青,NFRC/SBS复合改性沥青的阻燃性能都有所提升,即沥青阻燃净味协效剂(NFRC)可以提高沥青的阻燃性能。The extreme oxygen index (LOI) of the modified asphalt prepared in Application Examples 1-3 and Comparative Application Examples 1-2 was tested to characterize its flame retardant performance. The test results are shown in Table 6. The test results show that compared with SBS modified asphalt, The flame retardant properties of asphalt and NFRC/SBS composite modified asphalt have been improved, that is, the asphalt flame retardant and odor-free synergist (NFRC) can improve the flame retardant properties of asphalt.
表6Table 6
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-described embodiments only describe the preferred modes of the present invention and do not limit the scope of the present invention. Without departing from the design spirit of the present invention, those of ordinary skill in the art can make various modifications to the technical solutions of the present invention. All deformations and improvements shall fall within the protection scope determined by the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310843994.2A CN116731396B (en) | 2023-07-11 | 2023-07-11 | Preparation method and application of high-performance asphalt odor-removal flame-retardant synergist |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310843994.2A CN116731396B (en) | 2023-07-11 | 2023-07-11 | Preparation method and application of high-performance asphalt odor-removal flame-retardant synergist |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116731396A CN116731396A (en) | 2023-09-12 |
CN116731396B true CN116731396B (en) | 2024-04-02 |
Family
ID=87906049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310843994.2A Active CN116731396B (en) | 2023-07-11 | 2023-07-11 | Preparation method and application of high-performance asphalt odor-removal flame-retardant synergist |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116731396B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6150447A (en) * | 1995-06-22 | 2000-11-21 | Itri Limited | Fire retardant metal stannate coated inorganic fillers |
WO2008037168A1 (en) * | 2006-09-28 | 2008-04-03 | Shenzhen Oceanpower Industrial Co., Ltd. | A flame retardant modifier for asphalt |
CN104559258A (en) * | 2015-01-07 | 2015-04-29 | 山西省交通科学研究院 | Asphalt mixture additive and preparation method thereof |
CN110204784A (en) * | 2019-05-23 | 2019-09-06 | 长沙理工大学 | A kind of asphalt flame-retardant agent and preparation method and application |
CN111205661A (en) * | 2020-02-25 | 2020-05-29 | 齐鲁交通材料技术开发有限公司 | Rubber asphalt modifier, modified asphalt, asphalt mixture and its preparation and application |
CN111303645A (en) * | 2020-02-25 | 2020-06-19 | 山东建筑大学 | Environmentally friendly rubber asphalt, asphalt mixture and its preparation method and application |
CN111925778A (en) * | 2020-08-19 | 2020-11-13 | 安徽陆海石油助剂科技有限公司 | Anti-collapse and filtrate loss reducing agent white asphalt for drilling fluid |
CN112143036A (en) * | 2020-08-25 | 2020-12-29 | 蚌埠壹石通聚合物复合材料有限公司 | Preparation method of nano zinc hydroxystannate/clay composite smoke suppressant |
CN114525000A (en) * | 2022-03-14 | 2022-05-24 | 云南锡业锡化工材料有限责任公司 | Flame-retardant polyvinyl chloride cable material and preparation method thereof |
CN115353747A (en) * | 2022-08-18 | 2022-11-18 | 湖北国创高新材料股份有限公司 | Low-volatility-smell asphalt and preparation method thereof |
CN115772308A (en) * | 2022-12-07 | 2023-03-10 | 江苏耀鸿电子有限公司 | Flame-retardant high-temperature-resistant hydrocarbon resin glue solution and copper-clad substrate prepared from same |
CN116004021A (en) * | 2023-01-12 | 2023-04-25 | 广州鸿绵合成材料有限公司 | Environment-friendly odor-removing modified asphalt and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3980175A1 (en) * | 2019-06-04 | 2022-04-13 | 3M Innovative Properties Company | Microcapsule with a porous or hollow core and a shell containing a component releasing gas upon contact with an acid |
-
2023
- 2023-07-11 CN CN202310843994.2A patent/CN116731396B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6150447A (en) * | 1995-06-22 | 2000-11-21 | Itri Limited | Fire retardant metal stannate coated inorganic fillers |
WO2008037168A1 (en) * | 2006-09-28 | 2008-04-03 | Shenzhen Oceanpower Industrial Co., Ltd. | A flame retardant modifier for asphalt |
CN104559258A (en) * | 2015-01-07 | 2015-04-29 | 山西省交通科学研究院 | Asphalt mixture additive and preparation method thereof |
CN110204784A (en) * | 2019-05-23 | 2019-09-06 | 长沙理工大学 | A kind of asphalt flame-retardant agent and preparation method and application |
CN111205661A (en) * | 2020-02-25 | 2020-05-29 | 齐鲁交通材料技术开发有限公司 | Rubber asphalt modifier, modified asphalt, asphalt mixture and its preparation and application |
CN111303645A (en) * | 2020-02-25 | 2020-06-19 | 山东建筑大学 | Environmentally friendly rubber asphalt, asphalt mixture and its preparation method and application |
CN111925778A (en) * | 2020-08-19 | 2020-11-13 | 安徽陆海石油助剂科技有限公司 | Anti-collapse and filtrate loss reducing agent white asphalt for drilling fluid |
CN112143036A (en) * | 2020-08-25 | 2020-12-29 | 蚌埠壹石通聚合物复合材料有限公司 | Preparation method of nano zinc hydroxystannate/clay composite smoke suppressant |
CN114525000A (en) * | 2022-03-14 | 2022-05-24 | 云南锡业锡化工材料有限责任公司 | Flame-retardant polyvinyl chloride cable material and preparation method thereof |
CN115353747A (en) * | 2022-08-18 | 2022-11-18 | 湖北国创高新材料股份有限公司 | Low-volatility-smell asphalt and preparation method thereof |
CN115772308A (en) * | 2022-12-07 | 2023-03-10 | 江苏耀鸿电子有限公司 | Flame-retardant high-temperature-resistant hydrocarbon resin glue solution and copper-clad substrate prepared from same |
CN116004021A (en) * | 2023-01-12 | 2023-04-25 | 广州鸿绵合成材料有限公司 | Environment-friendly odor-removing modified asphalt and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
Synthesis of zinc stannate and zinc stannate coated nano-CaCO3 by homogeneous precipitation;Xie JX, et al;JOURNAL OF CHEMICAL RESEARCH;20111231;109-111 * |
均匀沉淀法制备锡酸锌与锡酸锌包覆纳米碳酸钙的研究;徐建中;刘建州;谢吉星;屈红强;;无机盐工业;20090510(第05期);28-30 * |
新型无机填料表面处理剂的应用;向明等;中国非金属矿工业导刊;20001231(第5期);34-35 * |
Also Published As
Publication number | Publication date |
---|---|
CN116731396A (en) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lv et al. | Performance and VOCs emission inhibition of environmentally friendly rubber modified asphalt with UiO-66 MOFs | |
WO2020119020A1 (en) | Method for preparing carbon-based sulfur-loaded iron-containing mercury-removal adsorbent | |
CN102500336B (en) | Preparation method and application of Fe3O4@SiO2 composite adsorbent | |
Hu et al. | Influence mechanism of surfactants on wettability of coal with different metamorphic degrees based on infrared spectrum experiments | |
Zhao et al. | Critical role of water on the surface of ZnO in H2S removal at room temperature | |
Wang et al. | Study of synergistic effect of diatomite and modified attapulgite on reducing asphalt volatile organic compounds emission | |
Dong et al. | Synthesis and performance determination of a glycosylated modified covalent polymer dust suppressant | |
Wu et al. | Preparation and performance of a biological dust suppressant based on the synergistic effect of enzyme-induced carbonate precipitation and surfactant | |
Dong et al. | Amine‐Functionalized Amyloid Aerogels for CO2 Capture | |
CN116731396B (en) | Preparation method and application of high-performance asphalt odor-removal flame-retardant synergist | |
Yu et al. | Experiment evaluation on the surface treatment of phosphorus slag (PS) micropowder for asphalt modification | |
Li et al. | Effect of kaolin and sepiolite on fume emissions of rubber modified asphalt | |
CN114213140B (en) | Coal gangue-based ceramsite for phosphorus adsorption, preparation method thereof and water treatment equipment | |
Xie et al. | Interaction of composite fume suppression and odor elimination agents with crumb rubber modified asphalt: inhibition behavior of volatile organic compounds (VOCs) and inorganic fume | |
Yu et al. | Preparation and performance evaluation of modified soy protein isolate polymeric dust suppressant using graft copolymerization | |
CN114350166A (en) | Compound smoke-suppressing asphalt for tunnel pavement and preparation method thereof | |
CN118420258A (en) | Road activated phosphogypsum, preparation method and filling method of asphalt mixture containing road activated phosphogypsum and asphalt pavement composite modified phosphogypsum | |
CN110423044B (en) | Additive for improving PM2.5 adsorption capacity of concrete and preparation method and application thereof | |
Ji et al. | Scavenging mechanism of textile dyes in water by enol-keto tautomerism covalent organic framework/chitosan composites | |
CN104874348B (en) | The composite adsorbing material of precipitation rate of radon in a kind of reduction concrete | |
CN117264492A (en) | Indoor expansion type steel structure fireproof coating and preparation method thereof | |
JP4316189B2 (en) | Copper compound-containing functional material and method for producing the same | |
CN114605110B (en) | A kind of preparation method of light-weight asphalt mixture capable of photocatalytic degradation | |
Xu et al. | Performance study of 3DOM TiO 2 fog seal material for photocatalytic degradation of NO in vehicle exhaust | |
Wang et al. | Experimental investigation and molecular dynamics study on the influence of non-ionic fluorocarbon solutions on the fast-wetting mechanism of coal dust |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |