CN115527924A - Semiconductor structures and methods of forming them - Google Patents
Semiconductor structures and methods of forming them Download PDFInfo
- Publication number
- CN115527924A CN115527924A CN202110706315.8A CN202110706315A CN115527924A CN 115527924 A CN115527924 A CN 115527924A CN 202110706315 A CN202110706315 A CN 202110706315A CN 115527924 A CN115527924 A CN 115527924A
- Authority
- CN
- China
- Prior art keywords
- layer
- interconnection
- dielectric layer
- forming
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.
背景技术Background technique
随着集成电路制造技术的不断发展,人们对集成电路的集成度和性能的要求变得越来越高。为了提高集成度,降低成本,元器件的关键尺寸不断变小,集成电路内部的电路密度越来越大,这种发展使得晶圆表面无法提供足够的面积来制作所需要的互连线。With the continuous development of integrated circuit manufacturing technology, people's requirements for the integration and performance of integrated circuits are becoming higher and higher. In order to improve integration and reduce costs, the critical dimensions of components are getting smaller and the circuit density inside integrated circuits is increasing. This development makes the surface of the wafer unable to provide enough area to make the required interconnection lines.
为了满足关键尺寸缩小过后的互连线所需,目前不同金属层或者金属层与衬底的导通是通过互连结构实现的。随着技术节点的推进,互连结构的尺寸也变得越来越小;相应的,形成互连结构的工艺难度也越来越大,而互连结构的形成质量对后段(back end ofline,BEOL)电学性能以及器件可靠性的影响很大,严重时会影响半导体器件的正常工作。In order to meet the requirements of the interconnection line after the critical dimension is reduced, at present, the conduction between different metal layers or the metal layer and the substrate is realized through the interconnection structure. With the advancement of technology nodes, the size of the interconnection structure becomes smaller and smaller; correspondingly, the process difficulty of forming the interconnection structure is also increasing, and the formation quality of the interconnection structure has a great impact on the back end offline , BEOL) has a great influence on the electrical performance and device reliability, and in severe cases, it will affect the normal operation of semiconductor devices.
其中,金属线通常包括用于传输信号的信号线、以及用于为芯片内各组件供电的供电线。Wherein, the metal wires generally include signal wires for transmitting signals, and power supply wires for supplying power to components in the chip.
但是,目前器件的供电效率较低。However, the power supply efficiency of current devices is low.
发明内容Contents of the invention
本发明实施例解决的问题是提供一种半导体结构及其形成方法,提高器件的供电效率。The problem to be solved by the embodiments of the present invention is to provide a semiconductor structure and a forming method thereof, so as to improve the power supply efficiency of the device.
为解决上述问题,本发明实施例提供一种半导体结构,包括:基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;顶部介质层,位于所述底部介质层上;第一金属线,贯穿所述导电插塞顶部的所述顶部介质层且与所述导电插塞相接触,所述第一金属线用于作为信号线;第二金属线,贯穿所述第二互连层顶部的所述第二介质层和顶部介质层,且与所述第二互连层相接触,所述第二金属线用于作为供电线。In order to solve the above problems, an embodiment of the present invention provides a semiconductor structure, including: a substrate, the substrate includes a bottom dielectric layer, and the bottom dielectric layer includes a first dielectric layer and a second dielectric layer on the first dielectric layer, A plurality of interconnection layers are formed in the first dielectric layer, including a first interconnection layer and a second interconnection layer spaced apart from each other, and the second dielectric layer on the top of the first interconnection layer is formed with a A conductive plug in contact with the first interconnection layer; a top dielectric layer located on the bottom dielectric layer; a first metal line passing through the top dielectric layer on top of the conductive plug and in contact with the conductive plug contact, the first metal line is used as a signal line; the second metal line runs through the second dielectric layer and the top dielectric layer on the top of the second interconnection layer, and is in contact with the second interconnection layer contacts, the second metal wire is used as a power supply wire.
相应的,本发明实施例还提供一种半导体结构的形成方法,包括:提供基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于所述第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;在所述底部介质层上形成顶部介质层;形成贯穿所述导电插塞顶部的所述顶部介质层的第一互连槽、以及贯穿所述第二互连层顶部上的第二介质层和顶部介质层的第二互连槽,所述第一互连槽暴露出所述导电插塞,所述第二互连槽暴露出所述第二互连层;在所述第一互连槽和第二互连槽中填充导电材料,分别对应形成第一金属线和第二金属线,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线。Correspondingly, an embodiment of the present invention also provides a method for forming a semiconductor structure, including: providing a substrate, the substrate includes a bottom dielectric layer, and the bottom dielectric layer includes a first dielectric layer and a substrate located on the first dielectric layer. A second dielectric layer, a plurality of interconnection layers are formed in the first dielectric layer, including a first interconnection layer and a second interconnection layer spaced apart, and the second dielectric layer on the top of the first interconnection layer A conductive plug in contact with the first interconnection layer is formed in the layer; a top dielectric layer is formed on the bottom dielectric layer; a first interconnection groove penetrating through the top dielectric layer on the top of the conductive plug is formed, and a second interconnection groove penetrating through the second dielectric layer on top of the second interconnection layer and the top dielectric layer, the first interconnection groove exposes the conductive plug, and the second interconnection groove exposes out of the second interconnection layer; fill the first interconnection groove and the second interconnection groove with conductive material, respectively form a first metal line and a second metal line correspondingly, and the first metal line and the The conductive plug is in contact with and serves as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a power supply line.
与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:
本发明实施例提供的半导体结构,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线,从而供电线与第二互连层之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层之间电连接性能的影响,优化了供电线与第二互连层之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。In the semiconductor structure provided by the embodiment of the present invention, the first metal line is in contact with the conductive plug and is used as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a signal line. The power supply line, so that the electrical connection between the power supply line and the second interconnection layer does not need to be electrically connected through a conductive plug, which is beneficial to prevent the impact of the resistance of the conductive plug on the performance of the electrical connection between the power supply line and the second interconnection layer, and optimizes the The electrical connection performance between the power supply line and the second interconnection layer reduces the IR drop (IR drop), and improves the power supply efficiency of the device.
本发明实施例提供的半导体结构的形成方法中,在形成第一互连槽和第二互连槽的步骤中,所述第一互连槽贯穿所述导电插塞上的顶部介质层,所述第二互连槽贯穿第二互连层顶部上的第二介质层和顶部介质层,且第二互连槽暴露出所述第二互连层,也就是说,与第一互连槽的深度相比,所述第二互连槽的深度更大,在所述第一互连槽和第二互连槽中填充导电材料,分别对应形成第一金属线和第二金属线的步骤中,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线,从而供电线与第二互连层之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层之间电连接性能的影响,优化了供电线与第二互连层之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。In the method for forming a semiconductor structure provided by an embodiment of the present invention, in the step of forming the first interconnection trench and the second interconnection trench, the first interconnection trench penetrates the top dielectric layer on the conductive plug, so The second interconnection trench penetrates the second dielectric layer and the top dielectric layer on the top of the second interconnection layer, and the second interconnection trench exposes the second interconnection layer, that is, Compared with the depth of , the depth of the second interconnection groove is larger, and the conductive material is filled in the first interconnection groove and the second interconnection groove, corresponding to the steps of forming the first metal line and the second metal line respectively wherein, the first metal line is in contact with the conductive plug and is used as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a power supply line, so that the power supply line and the The second interconnection layer does not need to be electrically connected through a conductive plug, which is beneficial to prevent the impact of the resistance of the conductive plug on the performance of the electrical connection between the power supply line and the second interconnection layer, and optimizes the power supply line and the second interconnection. The electrical connection performance between the layers reduces the IR drop (IR drop), and improves the power supply efficiency of the device.
附图说明Description of drawings
图1是一种半导体结构的结构示意图;Fig. 1 is a structural schematic diagram of a semiconductor structure;
图2是本发明半导体结构一实施例的结构示意图;2 is a schematic structural view of an embodiment of a semiconductor structure of the present invention;
图3至图9是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。3 to 9 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
具体实施方式detailed description
由背景技术可知,目前器件的供电效率较低。现结合一种半导体结构分析器件的供电效率较低的原因。图1是一种半导体结构的结构示意图。It can be seen from the background art that the power supply efficiency of current devices is relatively low. The reason why the power supply efficiency of the device is low is analyzed in combination with a semiconductor structure. FIG. 1 is a schematic structural diagram of a semiconductor structure.
参考图1,所述半导体结构包括:基底10,包括衬底(图未示)、位于衬底上的栅极结构(图未示)、位于栅极结构两侧的源漏掺杂区11、位于衬底上且覆盖源漏掺杂区11的第一介质层12,第一介质层12中形成有多个与源漏掺杂区11相接触的源漏互连层,包括第一源漏互连层13和第二源漏互连层14;第二介质层15,位于所述第一介质层12上且覆盖源漏互连层;导电插塞,位于所述第二介质层15中且与所述源漏互连层相接触,所述导电插塞包括与所述第一源漏互连层13相接触的第一导电插塞16,以及与所述第二源漏互连层14相接触的第二导电插塞17;第三介质层18,位于第二介质层15上且覆盖导电插塞;多个金属线,位于所述第三介质层18中,包括与所述第一导电插塞16相接触的信号线19(1),以及与所述第二导电插塞17相接触的供电线19(2),且所述供电线19(2)的线宽大于所述信号线19(1)的线宽。Referring to FIG. 1, the semiconductor structure includes: a
所述半导体结构中,和信号线19(1)相比,供电线19(2)的线宽更大,以便降低供电线19(2)电阻,进而减小IR压降(IR drop)。而且,供电线19(2)与信号线19(1)在同一工艺步骤中形成,供电线19(2)与信号线19(1)均需要通过导电插塞与对应的源漏互连层之间实现电连接。In the semiconductor structure, compared with the signal line 19(1), the line width of the power supply line 19(2) is larger, so as to reduce the resistance of the power supply line 19(2), thereby reducing the IR drop (IR drop). Moreover, the power supply line 19(2) and the signal line 19(1) are formed in the same process step, and both the power supply line 19(2) and the signal line 19(1) need to pass between the conductive plug and the corresponding source-drain interconnection layer. To achieve electrical connection between.
但是,供电线19(2)用于通过源漏互连层向源漏掺杂区11供电,供电线19(2)与源漏互连层之间通过导电插塞实现电连接,导电插塞的电阻会降低器件的供电效率。However, the power supply line 19(2) is used to supply power to the source-drain doped
为了解决所述技术问题,本发明实施例提供一种半导体结构,包括:基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;顶部介质层,位于所述底部介质层上;第一金属线,贯穿所述导电插塞顶部的所述顶部介质层且与所述导电插塞相接触,所述第一金属线用于作为信号线;第二金属线,贯穿所述第二互连层顶部的所述第二介质层和顶部介质层,且与所述第二互连层相接触,所述第二金属线用于作为供电线。In order to solve the above technical problem, an embodiment of the present invention provides a semiconductor structure, including: a substrate, the substrate includes a bottom dielectric layer, and the bottom dielectric layer includes a first dielectric layer and a second dielectric layer on the first dielectric layer layer, a plurality of interconnection layers are formed in the first dielectric layer, including a first interconnection layer and a second interconnection layer spaced apart, and a plurality of interconnection layers are formed in the second dielectric layer on top of the first interconnection layer There is a conductive plug in contact with the first interconnection layer; a top dielectric layer is located on the bottom dielectric layer; a first metal line passes through the top dielectric layer on the top of the conductive plug and connects with the conductive plug plug phase contact, the first metal line is used as a signal line; the second metal line penetrates the second dielectric layer and the top dielectric layer on the top of the second interconnection layer, and is connected to the second interconnection The layers are in contact with each other, and the second metal line is used as a power supply line.
本发明实施例提供的半导体结构,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线,从而供电线与第二互连层之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层之间电连接性能的影响,优化了供电线与第二互连层之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。In the semiconductor structure provided by the embodiment of the present invention, the first metal line is in contact with the conductive plug and is used as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a signal line. The power supply line, so that the electrical connection between the power supply line and the second interconnection layer does not need to be electrically connected through a conductive plug, which is beneficial to prevent the impact of the resistance of the conductive plug on the performance of the electrical connection between the power supply line and the second interconnection layer, and optimizes the The electrical connection performance between the power supply line and the second interconnection layer reduces the IR drop (IR drop), and improves the power supply efficiency of the device.
为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。参考图2,示出了本发明半导体结构一实施例的结构示意图。In order to make the above objects, features and advantages of the embodiments of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. Referring to FIG. 2 , it shows a schematic structural diagram of an embodiment of the semiconductor structure of the present invention.
如图2所示,本实施例中,所述半导体结构包括:基底100,所述基底100包括底部介质层101,所述底部介质层101包括第一介质层130和位于第一介质层130上的第二介质层150,所述第一介质层130中形成有多个互连层,包括相间隔的第一互连层170和第二互连层180,所述第一互连层170顶部的所述第二介质层150中形成有与第一互连层170相接触的导电插塞160;顶部介质层102,位于所述底部介质层101上;第一金属线210,贯穿所述导电插塞160顶部的所述顶部介质层102且与所述导电插塞160相接触,所述第一金属线210用于作为信号线;第二金属线220,贯穿所述第二互连层180顶部的所述第二介质层150和顶部介质层102,且与所述第二互连层180相接触,所述第二金属线220用于作为供电线(Powerrail)。As shown in FIG. 2, in this embodiment, the semiconductor structure includes: a
基底100用于为半导体结构的形成提供工艺平台。The
根据实际工艺情况,所述基底100包括衬底以及形成于所述衬底上的功能结构,例如:所述功能结构可以包括MOS场效应晶体管等半导体器件、电阻结构、导电结构等。According to actual process conditions, the
具体地,本实施例中,所述基底100还包括衬底(图未示)、位于所述衬底上的栅极结构(图未示)、以及位于所述栅极结构两侧的源漏掺杂区140。栅极结构和位于所述栅极结构两侧的源漏掺杂区140用于构成MOS晶体管。Specifically, in this embodiment, the
衬底为晶体管的形成提供了工艺平台。所述衬底的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种。The substrate provides the process platform for the formation of transistors. The material of the substrate includes: one or more of single crystal silicon, germanium, silicon germanium, silicon carbide, gallium nitride, gallium arsenide and gallium indium.
栅极结构用于实现晶体管导电沟道的开启和关断。所述栅极结构的材料包括:TiAl、TiALC、TaAlN、TiAlN、MoN、TaCN、AlN、Ta、TiN、TaN、TaSiN、TiSiN、W、Co、Al、Cu、Ag、Au、Pt和Ni中的任意一种或多种。The gate structure is used to turn on and off the conduction channel of the transistor. The material of the gate structure includes: TiAl, TiALC, TaAlN, TiAlN, MoN, TaCN, AlN, Ta, TiN, TaN, TaSiN, TiSiN, W, Co, Al, Cu, Ag, Au, Pt and Ni Any one or more.
本实施例中,所述基底100还包括位于栅极结构与沟道结构110之间的栅介质层(图未示)。所述栅介质层用于实现栅极结构与沟道结构之间的电隔离。In this embodiment, the
本实施例中,所述栅介质层的材料包括:HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、La2O3、Al2O3、氧化硅和掺氮氧化硅中的一种或多种。In this embodiment, the material of the gate dielectric layer includes: one of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, La 2 O 3 , Al 2 O 3 , silicon oxide, and nitrogen-doped silicon oxide. one or more species.
源漏掺杂区140用于作为晶体管的源极或漏极。作为一种示例,当形成PMOS晶体管时,源漏掺杂区140包括掺杂有P型离子的应力层,应力层的材料为Si或SiGe;当形成NMOS晶体管时,源漏掺杂区140包括掺杂有N型离子的应力层,应力层的材料为Si或SiC。The source-drain doped
作为一实施例,所述基底100还包括分立于所述衬底上的凸起部105、位于凸起部105上的沟道结构110、位于衬底上且围绕凸起部105的隔离层115;所述栅极结构位于隔离层115上且横跨所述沟道结构110;所述源漏掺杂区140位于所述栅极结构两侧的沟道结构110内。As an embodiment, the
沟道结构110用于提供场效应晶体管的导电沟道。所述凸起部105和沟道结构110的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种。The
本实施例中,沟道结构110为鳍部,栅极结构相应横跨鳍部且覆盖鳍部的部分顶部和部分侧壁。具体地,所述鳍部与所述凸起部105相连。在其他实施例中,当沟道结构为与凸起部悬空设置的沟道结构层时,沟道结构层包括一个或多个依次间隔设置的沟道层,栅极结构相应横跨沟道结构层且包围沟道层。In this embodiment, the
隔离层115用于隔离相邻凸起部105,还用于隔离衬底与栅极结构。隔离层115暴露出沟道结构110。隔离层115的材料为绝缘材料,例如:氧化硅、氮氧化硅和氮化硅中的一种或多种。The
本实施例中,所述底部介质层101位于衬底上方且覆盖所述源漏掺杂区140。具体地,本实施例中,所述底部介质层101位于所述隔离层115上。In this embodiment, the
所述底部介质层101为叠层结构或单层结构。本实施例中,以底部介质层101为叠层结构为示例进行说明。The
所述底部介质层101中,所述第一介质层130用于实现互连层之间的电隔离,所述第二介质层150用于实现导电插塞160之间的电隔离。In the
所述第一介质层130和第二介质层150的材料均为介质材料,例如:SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。作为一种示例,所述第一介质层130的材料为氧化硅。作为一种示例,所述第二介质层180的材料为碳氢氧化硅。The materials of the first dielectric layer 130 and the
所述互连层用于实现基底100内的功能结构与外部电路或其他互连结构之间的电连接。所述互连层的数量为多个,从而能够将基底100内的多个功能结构与外部电路或其他互连结构之间电连接。The interconnection layer is used to realize the electrical connection between the functional structures in the
所述互连层的材料为导电材料,所述互连层的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。作为一示例,互连层的材料为Cu。Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。The material of the interconnection layer is a conductive material, and the material of the interconnection layer includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more. As an example, the material of the interconnection layer is Cu. The resistivity of Cu is low, which is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.
作为一实施例,所述互连层位于所述源漏掺杂区140顶部的所述第一介质层130中,且与所述源漏掺杂区140相接触。也就是说,所述互连层作为源漏互连层,用于实现源漏掺杂区140与外部电路或互连结构之间的电连接。As an embodiment, the interconnection layer is located in the first dielectric layer 130 on top of the source-drain doped
在其他实施中,根据实际的工艺需求,所述互连层还可以是其他类型的互连层,用于实现其他部件与外部电路或互连结构之间的电连接。In other implementations, according to actual process requirements, the interconnection layer may also be another type of interconnection layer for realizing electrical connection between other components and external circuits or interconnection structures.
本实施例中,为方便示意和说明,仅示意出了基底100中的两个器件区,每个器件区中均对应形成有MOS晶体管,相应地,第一互连层170和第二互连层180分别用于实现两个器件区的源漏掺杂区140,与外部电路或其他互连结构之间的电连接。In this embodiment, for the convenience of illustration and description, only two device regions in the
所述导电插塞160用于使所述互连层与外部电路或其他互连结构之间实现电连接。具体地,本实施例中,所述导电插塞160用于使第一互连层170与外部电路或其他互连结构电连接。The
所述导电插塞160的材料为导电材料。所述导电插塞160的材料为导电材料,所述导电插塞160的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。The material of the
所述顶部介质层102用于实现金属线之间的电隔离。顶部介质层102覆盖所述导电插塞160。The
顶部介质层102的材料为介质材料。顶部介质层102的材料可以包括SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。具体地,顶部介质层102的材料可以为低k介质材料或超低k介质材料,从而可以有效地降低金属线之间的电容,进而减小器件的RC延迟。作为一示例,顶部介质层102的材料为碳氢氧化硅。The material of the
所述第一金属线210与所述导电插塞160相接触,所述导电插塞160与所述第一互连层170相接触,因此,所述第一金属线210用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。本实施例中,所述第一金属线210用于作为信号线,用于实现源漏掺杂区140与外部电路或其他互连结构之间的信号连接。The
所述第二金属线220与所述第二互连层180相接触,且所述第二互连层180与所述源漏掺杂区140相接触,因此,所述第二金属线220用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。具体地,本实施例中,所述第二金属线220用于作为供电线,也就是说,所述第二金属线220用于向所述源漏掺杂区140供电。The
所述第二金属线220与所述第二互连层180相接触且用于作为供电线,从而供电线与第二互连层180之间无需通过导电插塞160实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层180之间电连接性能的影响,优化了供电线与第二互连层180之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。The
而且,本实施例中,所述第二金属线220的线宽大于所述第一金属线210的线宽,也就是说,与信号线的线宽相比,供电线的线宽更大,有利于降低供电线的电阻、减少IRdrop,进一步提高器件的供电效率。Moreover, in this embodiment, the line width of the
所述第一金属线210和第二金属线220的材料均为导电材料。作为一示例,所述第一金属线210的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种;所述第二金属线220的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。Materials of the
所述第一金属线210可以包括位于所述第一互连槽230侧壁和底部的第一防扩散阻挡层(图未示)、以及位于所述第一防扩散阻挡层上且填充第一互连槽的第一金属层(图未示);所述第二金属线220可以包括位于所述第二互连槽240侧壁和底部的第二防扩散阻挡层(图未示)、以及位于所述第二防扩散阻挡层上且填充第二互连槽的第二金属层(图未示)。The
本实施例中,所述第一金属线210和第二金属线220在同一步骤中形成,因此,所述第一金属线210的结构和第二金属线220的结构相同,且所述第一金属线210的材料和第二金属线220的材料相同。In this embodiment, the
具体地,本实施例中,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料相同,所述第一金属层和第二金属层的材料相同。Specifically, in this embodiment, the material of the first anti-diffusion barrier layer is the same as that of the second anti-diffusion barrier layer, and the material of the first metal layer and the second metal layer is the same.
作为一种示例,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料均为TiN;所述第一金属层和第二金属层的材料均为Cu,Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。As an example, the material of the first anti-diffusion barrier layer and the material of the second anti-diffusion barrier layer are TiN; the material of the first metal layer and the second metal layer is Cu, and the resistivity of Cu is relatively high. Low, it is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.
所述第一金属线210的数量可以为一个或多个。所述第二金属线220的数量可以为一个或多个。需要说明的是,在实际工艺中,当第二金属线220的数量为多个时,基于互连层和金属线的实际图形,部分的第二金属线220可以不与所述第二互连层180相接触。The number of the
相应的,本发明还提供一种半导体结构的形成方法。图3至图9是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。Correspondingly, the present invention also provides a method for forming a semiconductor structure. 3 to 9 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
以下结合附图,对本实施例半导体结构的形成方法进行详细说明。The method for forming the semiconductor structure of this embodiment will be described in detail below with reference to the accompanying drawings.
参考图3,提供基底100,所述基底100包括底部介质层101,所述底部介质层101包括第一介质层130和位于所述第一介质层130上的第二介质层150,所述第一介质层130中形成有多个互连层,包括相间隔的第一互连层170和第二互连层180,所述第一互连层170顶部的所述第二介质层180中形成有与第一互连层170相接触的导电插塞160。Referring to FIG. 3 , a
基底100用于为后续工艺制程提供工艺平台。The
根据实际工艺情况,所述基底100包括衬底以及形成于所述衬底上的功能结构,例如:所述功能结构可以包括MOS场效应晶体管等半导体器件、电阻结构、导电结构等。According to actual process conditions, the
具体地,本实施例中,所述基底100还包括衬底(图未示)、位于所述衬底上的栅极结构(图未示)、以及位于所述栅极结构两侧的源漏掺杂区140。栅极结构和位于所述栅极结构两侧的源漏掺杂区140用于构成MOS晶体管。Specifically, in this embodiment, the
衬底为晶体管的形成提供了工艺平台。所述衬底的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种The substrate provides the process platform for the formation of transistors. The material of the substrate includes: one or more of single crystal silicon, germanium, silicon germanium, silicon carbide, gallium nitride, gallium arsenide and gallium indium
栅极结构用于实现晶体管导电沟道的开启和关断。所述栅极结构的材料包括:TiAl、TiALC、TaAlN、TiAlN、MoN、TaCN、AlN、Ta、TiN、TaN、TaSiN、TiSiN、W、Co、Al、Cu、Ag、Au、Pt和Ni中的任意一种或多种。The gate structure is used to turn on and off the conduction channel of the transistor. The material of the gate structure includes: TiAl, TiALC, TaAlN, TiAlN, MoN, TaCN, AlN, Ta, TiN, TaN, TaSiN, TiSiN, W, Co, Al, Cu, Ag, Au, Pt and Ni Any one or more.
本实施例中,所述基底100还包括位于栅极结构与沟道结构110之间的栅介质层(图未示)。所述栅介质层用于实现栅极结构与沟道结构之间的电隔离。In this embodiment, the
所述栅介质层的材料包括:HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、La2O3、Al2O3、氧化硅和掺氮氧化硅中的一种或多种。The material of the gate dielectric layer includes: one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, La 2 O 3 , Al 2 O 3 , silicon oxide and silicon oxide doped with nitrogen.
源漏掺杂区140用于作为晶体管的源极或漏极。作为一种示例,当形成PMOS晶体管时,源漏掺杂区140包括掺杂有P型离子的应力层,应力层的材料为Si或SiGe;当形成NMOS晶体管时,源漏掺杂区140包括掺杂有N型离子的应力层,应力层的材料为Si或SiC。The source-drain doped
作为一实施例,所述基底100还包括分立于所述衬底上的凸起部105、位于凸起部105上的沟道结构110、位于衬底上且围绕凸起部105的隔离层115;所述栅极结构位于隔离层115上且横跨所述沟道结构110;所述源漏掺杂区140位于所述栅极结构两侧的沟道结构110内。As an embodiment, the
沟道结构110用于提供场效应晶体管的导电沟道。所述凸起部105和沟道结构110的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种。The
本实施例中,沟道结构110为鳍部,栅极结构相应横跨鳍部且覆盖鳍部的部分顶部和部分侧壁。在其他实施例中,当沟道结构为与凸起部悬空设置的沟道结构层时,沟道结构层包括一个或多个依次间隔设置的沟道层,栅极结构相应横跨沟道结构层且包围沟道层。In this embodiment, the
隔离层115用于隔离相邻凸起部105,还用于隔离衬底与栅极结构。隔离层115暴露出沟道结构110。隔离层115的材料为绝缘材料,例如:氧化硅、氮氧化硅和氮化硅中的一种或多种。The
本实施例中,所述底部介质层101位于衬底上方且覆盖所述源漏掺杂区140。具体地,本实施例中,所述底部介质层101位于所述隔离层115上。In this embodiment, the
所述底部介质层101为叠层结构或单层结构。本实施例中,以底部介质层101为叠层结构为示例进行说明。The
所述底部介质层101中,所述第一介质层130用于实现互连层之间的电隔离,所述第二介质层150用于实现导电插塞160之间的电隔离。In the
所述第一介质层130和第二介质层150的材料均为介质材料,例如:SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。作为一种示例,所述第一介质层130的材料为氧化硅。作为一种示例,所述第二介质层180的材料为碳氢氧化硅。The materials of the first dielectric layer 130 and the
所述互连层用于实现基底100内的功能结构与外部电路或其他互连结构之间的电连接。所述互连层的数量为多个,从而能够将基底100内的多个功能结构与外部电路或其他互连结构之间电连接。The interconnection layer is used to realize the electrical connection between the functional structures in the
所述互连层的材料为导电材料,所述互连层的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。作为一示例,互连层的材料为Cu。Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。The material of the interconnection layer is a conductive material, and the material of the interconnection layer includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more. As an example, the material of the interconnection layer is Cu. The resistivity of Cu is low, which is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.
作为一实施例,所述互连层位于所述源漏掺杂区140顶部的所述第一介质层130中,且与所述源漏掺杂区140相接触。也就是说,所述互连层作为源漏互连层,用于实现源漏掺杂区140与外部电路或互连结构之间的电连接。As an embodiment, the interconnection layer is located in the first dielectric layer 130 on top of the source-drain doped
在其他实施中,根据实际的工艺需求,所述互连层还可以是其他类型的互连层,用于实现其他部件与外部电路或互连结构之间的电连接。In other implementations, according to actual process requirements, the interconnection layer may also be another type of interconnection layer for realizing electrical connection between other components and external circuits or interconnection structures.
本实施例中,为方便示意和说明,仅示意出了基底100中的两个器件区,每个器件区中均对应形成有MOS晶体管,相应地,第一互连层170和第二互连层180分别用于实现两个器件区的源漏掺杂区140,与外部电路或其他互连结构之间的电连接。In this embodiment, for the convenience of illustration and description, only two device regions in the
所述导电插塞160用于使所述互连层与外部电路或其他互连结构之间实现电连接。具体地,本实施例中,所述导电插塞160用于使第一互连层170与外部电路或其他互连结构电连接。The
所述导电插塞160的材料为导电材料。所述导电插塞160的材料为导电材料,所述导电插塞160的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。The material of the
继续参考图3,在所述底部介质层101上形成顶部介质层102。顶部介质层102覆盖所述导电插塞160。Continuing to refer to FIG. 3 , a
后续在顶部介质层102中形成多个金属线,所述顶部介质层102用于实现金属线之间的电隔离。Subsequently, a plurality of metal lines are formed in the
所述顶部介质层102的材料为介质材料。所述顶部介质层102的材料可以包括SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。具体地,顶部介质层102的材料可以为低k介质材料或超低k介质材料,从而可以有效地降低金属线之间的电容,进而减小器件的RC延迟。作为一示例,顶部介质层102的材料为碳氢氧化硅。The material of the
参考图4至图8,形成贯穿所述导电插塞160顶部的所述顶部介质层102的第一互连槽230、以及贯穿所述第二互连层180顶部上的第二介质层150和顶部介质层102的第二互连槽240(如图7所示),所述第一互连槽230暴露出所述导电插塞160,所述第二互连槽240暴露出所述第二互连层180。Referring to FIG. 4 to FIG. 8, the
第一互连槽230用于为形成第一金属线提供空间位置。The
第一互连槽230贯穿所述导电插塞160顶部的顶部介质层102,且暴露出所述导电插塞160,以便后续第一金属线能够与所述导电插塞160相接触。The
第二互连槽240用于为形成第二金属线提供空间位置。The
第二互连槽240贯穿所述第二互连层180顶部上的第二介质层150和顶部介质层102,且暴露出所述第二互连层180,以便后续第二金属线能够与所述第二互连层180相接触。The
而且,本实施例中,所述第一金属线用于作为信号线,所述第二金属线用于作为供电线,第二互连槽240贯穿所述第二互连层180顶部上的第二介质层150和顶部介质层102,且暴露出所述第二互连层180,从而后续供电线与第二互连层180之间是直接接触的,供电线与第二互连层180之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层180之间电连接性能的影响,优化了供电线与第二互连层180之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。Moreover, in this embodiment, the first metal line is used as a signal line, the second metal line is used as a power supply line, and the
本实施例中,所述第二互连槽240的开口线宽大于所述第一互连槽230的开口线宽,相应地,后续在第一互连槽230中形成第一金属线、在第二互连槽240中形成第二金属线之后,所述第二金属线的线宽大于所述第一金属线的线宽,也就是说,与信号线的线宽相比,供电线的线宽更大,有利于降低供电线的电阻、减少IR drop,进而提高器件的供电效率。In this embodiment, the opening line width of the
所述第一互连槽230的数量可以为一个或多个。所述第二互连槽240的数量可以为一个或多个。需要说明的是,在实际工艺中,当第二互连槽240的数量为多个时,基于互连层和互连槽的实际图形,部分的第二互连槽240可以不暴露出所述第二互连层180。The number of the
以下结合附图,对本实施例形成所述第一互连槽230和第二互连槽240的步骤进行详细说明。The steps of forming the
参考图4,形成多个贯穿所述顶部介质层102的沟槽,包括位于所述导电插塞160顶部上且暴露出导电插塞160的第一互连槽230、以及位于所述第二互连层180上方的第一初始沟槽260,所述第一初始沟槽260暴露出所述第二介质层102。Referring to FIG. 4 , a plurality of trenches penetrating through the
本实施例中,所述第一初始沟槽260的开口线宽大于所述第一互连槽230的开口线宽,以便形成贯穿所述第一初始沟槽260底部的第二介质层102的第二初始沟槽,第二初始沟槽和第一初始沟槽260所构成的第二互连槽的开口线宽较大,相应使得后续形成在第二互连槽内的第二金属线的线宽较大。In this embodiment, the opening line width of the first
具体地,本实施例中,形成多个贯穿所述顶部介质层102的沟槽的步骤包括:在所述顶部介质层102上形成硬掩膜层250,所述硬掩膜层250中形成有多个掩膜开口(未标示);以所述硬掩膜层250为掩膜,沿所述掩膜开口刻蚀所述顶部介质层102,形成多个贯穿所述顶部介质层102的沟槽。Specifically, in this embodiment, the step of forming a plurality of trenches penetrating the
硬掩膜层250用于作为形成所述沟槽的刻蚀掩膜。所述掩膜开口用于定义沟槽的尺寸、形状和位置。The
所述硬掩膜层250选用与所述顶部介质层102和底部介质层101的材料具有刻蚀选择性的材料,以保证硬掩膜层250能够起到刻蚀掩膜的作用。The
作为一实施例,所述硬掩膜层250的材料为氮化钛。As an embodiment, the material of the
本实施例中,以所述硬掩膜层250为掩膜,采用各向异性的刻蚀工艺,沿所述掩膜开口刻蚀所述顶部介质层102,形成多个所述沟槽。各向异性的刻蚀工艺有利于提供图形传递的精度,进而提高对沟槽的剖面控制性以及沟槽的尺寸精度。具体地,所述各向异性的刻蚀工艺可以为各向异性的干法刻蚀工艺。In this embodiment, using the
参考图5至图8,形成贯穿所述第一初始沟槽260底部的第二介质层102的第二初始沟槽270,所述第二初始沟槽270暴露出所述第二互连层180,所述第二初始沟槽270与所述第一初始沟槽260用于构成所述第二互连槽240。Referring to FIG. 5 to FIG. 8 , a second
形成第二初始沟槽270,从而增大第二互连槽的深度,以使第二互连槽能够暴露出所述第二互连层180。The second
作为一实施例,形成所述第二初始沟槽270的步骤包括:As an embodiment, the step of forming the second
如图5所示,在所述沟槽的底部和侧壁上形成牺牲层245,且位于所述第一互连槽230侧壁的牺牲层245相接触,填充满所述第一互连槽230,位于所述第一初始沟槽260侧壁的牺牲层245侧壁分立。As shown in FIG. 5 , a
所述牺牲层245用于经后续的刻蚀工艺,形成位于所述第一互连槽230中的遮挡层,以便在后续刻蚀第一初始沟槽260底部的第二介质层150的过程中,遮挡层能够对第一互连槽230底部的第二介质层150起到遮挡和保护的作用。The
本实施例中,所述牺牲层245填充满所述第一互连槽230,且位于所述第一初始沟槽260侧壁的牺牲层245侧壁分立,也就是说,在沿垂直于第一初始沟槽260侧壁或底部的方向上,位于所述第一初始沟槽260侧壁的牺牲层245较薄,而所述第一互连槽230内的牺牲层245由于接触在一起,在沿垂直于第一互连槽230底部的方向上,位于第一互连槽230中的牺牲层245较厚,以便于后续对所述牺牲层245进行刻蚀的过程中,在将位于所述第一初始沟槽260内的牺牲层去除的同时,位于所述第一互连槽230内的牺牲层245还能够保留部分厚度,以作为所述遮挡层。In this embodiment, the
本实施例中,由于所述第一初始沟槽260的开口线宽,大于所述第一互连槽230的开口线宽,因此,在形成所述牺牲层245的过程中,随着位于沟槽的底部和侧壁上的牺牲层245材料的厚度逐渐增加,位于第一互连槽230相对侧壁上的牺牲层245材料逐渐接触,并且,通过控制牺牲层245的厚度小于0.5倍的所述第一初始沟槽260的开口线宽,使得位于所述第一初始沟槽260相对侧壁上的牺牲层245的侧壁之间仍相互分立。In this embodiment, since the opening line width of the first
本实施例中,所述牺牲层245还形成在硬掩膜层250的顶部和侧壁上。In this embodiment, the
所述牺牲层245选用与所述顶部介质层102和底部介质层101具有刻蚀选择性的材料,以便在后续刻蚀牺牲层245形成所述遮挡层后,遮挡层能够对第一互连槽230底部的第二介质层150起到保护和遮挡的作用。The
此外,在后续形成第二初始沟槽之后,还需去除牺牲层245,所述牺牲层245还选用易于被去除的材料,以便降低后续去除牺牲层245的难度、提高工艺兼容性,还降低去除牺牲层245的工艺制程对其他膜层结构(例如:顶部介质层、底部介质层)造成损伤的几率。In addition, after the subsequent formation of the second initial trench, the
本实施例中,所述牺牲层245的材料包括无定形碳或无定型锗。In this embodiment, the material of the
作为一示例,所述牺牲层245的材料为无定形碳。无定型碳为容易获得的材料,有利于降低形成所述牺牲层245的工艺成本,而且,无定型碳后续可以通过氧化工艺去除,有利于降低后续去除所述牺牲层245的工艺操作难度,简化了工艺流程、提高了工艺制造效率,而且还有利于降低所述牺牲层245对后续工艺制程、以及半导体结构的影响。As an example, the material of the
本实施例中,形成所述牺牲层245包括化学气相沉积(CVD)工艺。化学气相沉积工艺具有较好的覆盖能力,且工艺兼容性强、工艺成本低。In this embodiment, forming the
在其他实施例中,基于牺牲层的材料以及实际工艺需求,还可以采用其他工艺,形成所述牺牲层245。In other embodiments, based on the material of the sacrificial layer and actual process requirements, other processes may also be used to form the
如图6所示,对所述牺牲层245进行刻蚀,去除位于所述第一初始沟槽260侧壁和底部的牺牲层245,剩余填充于所述第一互连槽230中的牺牲层245用于作为遮挡层265。As shown in FIG. 6 , the
在后续刻蚀第一初始沟槽260底部的第二介质层150的过程中,遮挡层265用于对所述第一互连槽230底部的第二介质层150起到遮挡和保护的作用。During subsequent etching of the
本实施例中,采用各向同性的刻蚀工艺,对所述牺牲层245进行刻蚀。In this embodiment, the
各向同性刻蚀的工艺具有各向同性刻蚀的特性,能够对位于第一初始沟槽260侧壁和底部的牺牲层245进行刻蚀。而且,本实施例中,由于位于第一初始沟槽260侧壁的牺牲层245之间相互分立,位于第一互连槽230中的牺牲层245填充满所述第一互连槽230,因此,各向同性刻蚀工艺在将位于第一初始沟槽260内的牺牲层245去除的同时,位于第一互连槽230中的牺牲层245还能够保留部分厚度用于作为所述遮挡层265。The isotropic etching process has isotropic etching characteristics, and can etch the
而且,本实施例中,形成遮挡层265的过程中无需利用光罩或掩膜,还有利于节约工艺成本,并简化工艺流程。Moreover, in this embodiment, no photomask or mask is needed in the process of forming the
具体地,所述各向同性的刻蚀工艺可以是各向同性的干法刻蚀工艺和湿法刻蚀工艺中的一种或两种。Specifically, the isotropic etching process may be one or both of an isotropic dry etching process and a wet etching process.
如图7所示,以所述遮挡层265为掩膜,刻蚀所述第一初始沟槽260底部的第二介质层150,在所述第一初始沟槽260下方形成暴露出所述第二互连层180的第二初始沟槽270,所述第二初始沟槽270与所述第一初始沟槽260构成所述第二互连槽240。第二初始沟槽270与第一初始沟槽260相连通。As shown in FIG. 7 , using the
本实施例中,刻蚀所述第一初始沟槽260底部的第二介质层150的工艺包括各向异性的刻蚀工艺。各向异性的刻蚀工艺有利于提高图形传递的精度,进而提高第二初始沟槽270的剖面形貌质量和尺寸精度。In this embodiment, the process of etching the
如图8所示,在形成所述第二初始沟槽270之后,在所述第一互连槽230和第二互连槽240中填充导电材料之前,所述半导体结构的形成方法还包括:去除所述遮挡层265。As shown in FIG. 8 , after forming the second
去除所述遮挡层265,从而暴露出所述第一互连槽230的空间,以便后续在第一互连槽230中填充导电材料。The
本实施例中,所述遮挡层265的材料为无定形碳,采用氧化工艺去除所述牺牲层124。氧化工艺中的含氧气体可以和无定形碳材料反应生成二氧化碳气体从而排出反应腔外,去除工艺简单,工艺兼容性高且副作用小,有利于降低工艺成本和提高生产产能。In this embodiment, the
在其他实施例中,所述牺牲层的材料为无定型锗时,采用湿法刻蚀工艺去除所述牺牲层。具体地,采用HCl蒸汽进行所述湿法刻蚀工艺。在另一些实施中,当牺牲层的材料为其他材料时,相应采用合适的工艺中去除所述牺牲层。In other embodiments, when the material of the sacrificial layer is amorphous germanium, a wet etching process is used to remove the sacrificial layer. Specifically, the wet etching process is performed using HCl vapor. In other implementations, when the material of the sacrificial layer is other materials, the sacrificial layer is removed in a corresponding process.
本实施例中,在形成所述第二初始沟槽270之后,所述半导体结构的形成还包括:去除所述硬掩膜层250。去除所述硬掩膜层250,以降低后续导电材料需要填充的厚度,进而降低后续导电材料的填充难度。In this embodiment, after forming the second
需要说明的是,以上形成第二初始沟槽270的步骤仅作为一种示例。形成第二初始沟槽270的步骤不仅限于此。例如:在其他实施例中,形成所述第二初始沟槽的步骤包括:在所述顶部介质层上形成图形化层,所述图形化层填充所述第一互连层且暴露出所述第一初始沟槽;以所述图形化层为掩膜,刻蚀所述第一初始沟槽底部的第二介质层。It should be noted that the above step of forming the second
还需要说明的是,本实施例中,以通过形成第一互连槽和第一初始沟槽,再与第一初始沟槽相连通的第二初始沟槽,以构成所述第二互连槽为示例进行说明。也就是说,本实施例中,分别在不同步骤中形成所述第一互连槽和第二互连槽。形成第一互连槽和第二互连槽的工艺步骤不仅限于此。It should also be noted that in this embodiment, the second interconnection is formed by forming the first interconnection groove and the first initial trench, and then connecting the second initial trench with the first initial trench. Slots are illustrated as examples. That is to say, in this embodiment, the first interconnection groove and the second interconnection groove are respectively formed in different steps. The process steps of forming the first interconnection trench and the second interconnection trench are not limited thereto.
在其他实施例中,基于实际的工艺,还可以在同一步骤中形成所述第一互连槽和第二互连槽。In other embodiments, based on the actual process, the first interconnection trench and the second interconnection trench may also be formed in the same step.
参考图9,在所述第一互连槽230和第二互连槽240中填充导电材料,分别对应形成第一金属线210和第二金属线220,所述第一金属线210与所述导电插塞160相接触且用于作为信号线,所述第二金属线220与所述第二互连层180相接触且用于作为供电线(Powerrail)。Referring to FIG. 9, conductive material is filled in the
所述第一金属线210与所述导电插塞160相接触,所述导电插塞160与所述第一互连层170相接触,因此,所述第一金属线210用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。本实施例中,所述第一金属线210用于作为信号线,用于实现源漏掺杂区140与外部电路或其他互连结构之间的信号连接。The
所述第二金属线220与所述第二互连层180相接触,且所述第二互连层180与所述源漏掺杂区140相接触,因此,所述第二金属线220用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。具体地,本实施例中,所述第二金属线220用于作为供电线,也就是说,所述第二金属线220用于向所述源漏掺杂区140供电。The
所述第二金属线220与所述第二互连层180相接触且用于作为供电线,从而供电线与第二互连层180之间无需通过导电插塞160实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层180之间电连接性能的影响,优化了供电线与第二互连层180之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。The
而且,本实施例中,所述第二互连槽240的开口线宽大于所述第一互连槽230的开口线宽,相应地,所述第二金属线220的线宽大于所述第一金属线210的线宽,也就是说,与信号线的线宽相比,供电线的线宽更大,有利于降低供电线的电阻、减少IR drop,进一步提高器件的供电效率。Moreover, in this embodiment, the opening line width of the
所述第一金属线210和第二金属线220均为导电材料。作为一示例,所述第一金属线210的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种;所述第二金属线220的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。Both the
所述第一金属线210可以包括位于所述第一互连槽230侧壁和底部的第一防扩散阻挡层(图未示)、以及位于所述第一防扩散阻挡层上且填充第一互连槽的第一金属层(图未示);所述第二金属线220可以包括位于所述第二互连槽240侧壁和底部的第二防扩散阻挡层(图未示)、以及位于所述第二防扩散阻挡层上且填充第二互连槽的第二金属层(图未示)。The
本实施例中,所述第一金属线210和第二金属线220在同一步骤中形成,因此,所述第一金属线210的结构和第二金属线220的结构相同,且所述第一金属线210的材料和第二金属线220的材料相同。In this embodiment, the
具体地,本实施例中,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料相同,所述第一金属层和第二金属层的材料相同。Specifically, in this embodiment, the material of the first anti-diffusion barrier layer is the same as that of the second anti-diffusion barrier layer, and the material of the first metal layer and the second metal layer is the same.
作为一种示例,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料均为TiN;所述第一金属层和第二金属层的材料均为Cu,Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。As an example, the material of the first anti-diffusion barrier layer and the material of the second anti-diffusion barrier layer are TiN; the material of the first metal layer and the second metal layer is Cu, and the resistivity of Cu is relatively high. Low, it is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110706315.8A CN115527924A (en) | 2021-06-24 | 2021-06-24 | Semiconductor structures and methods of forming them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110706315.8A CN115527924A (en) | 2021-06-24 | 2021-06-24 | Semiconductor structures and methods of forming them |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115527924A true CN115527924A (en) | 2022-12-27 |
Family
ID=84693921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110706315.8A Pending CN115527924A (en) | 2021-06-24 | 2021-06-24 | Semiconductor structures and methods of forming them |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115527924A (en) |
-
2021
- 2021-06-24 CN CN202110706315.8A patent/CN115527924A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11651993B2 (en) | Etch stop layer for semiconductor devices | |
US12027415B2 (en) | Semiconductor device structures | |
TWI777359B (en) | Semiconductor device and method | |
CN107230702B (en) | Semiconductor device and method for manufacturing the same | |
TWI762159B (en) | Method for forming semiconductor transistor device and semiconductor device | |
CN113224054B (en) | Semiconductor transistor device and method for forming the same | |
CN111863711B (en) | Semiconductor structures and methods of forming them | |
US20240339510A1 (en) | Semiconductor device structure with backside contact | |
CN113809007A (en) | Semiconductor structure and forming method thereof | |
CN113571517A (en) | Multi-gate device and method of forming the same | |
CN114823894A (en) | Semiconductor structure and method of forming the same | |
CN114068481A (en) | Semiconductor structure and forming method thereof | |
US20230223452A1 (en) | Semiconductor structure and forming method thereof | |
TWI817408B (en) | Semiconductor device structure and method of forming the same | |
CN115527924A (en) | Semiconductor structures and methods of forming them | |
CN115966599A (en) | Semiconductor structure and forming method thereof | |
CN114551597A (en) | Semiconductor structure and forming method thereof | |
CN114068395B (en) | Semiconductor structure and forming method thereof | |
US20230033570A1 (en) | Structure and formation method of semiconductor device with contact structures | |
CN115117056A (en) | Semiconductor structure and forming method thereof | |
CN114078760A (en) | Method of forming a semiconductor structure | |
CN115084001A (en) | Semiconductor structure and forming method thereof | |
TW202410203A (en) | Semiconductor device and method of fabricating the same | |
CN116847725A (en) | Semiconductor structures and methods of forming them | |
CN118231406A (en) | Semiconductor device and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |