[go: up one dir, main page]

CN115527924A - Semiconductor structures and methods of forming them - Google Patents

Semiconductor structures and methods of forming them Download PDF

Info

Publication number
CN115527924A
CN115527924A CN202110706315.8A CN202110706315A CN115527924A CN 115527924 A CN115527924 A CN 115527924A CN 202110706315 A CN202110706315 A CN 202110706315A CN 115527924 A CN115527924 A CN 115527924A
Authority
CN
China
Prior art keywords
layer
interconnection
dielectric layer
forming
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110706315.8A
Other languages
Chinese (zh)
Inventor
金吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN202110706315.8A priority Critical patent/CN115527924A/en
Publication of CN115527924A publication Critical patent/CN115527924A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A semiconductor structure and a method of forming the same, the semiconductor structure comprising: the bottom dielectric layer comprises a first dielectric layer and a second dielectric layer positioned on the first dielectric layer, a plurality of interconnection layers are formed in the first dielectric layer and comprise a first interconnection layer and a second interconnection layer which are spaced, and a conductive plug which is in contact with the first interconnection layer is formed in the second dielectric layer; a top dielectric layer located on the bottom dielectric layer; the first metal wire penetrates through the top dielectric layer and is in contact with the conductive plug, and the first metal wire is used as a signal wire; the second metal wire penetrates through the second dielectric layer and the top dielectric layer and is in contact with the second interconnection layer, and the second metal wire is used as a power supply line, so that the power supply line is not required to be electrically connected with the second interconnection layer through a conductive plug, the influence of the resistance of the conductive plug on the electric connection performance between the power supply line and the second interconnection layer is favorably prevented, the electric connection performance between the power supply line and the second interconnection layer is optimized, the IR voltage drop is reduced, and the power supply efficiency of the device is improved.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.

背景技术Background technique

随着集成电路制造技术的不断发展,人们对集成电路的集成度和性能的要求变得越来越高。为了提高集成度,降低成本,元器件的关键尺寸不断变小,集成电路内部的电路密度越来越大,这种发展使得晶圆表面无法提供足够的面积来制作所需要的互连线。With the continuous development of integrated circuit manufacturing technology, people's requirements for the integration and performance of integrated circuits are becoming higher and higher. In order to improve integration and reduce costs, the critical dimensions of components are getting smaller and the circuit density inside integrated circuits is increasing. This development makes the surface of the wafer unable to provide enough area to make the required interconnection lines.

为了满足关键尺寸缩小过后的互连线所需,目前不同金属层或者金属层与衬底的导通是通过互连结构实现的。随着技术节点的推进,互连结构的尺寸也变得越来越小;相应的,形成互连结构的工艺难度也越来越大,而互连结构的形成质量对后段(back end ofline,BEOL)电学性能以及器件可靠性的影响很大,严重时会影响半导体器件的正常工作。In order to meet the requirements of the interconnection line after the critical dimension is reduced, at present, the conduction between different metal layers or the metal layer and the substrate is realized through the interconnection structure. With the advancement of technology nodes, the size of the interconnection structure becomes smaller and smaller; correspondingly, the process difficulty of forming the interconnection structure is also increasing, and the formation quality of the interconnection structure has a great impact on the back end offline , BEOL) has a great influence on the electrical performance and device reliability, and in severe cases, it will affect the normal operation of semiconductor devices.

其中,金属线通常包括用于传输信号的信号线、以及用于为芯片内各组件供电的供电线。Wherein, the metal wires generally include signal wires for transmitting signals, and power supply wires for supplying power to components in the chip.

但是,目前器件的供电效率较低。However, the power supply efficiency of current devices is low.

发明内容Contents of the invention

本发明实施例解决的问题是提供一种半导体结构及其形成方法,提高器件的供电效率。The problem to be solved by the embodiments of the present invention is to provide a semiconductor structure and a forming method thereof, so as to improve the power supply efficiency of the device.

为解决上述问题,本发明实施例提供一种半导体结构,包括:基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;顶部介质层,位于所述底部介质层上;第一金属线,贯穿所述导电插塞顶部的所述顶部介质层且与所述导电插塞相接触,所述第一金属线用于作为信号线;第二金属线,贯穿所述第二互连层顶部的所述第二介质层和顶部介质层,且与所述第二互连层相接触,所述第二金属线用于作为供电线。In order to solve the above problems, an embodiment of the present invention provides a semiconductor structure, including: a substrate, the substrate includes a bottom dielectric layer, and the bottom dielectric layer includes a first dielectric layer and a second dielectric layer on the first dielectric layer, A plurality of interconnection layers are formed in the first dielectric layer, including a first interconnection layer and a second interconnection layer spaced apart from each other, and the second dielectric layer on the top of the first interconnection layer is formed with a A conductive plug in contact with the first interconnection layer; a top dielectric layer located on the bottom dielectric layer; a first metal line passing through the top dielectric layer on top of the conductive plug and in contact with the conductive plug contact, the first metal line is used as a signal line; the second metal line runs through the second dielectric layer and the top dielectric layer on the top of the second interconnection layer, and is in contact with the second interconnection layer contacts, the second metal wire is used as a power supply wire.

相应的,本发明实施例还提供一种半导体结构的形成方法,包括:提供基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于所述第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;在所述底部介质层上形成顶部介质层;形成贯穿所述导电插塞顶部的所述顶部介质层的第一互连槽、以及贯穿所述第二互连层顶部上的第二介质层和顶部介质层的第二互连槽,所述第一互连槽暴露出所述导电插塞,所述第二互连槽暴露出所述第二互连层;在所述第一互连槽和第二互连槽中填充导电材料,分别对应形成第一金属线和第二金属线,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线。Correspondingly, an embodiment of the present invention also provides a method for forming a semiconductor structure, including: providing a substrate, the substrate includes a bottom dielectric layer, and the bottom dielectric layer includes a first dielectric layer and a substrate located on the first dielectric layer. A second dielectric layer, a plurality of interconnection layers are formed in the first dielectric layer, including a first interconnection layer and a second interconnection layer spaced apart, and the second dielectric layer on the top of the first interconnection layer A conductive plug in contact with the first interconnection layer is formed in the layer; a top dielectric layer is formed on the bottom dielectric layer; a first interconnection groove penetrating through the top dielectric layer on the top of the conductive plug is formed, and a second interconnection groove penetrating through the second dielectric layer on top of the second interconnection layer and the top dielectric layer, the first interconnection groove exposes the conductive plug, and the second interconnection groove exposes out of the second interconnection layer; fill the first interconnection groove and the second interconnection groove with conductive material, respectively form a first metal line and a second metal line correspondingly, and the first metal line and the The conductive plug is in contact with and serves as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a power supply line.

与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:

本发明实施例提供的半导体结构,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线,从而供电线与第二互连层之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层之间电连接性能的影响,优化了供电线与第二互连层之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。In the semiconductor structure provided by the embodiment of the present invention, the first metal line is in contact with the conductive plug and is used as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a signal line. The power supply line, so that the electrical connection between the power supply line and the second interconnection layer does not need to be electrically connected through a conductive plug, which is beneficial to prevent the impact of the resistance of the conductive plug on the performance of the electrical connection between the power supply line and the second interconnection layer, and optimizes the The electrical connection performance between the power supply line and the second interconnection layer reduces the IR drop (IR drop), and improves the power supply efficiency of the device.

本发明实施例提供的半导体结构的形成方法中,在形成第一互连槽和第二互连槽的步骤中,所述第一互连槽贯穿所述导电插塞上的顶部介质层,所述第二互连槽贯穿第二互连层顶部上的第二介质层和顶部介质层,且第二互连槽暴露出所述第二互连层,也就是说,与第一互连槽的深度相比,所述第二互连槽的深度更大,在所述第一互连槽和第二互连槽中填充导电材料,分别对应形成第一金属线和第二金属线的步骤中,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线,从而供电线与第二互连层之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层之间电连接性能的影响,优化了供电线与第二互连层之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。In the method for forming a semiconductor structure provided by an embodiment of the present invention, in the step of forming the first interconnection trench and the second interconnection trench, the first interconnection trench penetrates the top dielectric layer on the conductive plug, so The second interconnection trench penetrates the second dielectric layer and the top dielectric layer on the top of the second interconnection layer, and the second interconnection trench exposes the second interconnection layer, that is, Compared with the depth of , the depth of the second interconnection groove is larger, and the conductive material is filled in the first interconnection groove and the second interconnection groove, corresponding to the steps of forming the first metal line and the second metal line respectively wherein, the first metal line is in contact with the conductive plug and is used as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a power supply line, so that the power supply line and the The second interconnection layer does not need to be electrically connected through a conductive plug, which is beneficial to prevent the impact of the resistance of the conductive plug on the performance of the electrical connection between the power supply line and the second interconnection layer, and optimizes the power supply line and the second interconnection. The electrical connection performance between the layers reduces the IR drop (IR drop), and improves the power supply efficiency of the device.

附图说明Description of drawings

图1是一种半导体结构的结构示意图;Fig. 1 is a structural schematic diagram of a semiconductor structure;

图2是本发明半导体结构一实施例的结构示意图;2 is a schematic structural view of an embodiment of a semiconductor structure of the present invention;

图3至图9是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。3 to 9 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

具体实施方式detailed description

由背景技术可知,目前器件的供电效率较低。现结合一种半导体结构分析器件的供电效率较低的原因。图1是一种半导体结构的结构示意图。It can be seen from the background art that the power supply efficiency of current devices is relatively low. The reason why the power supply efficiency of the device is low is analyzed in combination with a semiconductor structure. FIG. 1 is a schematic structural diagram of a semiconductor structure.

参考图1,所述半导体结构包括:基底10,包括衬底(图未示)、位于衬底上的栅极结构(图未示)、位于栅极结构两侧的源漏掺杂区11、位于衬底上且覆盖源漏掺杂区11的第一介质层12,第一介质层12中形成有多个与源漏掺杂区11相接触的源漏互连层,包括第一源漏互连层13和第二源漏互连层14;第二介质层15,位于所述第一介质层12上且覆盖源漏互连层;导电插塞,位于所述第二介质层15中且与所述源漏互连层相接触,所述导电插塞包括与所述第一源漏互连层13相接触的第一导电插塞16,以及与所述第二源漏互连层14相接触的第二导电插塞17;第三介质层18,位于第二介质层15上且覆盖导电插塞;多个金属线,位于所述第三介质层18中,包括与所述第一导电插塞16相接触的信号线19(1),以及与所述第二导电插塞17相接触的供电线19(2),且所述供电线19(2)的线宽大于所述信号线19(1)的线宽。Referring to FIG. 1, the semiconductor structure includes: a base 10, including a substrate (not shown), a gate structure (not shown) on the substrate, source and drain doped regions 11 on both sides of the gate structure, The first dielectric layer 12 that is located on the substrate and covers the source-drain doped region 11 is formed in the first dielectric layer 12 with a plurality of source-drain interconnection layers that are in contact with the source-drain doped region 11, including the first source-drain interconnection layer Interconnection layer 13 and second source-drain interconnection layer 14; second dielectric layer 15, located on the first dielectric layer 12 and covering the source-drain interconnection layer; conductive plug, located in the second dielectric layer 15 And in contact with the source-drain interconnection layer, the conductive plug includes a first conductive plug 16 in contact with the first source-drain interconnection layer 13, and a contact with the second source-drain interconnection layer The second conductive plug 17 in contact with 14; the third dielectric layer 18, located on the second dielectric layer 15 and covering the conductive plug; a plurality of metal lines, located in the third dielectric layer 18, including the A signal line 19(1) in contact with a conductive plug 16, and a power supply line 19(2) in contact with the second conductive plug 17, and the line width of the power supply line 19(2) is larger than the The line width of the signal line 19(1).

所述半导体结构中,和信号线19(1)相比,供电线19(2)的线宽更大,以便降低供电线19(2)电阻,进而减小IR压降(IR drop)。而且,供电线19(2)与信号线19(1)在同一工艺步骤中形成,供电线19(2)与信号线19(1)均需要通过导电插塞与对应的源漏互连层之间实现电连接。In the semiconductor structure, compared with the signal line 19(1), the line width of the power supply line 19(2) is larger, so as to reduce the resistance of the power supply line 19(2), thereby reducing the IR drop (IR drop). Moreover, the power supply line 19(2) and the signal line 19(1) are formed in the same process step, and both the power supply line 19(2) and the signal line 19(1) need to pass between the conductive plug and the corresponding source-drain interconnection layer. To achieve electrical connection between.

但是,供电线19(2)用于通过源漏互连层向源漏掺杂区11供电,供电线19(2)与源漏互连层之间通过导电插塞实现电连接,导电插塞的电阻会降低器件的供电效率。However, the power supply line 19(2) is used to supply power to the source-drain doped region 11 through the source-drain interconnection layer, and the electrical connection between the power supply line 19(2) and the source-drain interconnection layer is realized through a conductive plug, and the conductive plug Resistors will degrade the power delivery efficiency of the device.

为了解决所述技术问题,本发明实施例提供一种半导体结构,包括:基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;顶部介质层,位于所述底部介质层上;第一金属线,贯穿所述导电插塞顶部的所述顶部介质层且与所述导电插塞相接触,所述第一金属线用于作为信号线;第二金属线,贯穿所述第二互连层顶部的所述第二介质层和顶部介质层,且与所述第二互连层相接触,所述第二金属线用于作为供电线。In order to solve the above technical problem, an embodiment of the present invention provides a semiconductor structure, including: a substrate, the substrate includes a bottom dielectric layer, and the bottom dielectric layer includes a first dielectric layer and a second dielectric layer on the first dielectric layer layer, a plurality of interconnection layers are formed in the first dielectric layer, including a first interconnection layer and a second interconnection layer spaced apart, and a plurality of interconnection layers are formed in the second dielectric layer on top of the first interconnection layer There is a conductive plug in contact with the first interconnection layer; a top dielectric layer is located on the bottom dielectric layer; a first metal line passes through the top dielectric layer on the top of the conductive plug and connects with the conductive plug plug phase contact, the first metal line is used as a signal line; the second metal line penetrates the second dielectric layer and the top dielectric layer on the top of the second interconnection layer, and is connected to the second interconnection The layers are in contact with each other, and the second metal line is used as a power supply line.

本发明实施例提供的半导体结构,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线,从而供电线与第二互连层之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层之间电连接性能的影响,优化了供电线与第二互连层之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。In the semiconductor structure provided by the embodiment of the present invention, the first metal line is in contact with the conductive plug and is used as a signal line, and the second metal line is in contact with the second interconnection layer and is used as a signal line. The power supply line, so that the electrical connection between the power supply line and the second interconnection layer does not need to be electrically connected through a conductive plug, which is beneficial to prevent the impact of the resistance of the conductive plug on the performance of the electrical connection between the power supply line and the second interconnection layer, and optimizes the The electrical connection performance between the power supply line and the second interconnection layer reduces the IR drop (IR drop), and improves the power supply efficiency of the device.

为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。参考图2,示出了本发明半导体结构一实施例的结构示意图。In order to make the above objects, features and advantages of the embodiments of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. Referring to FIG. 2 , it shows a schematic structural diagram of an embodiment of the semiconductor structure of the present invention.

如图2所示,本实施例中,所述半导体结构包括:基底100,所述基底100包括底部介质层101,所述底部介质层101包括第一介质层130和位于第一介质层130上的第二介质层150,所述第一介质层130中形成有多个互连层,包括相间隔的第一互连层170和第二互连层180,所述第一互连层170顶部的所述第二介质层150中形成有与第一互连层170相接触的导电插塞160;顶部介质层102,位于所述底部介质层101上;第一金属线210,贯穿所述导电插塞160顶部的所述顶部介质层102且与所述导电插塞160相接触,所述第一金属线210用于作为信号线;第二金属线220,贯穿所述第二互连层180顶部的所述第二介质层150和顶部介质层102,且与所述第二互连层180相接触,所述第二金属线220用于作为供电线(Powerrail)。As shown in FIG. 2, in this embodiment, the semiconductor structure includes: a substrate 100, the substrate 100 includes a bottom dielectric layer 101, and the bottom dielectric layer 101 includes a first dielectric layer 130 and is located on the first dielectric layer 130. The second dielectric layer 150, the first dielectric layer 130 is formed with a plurality of interconnection layers, including the first interconnection layer 170 and the second interconnection layer 180 spaced apart, the top of the first interconnection layer 170 A conductive plug 160 in contact with the first interconnection layer 170 is formed in the second dielectric layer 150; a top dielectric layer 102 is located on the bottom dielectric layer 101; a first metal line 210 runs through the conductive The top dielectric layer 102 on the top of the plug 160 is in contact with the conductive plug 160, the first metal line 210 is used as a signal line; the second metal line 220 runs through the second interconnection layer 180 The second dielectric layer 150 and the top dielectric layer 102 on the top are in contact with the second interconnection layer 180 , and the second metal wire 220 is used as a power rail.

基底100用于为半导体结构的形成提供工艺平台。The substrate 100 is used to provide a process platform for the formation of semiconductor structures.

根据实际工艺情况,所述基底100包括衬底以及形成于所述衬底上的功能结构,例如:所述功能结构可以包括MOS场效应晶体管等半导体器件、电阻结构、导电结构等。According to actual process conditions, the base 100 includes a substrate and functional structures formed on the substrate, for example, the functional structures may include semiconductor devices such as MOS field effect transistors, resistor structures, conductive structures, and the like.

具体地,本实施例中,所述基底100还包括衬底(图未示)、位于所述衬底上的栅极结构(图未示)、以及位于所述栅极结构两侧的源漏掺杂区140。栅极结构和位于所述栅极结构两侧的源漏掺杂区140用于构成MOS晶体管。Specifically, in this embodiment, the substrate 100 further includes a substrate (not shown), a gate structure (not shown) on the substrate, and source and drain structures located on both sides of the gate structure. doped region 140 . The gate structure and the source-drain doped regions 140 located on both sides of the gate structure are used to form a MOS transistor.

衬底为晶体管的形成提供了工艺平台。所述衬底的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种。The substrate provides the process platform for the formation of transistors. The material of the substrate includes: one or more of single crystal silicon, germanium, silicon germanium, silicon carbide, gallium nitride, gallium arsenide and gallium indium.

栅极结构用于实现晶体管导电沟道的开启和关断。所述栅极结构的材料包括:TiAl、TiALC、TaAlN、TiAlN、MoN、TaCN、AlN、Ta、TiN、TaN、TaSiN、TiSiN、W、Co、Al、Cu、Ag、Au、Pt和Ni中的任意一种或多种。The gate structure is used to turn on and off the conduction channel of the transistor. The material of the gate structure includes: TiAl, TiALC, TaAlN, TiAlN, MoN, TaCN, AlN, Ta, TiN, TaN, TaSiN, TiSiN, W, Co, Al, Cu, Ag, Au, Pt and Ni Any one or more.

本实施例中,所述基底100还包括位于栅极结构与沟道结构110之间的栅介质层(图未示)。所述栅介质层用于实现栅极结构与沟道结构之间的电隔离。In this embodiment, the substrate 100 further includes a gate dielectric layer (not shown) located between the gate structure and the channel structure 110 . The gate dielectric layer is used to realize electrical isolation between the gate structure and the channel structure.

本实施例中,所述栅介质层的材料包括:HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、La2O3、Al2O3、氧化硅和掺氮氧化硅中的一种或多种。In this embodiment, the material of the gate dielectric layer includes: one of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, La 2 O 3 , Al 2 O 3 , silicon oxide, and nitrogen-doped silicon oxide. one or more species.

源漏掺杂区140用于作为晶体管的源极或漏极。作为一种示例,当形成PMOS晶体管时,源漏掺杂区140包括掺杂有P型离子的应力层,应力层的材料为Si或SiGe;当形成NMOS晶体管时,源漏掺杂区140包括掺杂有N型离子的应力层,应力层的材料为Si或SiC。The source-drain doped region 140 is used as the source or drain of the transistor. As an example, when forming a PMOS transistor, the source-drain doped region 140 includes a stress layer doped with P-type ions, and the material of the stress layer is Si or SiGe; when forming an NMOS transistor, the source-drain doped region 140 includes The stress layer doped with N-type ions is made of Si or SiC.

作为一实施例,所述基底100还包括分立于所述衬底上的凸起部105、位于凸起部105上的沟道结构110、位于衬底上且围绕凸起部105的隔离层115;所述栅极结构位于隔离层115上且横跨所述沟道结构110;所述源漏掺杂区140位于所述栅极结构两侧的沟道结构110内。As an embodiment, the substrate 100 further includes a raised portion 105 separated on the substrate, a channel structure 110 located on the raised portion 105, and an isolation layer 115 located on the substrate and surrounding the raised portion 105 The gate structure is located on the isolation layer 115 and crosses the channel structure 110; the source-drain doped region 140 is located in the channel structure 110 on both sides of the gate structure.

沟道结构110用于提供场效应晶体管的导电沟道。所述凸起部105和沟道结构110的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种。The channel structure 110 is used to provide a conduction channel of the field effect transistor. The materials of the raised portion 105 and the channel structure 110 include: one or more of single crystal silicon, germanium, silicon germanium, silicon carbide, gallium nitride, gallium arsenide and indium gallium.

本实施例中,沟道结构110为鳍部,栅极结构相应横跨鳍部且覆盖鳍部的部分顶部和部分侧壁。具体地,所述鳍部与所述凸起部105相连。在其他实施例中,当沟道结构为与凸起部悬空设置的沟道结构层时,沟道结构层包括一个或多个依次间隔设置的沟道层,栅极结构相应横跨沟道结构层且包围沟道层。In this embodiment, the channel structure 110 is a fin, and the gate structure correspondingly straddles the fin and covers part of the top and part of the sidewall of the fin. Specifically, the fin portion is connected to the raised portion 105 . In other embodiments, when the channel structure is a channel structure layer suspended from the raised portion, the channel structure layer includes one or more channel layers arranged at intervals in sequence, and the gate structure correspondingly spans the channel structure layer and surrounds the channel layer.

隔离层115用于隔离相邻凸起部105,还用于隔离衬底与栅极结构。隔离层115暴露出沟道结构110。隔离层115的材料为绝缘材料,例如:氧化硅、氮氧化硅和氮化硅中的一种或多种。The isolation layer 115 is used for isolating adjacent raised portions 105 and is also used for isolating the substrate and the gate structure. The isolation layer 115 exposes the channel structure 110 . The material of the isolation layer 115 is an insulating material, such as one or more of silicon oxide, silicon oxynitride and silicon nitride.

本实施例中,所述底部介质层101位于衬底上方且覆盖所述源漏掺杂区140。具体地,本实施例中,所述底部介质层101位于所述隔离层115上。In this embodiment, the bottom dielectric layer 101 is located above the substrate and covers the source-drain doped region 140 . Specifically, in this embodiment, the bottom dielectric layer 101 is located on the isolation layer 115 .

所述底部介质层101为叠层结构或单层结构。本实施例中,以底部介质层101为叠层结构为示例进行说明。The bottom dielectric layer 101 is a stacked structure or a single layer structure. In this embodiment, the bottom dielectric layer 101 is taken as an example for illustration.

所述底部介质层101中,所述第一介质层130用于实现互连层之间的电隔离,所述第二介质层150用于实现导电插塞160之间的电隔离。In the bottom dielectric layer 101 , the first dielectric layer 130 is used to realize electrical isolation between interconnection layers, and the second dielectric layer 150 is used to realize electrical isolation between conductive plugs 160 .

所述第一介质层130和第二介质层150的材料均为介质材料,例如:SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。作为一种示例,所述第一介质层130的材料为氧化硅。作为一种示例,所述第二介质层180的材料为碳氢氧化硅。The materials of the first dielectric layer 130 and the second dielectric layer 150 are dielectric materials, such as one or more of SiOCH, SiOC, SiO 2 , FSG, BSG, PSG and BPSG. As an example, the material of the first dielectric layer 130 is silicon oxide. As an example, the material of the second dielectric layer 180 is carbon silicon hydroxide.

所述互连层用于实现基底100内的功能结构与外部电路或其他互连结构之间的电连接。所述互连层的数量为多个,从而能够将基底100内的多个功能结构与外部电路或其他互连结构之间电连接。The interconnection layer is used to realize the electrical connection between the functional structures in the substrate 100 and external circuits or other interconnection structures. There are multiple interconnection layers, so that multiple functional structures in the substrate 100 can be electrically connected to external circuits or other interconnection structures.

所述互连层的材料为导电材料,所述互连层的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。作为一示例,互连层的材料为Cu。Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。The material of the interconnection layer is a conductive material, and the material of the interconnection layer includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more. As an example, the material of the interconnection layer is Cu. The resistivity of Cu is low, which is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.

作为一实施例,所述互连层位于所述源漏掺杂区140顶部的所述第一介质层130中,且与所述源漏掺杂区140相接触。也就是说,所述互连层作为源漏互连层,用于实现源漏掺杂区140与外部电路或互连结构之间的电连接。As an embodiment, the interconnection layer is located in the first dielectric layer 130 on top of the source-drain doped region 140 and is in contact with the source-drain doped region 140 . That is to say, the interconnection layer serves as a source-drain interconnection layer for realizing the electrical connection between the source-drain doped region 140 and an external circuit or interconnection structure.

在其他实施中,根据实际的工艺需求,所述互连层还可以是其他类型的互连层,用于实现其他部件与外部电路或互连结构之间的电连接。In other implementations, according to actual process requirements, the interconnection layer may also be another type of interconnection layer for realizing electrical connection between other components and external circuits or interconnection structures.

本实施例中,为方便示意和说明,仅示意出了基底100中的两个器件区,每个器件区中均对应形成有MOS晶体管,相应地,第一互连层170和第二互连层180分别用于实现两个器件区的源漏掺杂区140,与外部电路或其他互连结构之间的电连接。In this embodiment, for the convenience of illustration and description, only two device regions in the substrate 100 are shown, and MOS transistors are correspondingly formed in each device region. Correspondingly, the first interconnection layer 170 and the second interconnection layer 170 The layer 180 is respectively used to realize the electrical connection between the source and drain doped regions 140 of the two device regions and external circuits or other interconnection structures.

所述导电插塞160用于使所述互连层与外部电路或其他互连结构之间实现电连接。具体地,本实施例中,所述导电插塞160用于使第一互连层170与外部电路或其他互连结构电连接。The conductive plug 160 is used to realize electrical connection between the interconnection layer and external circuits or other interconnection structures. Specifically, in this embodiment, the conductive plug 160 is used to electrically connect the first interconnection layer 170 with an external circuit or other interconnection structures.

所述导电插塞160的材料为导电材料。所述导电插塞160的材料为导电材料,所述导电插塞160的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。The material of the conductive plug 160 is a conductive material. The material of the conductive plug 160 is a conductive material, and the material of the conductive plug 160 includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more of.

所述顶部介质层102用于实现金属线之间的电隔离。顶部介质层102覆盖所述导电插塞160。The top dielectric layer 102 is used to realize electrical isolation between metal lines. The top dielectric layer 102 covers the conductive plug 160 .

顶部介质层102的材料为介质材料。顶部介质层102的材料可以包括SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。具体地,顶部介质层102的材料可以为低k介质材料或超低k介质材料,从而可以有效地降低金属线之间的电容,进而减小器件的RC延迟。作为一示例,顶部介质层102的材料为碳氢氧化硅。The material of the top dielectric layer 102 is a dielectric material. The material of the top dielectric layer 102 may include one or more of SiOCH, SiOC, SiO 2 , FSG, BSG, PSG and BPSG. Specifically, the material of the top dielectric layer 102 can be a low-k dielectric material or an ultra-low-k dielectric material, so that the capacitance between metal lines can be effectively reduced, thereby reducing the RC delay of the device. As an example, the material of the top dielectric layer 102 is silicon carbon hydroxide.

所述第一金属线210与所述导电插塞160相接触,所述导电插塞160与所述第一互连层170相接触,因此,所述第一金属线210用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。本实施例中,所述第一金属线210用于作为信号线,用于实现源漏掺杂区140与外部电路或其他互连结构之间的信号连接。The first metal line 210 is in contact with the conductive plug 160, and the conductive plug 160 is in contact with the first interconnection layer 170, therefore, the first metal line 210 is used to implement source-drain doping The electrical connection between the impurity region 140 and external circuits or other interconnection structures. In this embodiment, the first metal line 210 is used as a signal line for realizing signal connection between the source-drain doped region 140 and external circuits or other interconnection structures.

所述第二金属线220与所述第二互连层180相接触,且所述第二互连层180与所述源漏掺杂区140相接触,因此,所述第二金属线220用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。具体地,本实施例中,所述第二金属线220用于作为供电线,也就是说,所述第二金属线220用于向所述源漏掺杂区140供电。The second metal line 220 is in contact with the second interconnection layer 180, and the second interconnection layer 180 is in contact with the source-drain doped region 140, therefore, the second metal line 220 is used for To realize the electrical connection between the source-drain doped region 140 and external circuits or other interconnection structures. Specifically, in this embodiment, the second metal line 220 is used as a power supply line, that is, the second metal line 220 is used to supply power to the source-drain doped region 140 .

所述第二金属线220与所述第二互连层180相接触且用于作为供电线,从而供电线与第二互连层180之间无需通过导电插塞160实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层180之间电连接性能的影响,优化了供电线与第二互连层180之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。The second metal line 220 is in contact with the second interconnection layer 180 and is used as a power supply line, so that the electrical connection between the power supply line and the second interconnection layer 180 does not need to be electrically connected through the conductive plug 160, which is beneficial to prevent The influence of the resistance of the conductive plug on the electrical connection performance between the power supply line and the second interconnection layer 180 optimizes the electrical connection performance between the power supply line and the second interconnection layer 180, reduces the IR drop (IR drop), The power supply efficiency of the device is improved.

而且,本实施例中,所述第二金属线220的线宽大于所述第一金属线210的线宽,也就是说,与信号线的线宽相比,供电线的线宽更大,有利于降低供电线的电阻、减少IRdrop,进一步提高器件的供电效率。Moreover, in this embodiment, the line width of the second metal line 220 is larger than the line width of the first metal line 210, that is, the line width of the power supply line is larger than the line width of the signal line, It is beneficial to reduce the resistance of the power supply line, reduce IRdrop, and further improve the power supply efficiency of the device.

所述第一金属线210和第二金属线220的材料均为导电材料。作为一示例,所述第一金属线210的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种;所述第二金属线220的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。Materials of the first metal wire 210 and the second metal wire 220 are conductive materials. As an example, the material of the first metal line 210 includes one or more of Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN The material of the second metal line 220 includes one or more of Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN.

所述第一金属线210可以包括位于所述第一互连槽230侧壁和底部的第一防扩散阻挡层(图未示)、以及位于所述第一防扩散阻挡层上且填充第一互连槽的第一金属层(图未示);所述第二金属线220可以包括位于所述第二互连槽240侧壁和底部的第二防扩散阻挡层(图未示)、以及位于所述第二防扩散阻挡层上且填充第二互连槽的第二金属层(图未示)。The first metal line 210 may include a first anti-diffusion barrier layer (not shown) located on the sidewall and bottom of the first interconnection trench 230 , and a first anti-diffusion barrier layer located on the first anti-diffusion barrier layer and filling the first The first metal layer of the interconnection groove (not shown in the figure); the second metal line 220 may include a second anti-diffusion barrier layer (not shown in the figure) located on the sidewall and bottom of the second interconnection groove 240, and A second metal layer (not shown) located on the second diffusion barrier layer and filling the second interconnection groove.

本实施例中,所述第一金属线210和第二金属线220在同一步骤中形成,因此,所述第一金属线210的结构和第二金属线220的结构相同,且所述第一金属线210的材料和第二金属线220的材料相同。In this embodiment, the first metal line 210 and the second metal line 220 are formed in the same step, therefore, the structure of the first metal line 210 and the structure of the second metal line 220 are the same, and the first The material of the metal wire 210 is the same as that of the second metal wire 220 .

具体地,本实施例中,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料相同,所述第一金属层和第二金属层的材料相同。Specifically, in this embodiment, the material of the first anti-diffusion barrier layer is the same as that of the second anti-diffusion barrier layer, and the material of the first metal layer and the second metal layer is the same.

作为一种示例,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料均为TiN;所述第一金属层和第二金属层的材料均为Cu,Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。As an example, the material of the first anti-diffusion barrier layer and the material of the second anti-diffusion barrier layer are TiN; the material of the first metal layer and the second metal layer is Cu, and the resistivity of Cu is relatively high. Low, it is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.

所述第一金属线210的数量可以为一个或多个。所述第二金属线220的数量可以为一个或多个。需要说明的是,在实际工艺中,当第二金属线220的数量为多个时,基于互连层和金属线的实际图形,部分的第二金属线220可以不与所述第二互连层180相接触。The number of the first metal lines 210 may be one or more. The number of the second metal wires 220 may be one or more. It should be noted that, in an actual process, when there are multiple second metal lines 220, some of the second metal lines 220 may not be connected to the second interconnection layer based on the interconnection layer and the actual pattern of the metal lines. Layer 180 is in contact.

相应的,本发明还提供一种半导体结构的形成方法。图3至图9是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。Correspondingly, the present invention also provides a method for forming a semiconductor structure. 3 to 9 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

以下结合附图,对本实施例半导体结构的形成方法进行详细说明。The method for forming the semiconductor structure of this embodiment will be described in detail below with reference to the accompanying drawings.

参考图3,提供基底100,所述基底100包括底部介质层101,所述底部介质层101包括第一介质层130和位于所述第一介质层130上的第二介质层150,所述第一介质层130中形成有多个互连层,包括相间隔的第一互连层170和第二互连层180,所述第一互连层170顶部的所述第二介质层180中形成有与第一互连层170相接触的导电插塞160。Referring to FIG. 3 , a substrate 100 is provided, the substrate 100 includes a bottom dielectric layer 101, the bottom dielectric layer 101 includes a first dielectric layer 130 and a second dielectric layer 150 on the first dielectric layer 130, the first dielectric layer 130 A plurality of interconnection layers are formed in a dielectric layer 130, including a first interconnection layer 170 and a second interconnection layer 180 spaced apart, and the first interconnection layer 170 is formed in the second dielectric layer 180 There is a conductive plug 160 in contact with the first interconnection layer 170 .

基底100用于为后续工艺制程提供工艺平台。The substrate 100 is used to provide a process platform for subsequent processes.

根据实际工艺情况,所述基底100包括衬底以及形成于所述衬底上的功能结构,例如:所述功能结构可以包括MOS场效应晶体管等半导体器件、电阻结构、导电结构等。According to actual process conditions, the base 100 includes a substrate and functional structures formed on the substrate, for example, the functional structures may include semiconductor devices such as MOS field effect transistors, resistor structures, conductive structures, and the like.

具体地,本实施例中,所述基底100还包括衬底(图未示)、位于所述衬底上的栅极结构(图未示)、以及位于所述栅极结构两侧的源漏掺杂区140。栅极结构和位于所述栅极结构两侧的源漏掺杂区140用于构成MOS晶体管。Specifically, in this embodiment, the substrate 100 further includes a substrate (not shown), a gate structure (not shown) on the substrate, and source and drain structures located on both sides of the gate structure. doped region 140 . The gate structure and the source-drain doped regions 140 located on both sides of the gate structure are used to form a MOS transistor.

衬底为晶体管的形成提供了工艺平台。所述衬底的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种The substrate provides the process platform for the formation of transistors. The material of the substrate includes: one or more of single crystal silicon, germanium, silicon germanium, silicon carbide, gallium nitride, gallium arsenide and gallium indium

栅极结构用于实现晶体管导电沟道的开启和关断。所述栅极结构的材料包括:TiAl、TiALC、TaAlN、TiAlN、MoN、TaCN、AlN、Ta、TiN、TaN、TaSiN、TiSiN、W、Co、Al、Cu、Ag、Au、Pt和Ni中的任意一种或多种。The gate structure is used to turn on and off the conduction channel of the transistor. The material of the gate structure includes: TiAl, TiALC, TaAlN, TiAlN, MoN, TaCN, AlN, Ta, TiN, TaN, TaSiN, TiSiN, W, Co, Al, Cu, Ag, Au, Pt and Ni Any one or more.

本实施例中,所述基底100还包括位于栅极结构与沟道结构110之间的栅介质层(图未示)。所述栅介质层用于实现栅极结构与沟道结构之间的电隔离。In this embodiment, the substrate 100 further includes a gate dielectric layer (not shown) located between the gate structure and the channel structure 110 . The gate dielectric layer is used to realize electrical isolation between the gate structure and the channel structure.

所述栅介质层的材料包括:HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、La2O3、Al2O3、氧化硅和掺氮氧化硅中的一种或多种。The material of the gate dielectric layer includes: one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, La 2 O 3 , Al 2 O 3 , silicon oxide and silicon oxide doped with nitrogen.

源漏掺杂区140用于作为晶体管的源极或漏极。作为一种示例,当形成PMOS晶体管时,源漏掺杂区140包括掺杂有P型离子的应力层,应力层的材料为Si或SiGe;当形成NMOS晶体管时,源漏掺杂区140包括掺杂有N型离子的应力层,应力层的材料为Si或SiC。The source-drain doped region 140 is used as the source or drain of the transistor. As an example, when forming a PMOS transistor, the source-drain doped region 140 includes a stress layer doped with P-type ions, and the material of the stress layer is Si or SiGe; when forming an NMOS transistor, the source-drain doped region 140 includes The stress layer doped with N-type ions is made of Si or SiC.

作为一实施例,所述基底100还包括分立于所述衬底上的凸起部105、位于凸起部105上的沟道结构110、位于衬底上且围绕凸起部105的隔离层115;所述栅极结构位于隔离层115上且横跨所述沟道结构110;所述源漏掺杂区140位于所述栅极结构两侧的沟道结构110内。As an embodiment, the substrate 100 further includes a raised portion 105 separated on the substrate, a channel structure 110 located on the raised portion 105, and an isolation layer 115 located on the substrate and surrounding the raised portion 105 The gate structure is located on the isolation layer 115 and crosses the channel structure 110; the source-drain doped region 140 is located in the channel structure 110 on both sides of the gate structure.

沟道结构110用于提供场效应晶体管的导电沟道。所述凸起部105和沟道结构110的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种。The channel structure 110 is used to provide a conduction channel of the field effect transistor. The materials of the raised portion 105 and the channel structure 110 include: one or more of single crystal silicon, germanium, silicon germanium, silicon carbide, gallium nitride, gallium arsenide and indium gallium.

本实施例中,沟道结构110为鳍部,栅极结构相应横跨鳍部且覆盖鳍部的部分顶部和部分侧壁。在其他实施例中,当沟道结构为与凸起部悬空设置的沟道结构层时,沟道结构层包括一个或多个依次间隔设置的沟道层,栅极结构相应横跨沟道结构层且包围沟道层。In this embodiment, the channel structure 110 is a fin, and the gate structure correspondingly straddles the fin and covers part of the top and part of the sidewall of the fin. In other embodiments, when the channel structure is a channel structure layer suspended from the raised portion, the channel structure layer includes one or more channel layers arranged at intervals in sequence, and the gate structure correspondingly spans the channel structure layer and surrounds the channel layer.

隔离层115用于隔离相邻凸起部105,还用于隔离衬底与栅极结构。隔离层115暴露出沟道结构110。隔离层115的材料为绝缘材料,例如:氧化硅、氮氧化硅和氮化硅中的一种或多种。The isolation layer 115 is used for isolating adjacent raised portions 105 and is also used for isolating the substrate and the gate structure. The isolation layer 115 exposes the channel structure 110 . The material of the isolation layer 115 is an insulating material, such as one or more of silicon oxide, silicon oxynitride and silicon nitride.

本实施例中,所述底部介质层101位于衬底上方且覆盖所述源漏掺杂区140。具体地,本实施例中,所述底部介质层101位于所述隔离层115上。In this embodiment, the bottom dielectric layer 101 is located above the substrate and covers the source-drain doped region 140 . Specifically, in this embodiment, the bottom dielectric layer 101 is located on the isolation layer 115 .

所述底部介质层101为叠层结构或单层结构。本实施例中,以底部介质层101为叠层结构为示例进行说明。The bottom dielectric layer 101 is a stacked structure or a single layer structure. In this embodiment, the bottom dielectric layer 101 is taken as an example for illustration.

所述底部介质层101中,所述第一介质层130用于实现互连层之间的电隔离,所述第二介质层150用于实现导电插塞160之间的电隔离。In the bottom dielectric layer 101 , the first dielectric layer 130 is used to realize electrical isolation between interconnection layers, and the second dielectric layer 150 is used to realize electrical isolation between conductive plugs 160 .

所述第一介质层130和第二介质层150的材料均为介质材料,例如:SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。作为一种示例,所述第一介质层130的材料为氧化硅。作为一种示例,所述第二介质层180的材料为碳氢氧化硅。The materials of the first dielectric layer 130 and the second dielectric layer 150 are dielectric materials, such as one or more of SiOCH, SiOC, SiO 2 , FSG, BSG, PSG and BPSG. As an example, the material of the first dielectric layer 130 is silicon oxide. As an example, the material of the second dielectric layer 180 is carbon silicon hydroxide.

所述互连层用于实现基底100内的功能结构与外部电路或其他互连结构之间的电连接。所述互连层的数量为多个,从而能够将基底100内的多个功能结构与外部电路或其他互连结构之间电连接。The interconnection layer is used to realize the electrical connection between the functional structures in the substrate 100 and external circuits or other interconnection structures. There are multiple interconnection layers, so that multiple functional structures in the substrate 100 can be electrically connected to external circuits or other interconnection structures.

所述互连层的材料为导电材料,所述互连层的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。作为一示例,互连层的材料为Cu。Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。The material of the interconnection layer is a conductive material, and the material of the interconnection layer includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more. As an example, the material of the interconnection layer is Cu. The resistivity of Cu is low, which is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.

作为一实施例,所述互连层位于所述源漏掺杂区140顶部的所述第一介质层130中,且与所述源漏掺杂区140相接触。也就是说,所述互连层作为源漏互连层,用于实现源漏掺杂区140与外部电路或互连结构之间的电连接。As an embodiment, the interconnection layer is located in the first dielectric layer 130 on top of the source-drain doped region 140 and is in contact with the source-drain doped region 140 . That is to say, the interconnection layer serves as a source-drain interconnection layer for realizing the electrical connection between the source-drain doped region 140 and an external circuit or interconnection structure.

在其他实施中,根据实际的工艺需求,所述互连层还可以是其他类型的互连层,用于实现其他部件与外部电路或互连结构之间的电连接。In other implementations, according to actual process requirements, the interconnection layer may also be another type of interconnection layer for realizing electrical connection between other components and external circuits or interconnection structures.

本实施例中,为方便示意和说明,仅示意出了基底100中的两个器件区,每个器件区中均对应形成有MOS晶体管,相应地,第一互连层170和第二互连层180分别用于实现两个器件区的源漏掺杂区140,与外部电路或其他互连结构之间的电连接。In this embodiment, for the convenience of illustration and description, only two device regions in the substrate 100 are shown, and MOS transistors are correspondingly formed in each device region. Correspondingly, the first interconnection layer 170 and the second interconnection layer 170 The layer 180 is respectively used to realize the electrical connection between the source and drain doped regions 140 of the two device regions and external circuits or other interconnection structures.

所述导电插塞160用于使所述互连层与外部电路或其他互连结构之间实现电连接。具体地,本实施例中,所述导电插塞160用于使第一互连层170与外部电路或其他互连结构电连接。The conductive plug 160 is used to realize electrical connection between the interconnection layer and external circuits or other interconnection structures. Specifically, in this embodiment, the conductive plug 160 is used to electrically connect the first interconnection layer 170 with an external circuit or other interconnection structures.

所述导电插塞160的材料为导电材料。所述导电插塞160的材料为导电材料,所述导电插塞160的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。The material of the conductive plug 160 is a conductive material. The material of the conductive plug 160 is a conductive material, and the material of the conductive plug 160 includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more of.

继续参考图3,在所述底部介质层101上形成顶部介质层102。顶部介质层102覆盖所述导电插塞160。Continuing to refer to FIG. 3 , a top dielectric layer 102 is formed on the bottom dielectric layer 101 . The top dielectric layer 102 covers the conductive plug 160 .

后续在顶部介质层102中形成多个金属线,所述顶部介质层102用于实现金属线之间的电隔离。Subsequently, a plurality of metal lines are formed in the top dielectric layer 102, and the top dielectric layer 102 is used to realize electrical isolation between the metal lines.

所述顶部介质层102的材料为介质材料。所述顶部介质层102的材料可以包括SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。具体地,顶部介质层102的材料可以为低k介质材料或超低k介质材料,从而可以有效地降低金属线之间的电容,进而减小器件的RC延迟。作为一示例,顶部介质层102的材料为碳氢氧化硅。The material of the top dielectric layer 102 is a dielectric material. The material of the top dielectric layer 102 may include one or more of SiOCH, SiOC, SiO 2 , FSG, BSG, PSG and BPSG. Specifically, the material of the top dielectric layer 102 can be a low-k dielectric material or an ultra-low-k dielectric material, so that the capacitance between metal lines can be effectively reduced, thereby reducing the RC delay of the device. As an example, the material of the top dielectric layer 102 is silicon carbon hydroxide.

参考图4至图8,形成贯穿所述导电插塞160顶部的所述顶部介质层102的第一互连槽230、以及贯穿所述第二互连层180顶部上的第二介质层150和顶部介质层102的第二互连槽240(如图7所示),所述第一互连槽230暴露出所述导电插塞160,所述第二互连槽240暴露出所述第二互连层180。Referring to FIG. 4 to FIG. 8, the first interconnect groove 230 penetrating through the top dielectric layer 102 on the top of the conductive plug 160, and the second dielectric layer 150 and the The second interconnection groove 240 (as shown in FIG. 7 ) of the top dielectric layer 102, the first interconnection groove 230 exposes the conductive plug 160, and the second interconnection groove 240 exposes the second interconnect layer 180 .

第一互连槽230用于为形成第一金属线提供空间位置。The first interconnection groove 230 is used to provide a space for forming the first metal line.

第一互连槽230贯穿所述导电插塞160顶部的顶部介质层102,且暴露出所述导电插塞160,以便后续第一金属线能够与所述导电插塞160相接触。The first interconnection groove 230 penetrates through the top dielectric layer 102 on the top of the conductive plug 160 and exposes the conductive plug 160 so that the subsequent first metal line can contact the conductive plug 160 .

第二互连槽240用于为形成第二金属线提供空间位置。The second interconnection groove 240 is used to provide a space for forming the second metal line.

第二互连槽240贯穿所述第二互连层180顶部上的第二介质层150和顶部介质层102,且暴露出所述第二互连层180,以便后续第二金属线能够与所述第二互连层180相接触。The second interconnect groove 240 penetrates the second dielectric layer 150 and the top dielectric layer 102 on the top of the second interconnect layer 180, and exposes the second interconnect layer 180, so that the subsequent second metal line can The second interconnection layer 180 is in contact.

而且,本实施例中,所述第一金属线用于作为信号线,所述第二金属线用于作为供电线,第二互连槽240贯穿所述第二互连层180顶部上的第二介质层150和顶部介质层102,且暴露出所述第二互连层180,从而后续供电线与第二互连层180之间是直接接触的,供电线与第二互连层180之间无需通过导电插塞实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层180之间电连接性能的影响,优化了供电线与第二互连层180之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。Moreover, in this embodiment, the first metal line is used as a signal line, the second metal line is used as a power supply line, and the second interconnection groove 240 runs through the first interconnection groove 240 on the top of the second interconnection layer 180 . The second dielectric layer 150 and the top dielectric layer 102, and expose the second interconnection layer 180, so that the subsequent power supply line is in direct contact with the second interconnection layer 180, and the connection between the power supply line and the second interconnection layer 180 There is no need to realize the electrical connection through the conductive plug, which is beneficial to prevent the impact of the resistance of the conductive plug on the performance of the electrical connection between the power supply line and the second interconnection layer 180, and optimizes the electrical connection between the power supply line and the second interconnection layer 180. connection performance, reducing the IR drop (IR drop), and improving the power supply efficiency of the device.

本实施例中,所述第二互连槽240的开口线宽大于所述第一互连槽230的开口线宽,相应地,后续在第一互连槽230中形成第一金属线、在第二互连槽240中形成第二金属线之后,所述第二金属线的线宽大于所述第一金属线的线宽,也就是说,与信号线的线宽相比,供电线的线宽更大,有利于降低供电线的电阻、减少IR drop,进而提高器件的供电效率。In this embodiment, the opening line width of the second interconnection groove 240 is greater than the opening line width of the first interconnection groove 230, correspondingly, the first metal line is subsequently formed in the first interconnection groove 230, and the After the second metal line is formed in the second interconnection groove 240, the line width of the second metal line is greater than the line width of the first metal line, that is, compared with the line width of the signal line, the power supply line The larger line width is beneficial to reduce the resistance of the power supply line and reduce IR drop, thereby improving the power supply efficiency of the device.

所述第一互连槽230的数量可以为一个或多个。所述第二互连槽240的数量可以为一个或多个。需要说明的是,在实际工艺中,当第二互连槽240的数量为多个时,基于互连层和互连槽的实际图形,部分的第二互连槽240可以不暴露出所述第二互连层180。The number of the first interconnection slots 230 may be one or more. The number of the second interconnection slots 240 may be one or more. It should be noted that, in an actual process, when there are multiple second interconnection grooves 240, based on the interconnection layer and the actual pattern of the interconnection grooves, part of the second interconnection grooves 240 may not expose the The second interconnection layer 180 .

以下结合附图,对本实施例形成所述第一互连槽230和第二互连槽240的步骤进行详细说明。The steps of forming the first interconnection trench 230 and the second interconnection trench 240 in this embodiment will be described in detail below with reference to the accompanying drawings.

参考图4,形成多个贯穿所述顶部介质层102的沟槽,包括位于所述导电插塞160顶部上且暴露出导电插塞160的第一互连槽230、以及位于所述第二互连层180上方的第一初始沟槽260,所述第一初始沟槽260暴露出所述第二介质层102。Referring to FIG. 4 , a plurality of trenches penetrating through the top dielectric layer 102 are formed, including a first interconnect groove 230 located on the top of the conductive plug 160 and exposing the conductive plug 160, and a first interconnect groove 230 located on the top of the conductive plug 160, and a groove located at the second interconnection. The first initial trench 260 above the connecting layer 180 , the first initial trench 260 exposes the second dielectric layer 102 .

本实施例中,所述第一初始沟槽260的开口线宽大于所述第一互连槽230的开口线宽,以便形成贯穿所述第一初始沟槽260底部的第二介质层102的第二初始沟槽,第二初始沟槽和第一初始沟槽260所构成的第二互连槽的开口线宽较大,相应使得后续形成在第二互连槽内的第二金属线的线宽较大。In this embodiment, the opening line width of the first initial trench 260 is larger than the opening line width of the first interconnection trench 230, so as to form the second dielectric layer 102 penetrating through the bottom of the first initial trench 260. The second initial trench, the opening line width of the second interconnection trench formed by the second initial trench and the first initial trench 260 is relatively large, correspondingly making the second metal line subsequently formed in the second interconnection trench The line width is larger.

具体地,本实施例中,形成多个贯穿所述顶部介质层102的沟槽的步骤包括:在所述顶部介质层102上形成硬掩膜层250,所述硬掩膜层250中形成有多个掩膜开口(未标示);以所述硬掩膜层250为掩膜,沿所述掩膜开口刻蚀所述顶部介质层102,形成多个贯穿所述顶部介质层102的沟槽。Specifically, in this embodiment, the step of forming a plurality of trenches penetrating the top dielectric layer 102 includes: forming a hard mask layer 250 on the top dielectric layer 102, and forming a hard mask layer 250 in the hard mask layer 250 A plurality of mask openings (not marked); using the hard mask layer 250 as a mask, etching the top dielectric layer 102 along the mask openings to form a plurality of trenches penetrating through the top dielectric layer 102 .

硬掩膜层250用于作为形成所述沟槽的刻蚀掩膜。所述掩膜开口用于定义沟槽的尺寸、形状和位置。The hard mask layer 250 is used as an etch mask for forming the trenches. The mask openings are used to define the size, shape and location of the trenches.

所述硬掩膜层250选用与所述顶部介质层102和底部介质层101的材料具有刻蚀选择性的材料,以保证硬掩膜层250能够起到刻蚀掩膜的作用。The hard mask layer 250 is selected from a material having etching selectivity with the materials of the top dielectric layer 102 and the bottom dielectric layer 101 , so as to ensure that the hard mask layer 250 can function as an etching mask.

作为一实施例,所述硬掩膜层250的材料为氮化钛。As an embodiment, the material of the hard mask layer 250 is titanium nitride.

本实施例中,以所述硬掩膜层250为掩膜,采用各向异性的刻蚀工艺,沿所述掩膜开口刻蚀所述顶部介质层102,形成多个所述沟槽。各向异性的刻蚀工艺有利于提供图形传递的精度,进而提高对沟槽的剖面控制性以及沟槽的尺寸精度。具体地,所述各向异性的刻蚀工艺可以为各向异性的干法刻蚀工艺。In this embodiment, using the hard mask layer 250 as a mask, an anisotropic etching process is used to etch the top dielectric layer 102 along the opening of the mask to form a plurality of trenches. The anisotropic etching process is beneficial to improve the accuracy of pattern transfer, thereby improving the controllability of the profile of the groove and the dimensional accuracy of the groove. Specifically, the anisotropic etching process may be an anisotropic dry etching process.

参考图5至图8,形成贯穿所述第一初始沟槽260底部的第二介质层102的第二初始沟槽270,所述第二初始沟槽270暴露出所述第二互连层180,所述第二初始沟槽270与所述第一初始沟槽260用于构成所述第二互连槽240。Referring to FIG. 5 to FIG. 8 , a second initial trench 270 penetrating through the second dielectric layer 102 at the bottom of the first initial trench 260 is formed, and the second initial trench 270 exposes the second interconnection layer 180 , the second initial trench 270 and the first initial trench 260 are used to form the second interconnection trench 240 .

形成第二初始沟槽270,从而增大第二互连槽的深度,以使第二互连槽能够暴露出所述第二互连层180。The second initial trench 270 is formed to increase the depth of the second interconnection trench, so that the second interconnection trench can expose the second interconnection layer 180 .

作为一实施例,形成所述第二初始沟槽270的步骤包括:As an embodiment, the step of forming the second initial trench 270 includes:

如图5所示,在所述沟槽的底部和侧壁上形成牺牲层245,且位于所述第一互连槽230侧壁的牺牲层245相接触,填充满所述第一互连槽230,位于所述第一初始沟槽260侧壁的牺牲层245侧壁分立。As shown in FIG. 5 , a sacrificial layer 245 is formed on the bottom and sidewalls of the trench, and the sacrificial layer 245 located on the sidewall of the first interconnection groove 230 is in contact with and fills the first interconnection groove. 230 , the sidewalls of the sacrificial layer 245 located on the sidewalls of the first initial trench 260 are separated.

所述牺牲层245用于经后续的刻蚀工艺,形成位于所述第一互连槽230中的遮挡层,以便在后续刻蚀第一初始沟槽260底部的第二介质层150的过程中,遮挡层能够对第一互连槽230底部的第二介质层150起到遮挡和保护的作用。The sacrificial layer 245 is used to form a shielding layer in the first interconnection groove 230 through a subsequent etching process, so that in the process of subsequent etching of the second dielectric layer 150 at the bottom of the first initial trench 260 The shielding layer can shield and protect the second dielectric layer 150 at the bottom of the first interconnection groove 230 .

本实施例中,所述牺牲层245填充满所述第一互连槽230,且位于所述第一初始沟槽260侧壁的牺牲层245侧壁分立,也就是说,在沿垂直于第一初始沟槽260侧壁或底部的方向上,位于所述第一初始沟槽260侧壁的牺牲层245较薄,而所述第一互连槽230内的牺牲层245由于接触在一起,在沿垂直于第一互连槽230底部的方向上,位于第一互连槽230中的牺牲层245较厚,以便于后续对所述牺牲层245进行刻蚀的过程中,在将位于所述第一初始沟槽260内的牺牲层去除的同时,位于所述第一互连槽230内的牺牲层245还能够保留部分厚度,以作为所述遮挡层。In this embodiment, the sacrificial layer 245 fills the first interconnection trench 230, and the sidewall of the sacrificial layer 245 located on the sidewall of the first initial trench 260 is separated, that is, along the In the direction of the sidewall or bottom of an initial trench 260, the sacrificial layer 245 located on the sidewall of the first initial trench 260 is thinner, and the sacrificial layer 245 in the first interconnection trench 230 is contacted together, Along the direction perpendicular to the bottom of the first interconnection groove 230, the sacrificial layer 245 located in the first interconnection groove 230 is thicker, so that during the subsequent etching of the sacrificial layer 245, the While the sacrificial layer in the first initial trench 260 is removed, the sacrificial layer 245 located in the first interconnection groove 230 can also retain a part of its thickness as the shielding layer.

本实施例中,由于所述第一初始沟槽260的开口线宽,大于所述第一互连槽230的开口线宽,因此,在形成所述牺牲层245的过程中,随着位于沟槽的底部和侧壁上的牺牲层245材料的厚度逐渐增加,位于第一互连槽230相对侧壁上的牺牲层245材料逐渐接触,并且,通过控制牺牲层245的厚度小于0.5倍的所述第一初始沟槽260的开口线宽,使得位于所述第一初始沟槽260相对侧壁上的牺牲层245的侧壁之间仍相互分立。In this embodiment, since the opening line width of the first initial trench 260 is larger than the opening line width of the first interconnection trench 230, during the process of forming the sacrificial layer 245, along with the The thickness of the sacrificial layer 245 material on the bottom of the trench and the sidewall gradually increases, and the sacrificial layer 245 material on the opposite sidewall of the first interconnection trench 230 gradually contacts, and by controlling the thickness of the sacrificial layer 245 to be less than 0.5 times The opening line width of the first initial trench 260 is adjusted so that the sidewalls of the sacrificial layer 245 on opposite sidewalls of the first initial trench 260 are still separated from each other.

本实施例中,所述牺牲层245还形成在硬掩膜层250的顶部和侧壁上。In this embodiment, the sacrificial layer 245 is also formed on the top and sidewalls of the hard mask layer 250 .

所述牺牲层245选用与所述顶部介质层102和底部介质层101具有刻蚀选择性的材料,以便在后续刻蚀牺牲层245形成所述遮挡层后,遮挡层能够对第一互连槽230底部的第二介质层150起到保护和遮挡的作用。The sacrificial layer 245 is selected from a material that has etching selectivity with the top dielectric layer 102 and the bottom dielectric layer 101, so that after the sacrificial layer 245 is subsequently etched to form the shielding layer, the shielding layer can be used for the first interconnection trench. The second dielectric layer 150 at the bottom of 230 plays the role of protection and shielding.

此外,在后续形成第二初始沟槽之后,还需去除牺牲层245,所述牺牲层245还选用易于被去除的材料,以便降低后续去除牺牲层245的难度、提高工艺兼容性,还降低去除牺牲层245的工艺制程对其他膜层结构(例如:顶部介质层、底部介质层)造成损伤的几率。In addition, after the subsequent formation of the second initial trench, the sacrificial layer 245 needs to be removed, and the sacrificial layer 245 is also selected from a material that is easy to be removed, so as to reduce the difficulty of subsequent removal of the sacrificial layer 245, improve process compatibility, and reduce the removal rate. The probability that the process of the sacrificial layer 245 will cause damage to other film structures (for example: top dielectric layer, bottom dielectric layer).

本实施例中,所述牺牲层245的材料包括无定形碳或无定型锗。In this embodiment, the material of the sacrificial layer 245 includes amorphous carbon or amorphous germanium.

作为一示例,所述牺牲层245的材料为无定形碳。无定型碳为容易获得的材料,有利于降低形成所述牺牲层245的工艺成本,而且,无定型碳后续可以通过氧化工艺去除,有利于降低后续去除所述牺牲层245的工艺操作难度,简化了工艺流程、提高了工艺制造效率,而且还有利于降低所述牺牲层245对后续工艺制程、以及半导体结构的影响。As an example, the material of the sacrificial layer 245 is amorphous carbon. Amorphous carbon is an easy-to-obtain material, which is conducive to reducing the process cost of forming the sacrificial layer 245. Moreover, the amorphous carbon can be subsequently removed by an oxidation process, which is conducive to reducing the difficulty of the subsequent process of removing the sacrificial layer 245, simplifying The process flow is improved, the process manufacturing efficiency is improved, and it is also beneficial to reduce the impact of the sacrificial layer 245 on subsequent process processes and semiconductor structures.

本实施例中,形成所述牺牲层245包括化学气相沉积(CVD)工艺。化学气相沉积工艺具有较好的覆盖能力,且工艺兼容性强、工艺成本低。In this embodiment, forming the sacrificial layer 245 includes a chemical vapor deposition (CVD) process. The chemical vapor deposition process has good coverage, strong process compatibility and low process cost.

在其他实施例中,基于牺牲层的材料以及实际工艺需求,还可以采用其他工艺,形成所述牺牲层245。In other embodiments, based on the material of the sacrificial layer and actual process requirements, other processes may also be used to form the sacrificial layer 245 .

如图6所示,对所述牺牲层245进行刻蚀,去除位于所述第一初始沟槽260侧壁和底部的牺牲层245,剩余填充于所述第一互连槽230中的牺牲层245用于作为遮挡层265。As shown in FIG. 6 , the sacrificial layer 245 is etched to remove the sacrificial layer 245 located on the sidewall and bottom of the first initial trench 260 , leaving the sacrificial layer filled in the first interconnection groove 230 245 is used as the shielding layer 265.

在后续刻蚀第一初始沟槽260底部的第二介质层150的过程中,遮挡层265用于对所述第一互连槽230底部的第二介质层150起到遮挡和保护的作用。During subsequent etching of the second dielectric layer 150 at the bottom of the first initial trench 260 , the shielding layer 265 is used to shield and protect the second dielectric layer 150 at the bottom of the first interconnection groove 230 .

本实施例中,采用各向同性的刻蚀工艺,对所述牺牲层245进行刻蚀。In this embodiment, the sacrificial layer 245 is etched using an isotropic etching process.

各向同性刻蚀的工艺具有各向同性刻蚀的特性,能够对位于第一初始沟槽260侧壁和底部的牺牲层245进行刻蚀。而且,本实施例中,由于位于第一初始沟槽260侧壁的牺牲层245之间相互分立,位于第一互连槽230中的牺牲层245填充满所述第一互连槽230,因此,各向同性刻蚀工艺在将位于第一初始沟槽260内的牺牲层245去除的同时,位于第一互连槽230中的牺牲层245还能够保留部分厚度用于作为所述遮挡层265。The isotropic etching process has isotropic etching characteristics, and can etch the sacrificial layer 245 located on the sidewall and bottom of the first initial trench 260 . Moreover, in this embodiment, since the sacrificial layer 245 located on the sidewall of the first initial trench 260 is separated from each other, the sacrificial layer 245 located in the first interconnection groove 230 fills the first interconnection groove 230, so , while the sacrificial layer 245 located in the first initial trench 260 is removed by the isotropic etching process, a part of the thickness of the sacrificial layer 245 located in the first interconnection groove 230 can also be reserved for use as the shielding layer 265 .

而且,本实施例中,形成遮挡层265的过程中无需利用光罩或掩膜,还有利于节约工艺成本,并简化工艺流程。Moreover, in this embodiment, no photomask or mask is needed in the process of forming the shielding layer 265 , which is also beneficial to save process cost and simplify the process flow.

具体地,所述各向同性的刻蚀工艺可以是各向同性的干法刻蚀工艺和湿法刻蚀工艺中的一种或两种。Specifically, the isotropic etching process may be one or both of an isotropic dry etching process and a wet etching process.

如图7所示,以所述遮挡层265为掩膜,刻蚀所述第一初始沟槽260底部的第二介质层150,在所述第一初始沟槽260下方形成暴露出所述第二互连层180的第二初始沟槽270,所述第二初始沟槽270与所述第一初始沟槽260构成所述第二互连槽240。第二初始沟槽270与第一初始沟槽260相连通。As shown in FIG. 7 , using the blocking layer 265 as a mask, the second dielectric layer 150 at the bottom of the first initial trench 260 is etched to form a The second initial trench 270 of the second interconnection layer 180 , the second initial trench 270 and the first initial trench 260 constitute the second interconnection trench 240 . The second initial trench 270 communicates with the first initial trench 260 .

本实施例中,刻蚀所述第一初始沟槽260底部的第二介质层150的工艺包括各向异性的刻蚀工艺。各向异性的刻蚀工艺有利于提高图形传递的精度,进而提高第二初始沟槽270的剖面形貌质量和尺寸精度。In this embodiment, the process of etching the second dielectric layer 150 at the bottom of the first initial trench 260 includes an anisotropic etching process. The anisotropic etching process is beneficial to improve the accuracy of pattern transfer, thereby improving the profile quality and dimensional accuracy of the second initial trench 270 .

如图8所示,在形成所述第二初始沟槽270之后,在所述第一互连槽230和第二互连槽240中填充导电材料之前,所述半导体结构的形成方法还包括:去除所述遮挡层265。As shown in FIG. 8 , after forming the second initial trench 270 and before filling the first interconnection trench 230 and the second interconnection trench 240 with conductive material, the method for forming the semiconductor structure further includes: The shielding layer 265 is removed.

去除所述遮挡层265,从而暴露出所述第一互连槽230的空间,以便后续在第一互连槽230中填充导电材料。The shielding layer 265 is removed, thereby exposing the space of the first interconnection groove 230 , so that the first interconnection groove 230 is subsequently filled with conductive material.

本实施例中,所述遮挡层265的材料为无定形碳,采用氧化工艺去除所述牺牲层124。氧化工艺中的含氧气体可以和无定形碳材料反应生成二氧化碳气体从而排出反应腔外,去除工艺简单,工艺兼容性高且副作用小,有利于降低工艺成本和提高生产产能。In this embodiment, the shielding layer 265 is made of amorphous carbon, and the sacrificial layer 124 is removed by an oxidation process. The oxygen-containing gas in the oxidation process can react with the amorphous carbon material to generate carbon dioxide gas, which is discharged out of the reaction chamber. The removal process is simple, the process compatibility is high, and the side effects are small, which is conducive to reducing process costs and increasing production capacity.

在其他实施例中,所述牺牲层的材料为无定型锗时,采用湿法刻蚀工艺去除所述牺牲层。具体地,采用HCl蒸汽进行所述湿法刻蚀工艺。在另一些实施中,当牺牲层的材料为其他材料时,相应采用合适的工艺中去除所述牺牲层。In other embodiments, when the material of the sacrificial layer is amorphous germanium, a wet etching process is used to remove the sacrificial layer. Specifically, the wet etching process is performed using HCl vapor. In other implementations, when the material of the sacrificial layer is other materials, the sacrificial layer is removed in a corresponding process.

本实施例中,在形成所述第二初始沟槽270之后,所述半导体结构的形成还包括:去除所述硬掩膜层250。去除所述硬掩膜层250,以降低后续导电材料需要填充的厚度,进而降低后续导电材料的填充难度。In this embodiment, after forming the second initial trench 270 , forming the semiconductor structure further includes: removing the hard mask layer 250 . The hard mask layer 250 is removed to reduce the thickness of the subsequent conductive material to be filled, thereby reducing the difficulty of filling the subsequent conductive material.

需要说明的是,以上形成第二初始沟槽270的步骤仅作为一种示例。形成第二初始沟槽270的步骤不仅限于此。例如:在其他实施例中,形成所述第二初始沟槽的步骤包括:在所述顶部介质层上形成图形化层,所述图形化层填充所述第一互连层且暴露出所述第一初始沟槽;以所述图形化层为掩膜,刻蚀所述第一初始沟槽底部的第二介质层。It should be noted that the above step of forming the second initial trench 270 is only an example. The step of forming the second initial trench 270 is not limited thereto. For example: in other embodiments, the step of forming the second initial trench includes: forming a patterned layer on the top dielectric layer, the patterned layer fills the first interconnection layer and exposes the a first initial trench; using the patterned layer as a mask to etch the second dielectric layer at the bottom of the first initial trench.

还需要说明的是,本实施例中,以通过形成第一互连槽和第一初始沟槽,再与第一初始沟槽相连通的第二初始沟槽,以构成所述第二互连槽为示例进行说明。也就是说,本实施例中,分别在不同步骤中形成所述第一互连槽和第二互连槽。形成第一互连槽和第二互连槽的工艺步骤不仅限于此。It should also be noted that in this embodiment, the second interconnection is formed by forming the first interconnection groove and the first initial trench, and then connecting the second initial trench with the first initial trench. Slots are illustrated as examples. That is to say, in this embodiment, the first interconnection groove and the second interconnection groove are respectively formed in different steps. The process steps of forming the first interconnection trench and the second interconnection trench are not limited thereto.

在其他实施例中,基于实际的工艺,还可以在同一步骤中形成所述第一互连槽和第二互连槽。In other embodiments, based on the actual process, the first interconnection trench and the second interconnection trench may also be formed in the same step.

参考图9,在所述第一互连槽230和第二互连槽240中填充导电材料,分别对应形成第一金属线210和第二金属线220,所述第一金属线210与所述导电插塞160相接触且用于作为信号线,所述第二金属线220与所述第二互连层180相接触且用于作为供电线(Powerrail)。Referring to FIG. 9, conductive material is filled in the first interconnection groove 230 and the second interconnection groove 240, respectively corresponding to form a first metal line 210 and a second metal line 220, the first metal line 210 and the The conductive plug 160 is in contact with and serves as a signal line, and the second metal line 220 is in contact with the second interconnection layer 180 and is used as a power rail.

所述第一金属线210与所述导电插塞160相接触,所述导电插塞160与所述第一互连层170相接触,因此,所述第一金属线210用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。本实施例中,所述第一金属线210用于作为信号线,用于实现源漏掺杂区140与外部电路或其他互连结构之间的信号连接。The first metal line 210 is in contact with the conductive plug 160, and the conductive plug 160 is in contact with the first interconnection layer 170, therefore, the first metal line 210 is used to implement source-drain doping The electrical connection between the impurity region 140 and external circuits or other interconnection structures. In this embodiment, the first metal line 210 is used as a signal line for realizing signal connection between the source-drain doped region 140 and external circuits or other interconnection structures.

所述第二金属线220与所述第二互连层180相接触,且所述第二互连层180与所述源漏掺杂区140相接触,因此,所述第二金属线220用于实现源漏掺杂区140与外部电路或其他互连结构之间的电连接。具体地,本实施例中,所述第二金属线220用于作为供电线,也就是说,所述第二金属线220用于向所述源漏掺杂区140供电。The second metal line 220 is in contact with the second interconnection layer 180, and the second interconnection layer 180 is in contact with the source-drain doped region 140, therefore, the second metal line 220 is used for To realize the electrical connection between the source-drain doped region 140 and external circuits or other interconnection structures. Specifically, in this embodiment, the second metal line 220 is used as a power supply line, that is, the second metal line 220 is used to supply power to the source-drain doped region 140 .

所述第二金属线220与所述第二互连层180相接触且用于作为供电线,从而供电线与第二互连层180之间无需通过导电插塞160实现电连接,有利于防止导电插塞的电阻对供电线与第二互连层180之间电连接性能的影响,优化了供电线与第二互连层180之间电连接性能、减少了IR压降(IR drop),提高了器件的供电效率。The second metal line 220 is in contact with the second interconnection layer 180 and is used as a power supply line, so that the electrical connection between the power supply line and the second interconnection layer 180 does not need to be electrically connected through the conductive plug 160, which is beneficial to prevent The influence of the resistance of the conductive plug on the electrical connection performance between the power supply line and the second interconnection layer 180 optimizes the electrical connection performance between the power supply line and the second interconnection layer 180, reduces the IR drop (IR drop), The power supply efficiency of the device is improved.

而且,本实施例中,所述第二互连槽240的开口线宽大于所述第一互连槽230的开口线宽,相应地,所述第二金属线220的线宽大于所述第一金属线210的线宽,也就是说,与信号线的线宽相比,供电线的线宽更大,有利于降低供电线的电阻、减少IR drop,进一步提高器件的供电效率。Moreover, in this embodiment, the opening line width of the second interconnection groove 240 is greater than the opening line width of the first interconnection groove 230, and correspondingly, the line width of the second metal line 220 is greater than that of the first interconnection groove. The line width of a metal line 210, that is, the line width of the power supply line is larger than the line width of the signal line, which is beneficial to reduce the resistance of the power supply line, reduce IR drop, and further improve the power supply efficiency of the device.

所述第一金属线210和第二金属线220均为导电材料。作为一示例,所述第一金属线210的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种;所述第二金属线220的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。Both the first metal wire 210 and the second metal wire 220 are conductive materials. As an example, the material of the first metal line 210 includes one or more of Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN The material of the second metal line 220 includes one or more of Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN.

所述第一金属线210可以包括位于所述第一互连槽230侧壁和底部的第一防扩散阻挡层(图未示)、以及位于所述第一防扩散阻挡层上且填充第一互连槽的第一金属层(图未示);所述第二金属线220可以包括位于所述第二互连槽240侧壁和底部的第二防扩散阻挡层(图未示)、以及位于所述第二防扩散阻挡层上且填充第二互连槽的第二金属层(图未示)。The first metal line 210 may include a first anti-diffusion barrier layer (not shown) located on the sidewall and bottom of the first interconnection trench 230 , and a first anti-diffusion barrier layer located on the first anti-diffusion barrier layer and filling the first The first metal layer of the interconnection groove (not shown in the figure); the second metal line 220 may include a second anti-diffusion barrier layer (not shown in the figure) located on the sidewall and bottom of the second interconnection groove 240, and A second metal layer (not shown) located on the second diffusion barrier layer and filling the second interconnection groove.

本实施例中,所述第一金属线210和第二金属线220在同一步骤中形成,因此,所述第一金属线210的结构和第二金属线220的结构相同,且所述第一金属线210的材料和第二金属线220的材料相同。In this embodiment, the first metal line 210 and the second metal line 220 are formed in the same step, therefore, the structure of the first metal line 210 and the structure of the second metal line 220 are the same, and the first The material of the metal wire 210 is the same as that of the second metal wire 220 .

具体地,本实施例中,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料相同,所述第一金属层和第二金属层的材料相同。Specifically, in this embodiment, the material of the first anti-diffusion barrier layer is the same as that of the second anti-diffusion barrier layer, and the material of the first metal layer and the second metal layer is the same.

作为一种示例,所述第一防扩散阻挡层的材料与第二防扩散阻挡层的材料均为TiN;所述第一金属层和第二金属层的材料均为Cu,Cu的电阻率较低,有利于减小后段制程中的RC延迟,且Cu具有优良的抗电迁移能力。As an example, the material of the first anti-diffusion barrier layer and the material of the second anti-diffusion barrier layer are TiN; the material of the first metal layer and the second metal layer is Cu, and the resistivity of Cu is relatively high. Low, it is beneficial to reduce the RC delay in the back-end process, and Cu has excellent resistance to electromigration.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (20)

1.一种半导体结构,其特征在于,包括:1. A semiconductor structure, characterized in that, comprising: 基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;A base, the base includes a bottom dielectric layer, the bottom dielectric layer includes a first dielectric layer and a second dielectric layer on the first dielectric layer, a plurality of interconnection layers are formed in the first dielectric layer, including a first interconnection layer and a second interconnection layer spaced apart, a conductive plug in contact with the first interconnection layer is formed in the second dielectric layer on top of the first interconnection layer; 顶部介质层,位于所述底部介质层上;a top dielectric layer located on the bottom dielectric layer; 第一金属线,贯穿所述导电插塞顶部的所述顶部介质层且与所述导电插塞相接触,所述第一金属线用于作为信号线;a first metal line, passing through the top dielectric layer on the top of the conductive plug and in contact with the conductive plug, the first metal line is used as a signal line; 第二金属线,贯穿所述第二互连层顶部的所述第二介质层和顶部介质层,且与所述第二互连层相接触,所述第二金属线用于作为供电线。A second metal line runs through the second dielectric layer and the top dielectric layer at the top of the second interconnection layer, and is in contact with the second interconnection layer, and the second metal line is used as a power supply line. 2.如权利要求1所述的半导体结构,其特征在于,所述第二金属线的线宽大于所述第一金属线的线宽。2. The semiconductor structure according to claim 1, wherein the line width of the second metal line is larger than the line width of the first metal line. 3.如权利要求1所述的半导体结构,其特征在于,所述互连层的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种;所述导电插塞的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。3. The semiconductor structure according to claim 1, wherein the material of the interconnection layer comprises Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, One or more of Ti and TiN; the material of the conductive plug includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more. 4.如权利要求1所述的半导体结构,其特征在于,所述第一金属线的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种;所述第二金属线的材料包括Co、W、Ru、Al、Ir、Rh、Os、Pd、Cu、Pt、Ni、Ta、TaN、Ti和TiN中的一种或多种。4. The semiconductor structure according to claim 1, wherein the material of the first metal wire comprises Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN One or more of , Ti and TiN; the material of the second metal wire includes Co, W, Ru, Al, Ir, Rh, Os, Pd, Cu, Pt, Ni, Ta, TaN, Ti and TiN one or more of. 5.如权利要求1所述的半导体结构,其特征在于,所述底部介质层的材料包括SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种;所述顶部介质层的材料包括SiOCH、SiOC、SiO2、FSG、BSG、PSG和BPSG中的一种或多种。5. The semiconductor structure according to claim 1, wherein the material of the bottom dielectric layer comprises one or more of SiOCH, SiOC, SiO 2 , FSG, BSG, PSG and BPSG; the top dielectric layer The material of the layer includes one or more of SiOCH, SiOC, SiO 2 , FSG, BSG, PSG and BPSG. 6.如权利要求1所述的半导体结构,其特征在于,所述基底还包括:衬底、位于所述衬底上的栅极结构、以及位于所述栅极结构两侧的源漏掺杂区;6. The semiconductor structure according to claim 1, wherein the base further comprises: a substrate, a gate structure on the substrate, and source-drain doping on both sides of the gate structure Area; 所述底部介质层位于所述衬底上方且覆盖所述源漏掺杂区;The bottom dielectric layer is located above the substrate and covers the source-drain doped region; 所述互连层位于所述源漏掺杂区顶部的所述第一介质层中,且与所述源漏掺杂区相接触。The interconnection layer is located in the first dielectric layer on the top of the source-drain doped region and is in contact with the source-drain doped region. 7.如权利要求6所述的半导体结构,其特征在于,所述衬底的材料包括:单晶硅、锗、锗化硅、碳化硅、氮化镓、砷化镓和镓化铟中的一种或多种;7. The semiconductor structure according to claim 6, wherein the material of the substrate comprises: monocrystalline silicon, germanium, silicon germanium, silicon carbide, gallium nitride, gallium arsenide and gallium indium one or more; 所述栅极结构的材料包括:TiAl、TiALC、TaAlN、TiAlN、MoN、TaCN、AlN、Ta、TiN、TaN、TaSiN、TiSiN、W、Co、Al、Cu、Ag、Au、Pt和Ni中的任意一种或多种。The material of the gate structure includes: TiAl, TiALC, TaAlN, TiAlN, MoN, TaCN, AlN, Ta, TiN, TaN, TaSiN, TiSiN, W, Co, Al, Cu, Ag, Au, Pt and Ni Any one or more. 8.如权利要求6所述的半导体结构,其特征在于,所述基底还包括位于栅极结构与沟道结构之间的栅介质层;所述栅介质层的材料包括:HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、La2O3、Al2O3、氧化硅和掺氮氧化硅中的一种或多种。8. The semiconductor structure according to claim 6, wherein the substrate further comprises a gate dielectric layer located between the gate structure and the channel structure; the material of the gate dielectric layer comprises: HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, La 2 O 3 , Al 2 O 3 , one or more of silicon oxide and nitrogen-doped silicon oxide. 9.一种半导体结构的形成方法,其特征在于,包括:9. A method for forming a semiconductor structure, comprising: 提供基底,所述基底包括底部介质层,所述底部介质层包括第一介质层和位于所述第一介质层上的第二介质层,所述第一介质层中形成有多个互连层,包括相间隔的第一互连层和第二互连层,所述第一互连层顶部的所述第二介质层中形成有与第一互连层相接触的导电插塞;A substrate is provided, the substrate includes a bottom dielectric layer, the bottom dielectric layer includes a first dielectric layer and a second dielectric layer on the first dielectric layer, a plurality of interconnection layers are formed in the first dielectric layer , comprising a first interconnection layer and a second interconnection layer spaced apart, a conductive plug in contact with the first interconnection layer is formed in the second dielectric layer on the top of the first interconnection layer; 在所述底部介质层上形成顶部介质层;forming a top dielectric layer on the bottom dielectric layer; 形成贯穿所述导电插塞顶部的所述顶部介质层的第一互连槽、以及贯穿所述第二互连层顶部上的第二介质层和顶部介质层的第二互连槽,所述第一互连槽暴露出所述导电插塞,所述第二互连槽暴露出所述第二互连层;forming a first interconnect trench penetrating through the top dielectric layer on top of the conductive plug, and a second interconnect trench penetrating the second dielectric layer and the top dielectric layer on top of the second interconnect layer, the The first interconnection groove exposes the conductive plug, and the second interconnection groove exposes the second interconnection layer; 在所述第一互连槽和第二互连槽中填充导电材料,分别对应形成第一金属线和第二金属线,所述第一金属线与所述导电插塞相接触且用于作为信号线,所述第二金属线与所述第二互连层相接触且用于作为供电线。Conductive material is filled in the first interconnection groove and the second interconnection groove to form a first metal line and a second metal line respectively, and the first metal line is in contact with the conductive plug and is used as a A signal line, the second metal line is in contact with the second interconnection layer and is used as a power supply line. 10.如权利要求9所述的半导体结构的形成方法,其特征在于,所述第二互连槽的开口线宽大于所述第一互连槽的开口线宽。10 . The method for forming a semiconductor structure according to claim 9 , wherein an opening line width of the second interconnection trench is larger than an opening linewidth of the first interconnection trench. 11 . 11.如权利要求9所述的半导体结构的形成方法,其特征在于,形成所述第一互连槽和第二互连槽的步骤包括:形成多个贯穿所述顶部介质层的沟槽,包括位于所述导电插塞的顶部上且暴露出所述导电插塞的第一互连槽、以及位于所述第二互连层上方的第一初始沟槽,所述第一初始沟槽暴露出所述第二介质层;11. The method for forming a semiconductor structure according to claim 9, wherein the step of forming the first interconnection trench and the second interconnection trench comprises: forming a plurality of trenches penetrating through the top dielectric layer, including a first interconnect groove on the top of the conductive plug and exposing the conductive plug, and a first initial trench above the second interconnect layer, the first initial trench exposes out the second medium layer; 形成贯穿所述第一初始沟槽底部的第二介质层的第二初始沟槽,所述第二初始沟槽暴露出所述第二互连层,所述第二初始沟槽与所述第一初始沟槽用于构成所述第二互连槽。forming a second initial trench penetrating through the second dielectric layer at the bottom of the first initial trench, the second initial trench exposes the second interconnection layer, the second initial trench and the first initial trench An initial trench is used to form the second interconnect trench. 12.如权利要求11所述的半导体结构的形成方法,其特征在于,所述第一初始沟槽的开口线宽大于所述第一互连槽的开口线宽;12. The method for forming a semiconductor structure according to claim 11, wherein the opening line width of the first initial trench is larger than the opening line width of the first interconnection groove; 形成所述第二初始沟槽的步骤包括:在所述沟槽的底部和侧壁上形成牺牲层,且位于所述第一互连槽侧壁的牺牲层相接触,填充满所述第一互连槽,位于所述第一初始沟槽侧壁的牺牲层侧壁分立;The step of forming the second initial trench includes: forming a sacrificial layer on the bottom and sidewalls of the trench, and the sacrificial layer located on the sidewall of the first interconnection trench is in contact with and fills the first interconnection trench. interconnection grooves, the sidewalls of the sacrificial layer located on the sidewalls of the first initial trenches are separated; 对所述牺牲层进行刻蚀,去除位于所述第一初始沟槽侧壁和底部的牺牲层,剩余填充于所述第一互连槽中的牺牲层用于作为遮挡层;Etching the sacrificial layer, removing the sacrificial layer located on the sidewall and bottom of the first initial trench, and leaving the sacrificial layer filled in the first interconnection groove as a shielding layer; 以所述遮挡层为掩膜,刻蚀所述第一初始沟槽底部的第二介质层,在所述第一初始沟槽下方形成所述第二初始沟槽。Using the blocking layer as a mask, etching the second dielectric layer at the bottom of the first initial trench to form the second initial trench below the first initial trench. 13.如权利要求11所述的半导体结构的形成方法,其特征在于,形成所述第二初始沟槽的步骤包括:在所述顶部介质层上形成图形化层,所述图形化层填充所述第一互连层且暴露出所述第一初始沟槽;以所述图形化层为掩膜,刻蚀所述第一初始沟槽底部的第二介质层。13. The method for forming a semiconductor structure according to claim 11, wherein the step of forming the second initial trench comprises: forming a patterned layer on the top dielectric layer, the patterned layer filling the the first interconnection layer and expose the first initial trench; and use the patterned layer as a mask to etch the second dielectric layer at the bottom of the first initial trench. 14.如权利要求12所述的半导体结构的形成方法,其特征在于,在形成所述第二初始沟槽之后,在所述第一互连槽和第二互连槽中填充导电材料之前,所述半导体结构的形成方法还包括:去除所述遮挡层。14. The method for forming a semiconductor structure according to claim 12, characterized in that, after forming the second initial trench, before filling the first interconnection trench and the second interconnection trench with a conductive material, The method for forming the semiconductor structure further includes: removing the shielding layer. 15.如权利要求12所述的半导体结构的形成方法,其特征在于,形成所述牺牲层包括化学气相沉积工艺。15. The method for forming a semiconductor structure according to claim 12, wherein forming the sacrificial layer comprises a chemical vapor deposition process. 16.如权利要求12所述的半导体结构的形成方法,其特征在于,采用各向同性的刻蚀工艺,对所述牺牲层进行刻蚀。16. The method for forming a semiconductor structure according to claim 12, wherein an isotropic etching process is used to etch the sacrificial layer. 17.如权利要求12所述的半导体结构的形成方法,其特征在于,刻蚀所述第一初始沟槽底部的第二介质层的工艺包括各向异性的刻蚀工艺。17. The method for forming a semiconductor structure according to claim 12, wherein the process of etching the second dielectric layer at the bottom of the first initial trench comprises an anisotropic etching process. 18.如权利要求12所述的半导体结构的形成方法,其特征在于,所述牺牲层的材料包括无定形碳或无定型锗。18. The method for forming a semiconductor structure according to claim 12, wherein the material of the sacrificial layer comprises amorphous carbon or amorphous germanium. 19.如权利要求12所述的半导体结构的形成方法,其特征在于,形成多个贯穿所述顶部介质层的沟槽的步骤包括:在所述顶部介质层上形成硬掩膜层,所述硬掩膜层中形成有多个掩膜开口;19. The method for forming a semiconductor structure according to claim 12, wherein the step of forming a plurality of trenches penetrating through the top dielectric layer comprises: forming a hard mask layer on the top dielectric layer, the A plurality of mask openings are formed in the hard mask layer; 以所述硬掩膜层为掩膜,沿所述掩膜开口刻蚀所述顶部介质层,形成多个贯穿所述顶部介质层的沟槽;Using the hard mask layer as a mask, etching the top dielectric layer along the mask opening to form a plurality of trenches penetrating through the top dielectric layer; 形成所述牺牲层的步骤中,所述牺牲层还形成在硬掩膜层的顶部和侧壁上。In the step of forming the sacrificial layer, the sacrificial layer is also formed on the top and sidewalls of the hard mask layer. 20.如权利要求9-19任一项所述的半导体结构的形成方法,其特征在于,所述基底还包括衬底、位于所述衬底上的栅极结构、以及位于所述栅极结构两侧的源漏掺杂区;20. The method for forming a semiconductor structure according to any one of claims 9-19, wherein the base further comprises a substrate, a gate structure on the substrate, and a Source and drain doped regions on both sides; 所述底部介质层位于衬底上方且覆盖所述源漏掺杂区;所述互连层位于所述源漏掺杂区顶部的所述第一介质层中,且与所述源漏掺杂区相接触。The bottom dielectric layer is located above the substrate and covers the source-drain doped region; the interconnection layer is located in the first dielectric layer on top of the source-drain doped region and is doped with the source-drain area in contact.
CN202110706315.8A 2021-06-24 2021-06-24 Semiconductor structures and methods of forming them Pending CN115527924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110706315.8A CN115527924A (en) 2021-06-24 2021-06-24 Semiconductor structures and methods of forming them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110706315.8A CN115527924A (en) 2021-06-24 2021-06-24 Semiconductor structures and methods of forming them

Publications (1)

Publication Number Publication Date
CN115527924A true CN115527924A (en) 2022-12-27

Family

ID=84693921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110706315.8A Pending CN115527924A (en) 2021-06-24 2021-06-24 Semiconductor structures and methods of forming them

Country Status (1)

Country Link
CN (1) CN115527924A (en)

Similar Documents

Publication Publication Date Title
US11651993B2 (en) Etch stop layer for semiconductor devices
US12027415B2 (en) Semiconductor device structures
TWI777359B (en) Semiconductor device and method
CN107230702B (en) Semiconductor device and method for manufacturing the same
TWI762159B (en) Method for forming semiconductor transistor device and semiconductor device
CN113224054B (en) Semiconductor transistor device and method for forming the same
CN111863711B (en) Semiconductor structures and methods of forming them
US20240339510A1 (en) Semiconductor device structure with backside contact
CN113809007A (en) Semiconductor structure and forming method thereof
CN113571517A (en) Multi-gate device and method of forming the same
CN114823894A (en) Semiconductor structure and method of forming the same
CN114068481A (en) Semiconductor structure and forming method thereof
US20230223452A1 (en) Semiconductor structure and forming method thereof
TWI817408B (en) Semiconductor device structure and method of forming the same
CN115527924A (en) Semiconductor structures and methods of forming them
CN115966599A (en) Semiconductor structure and forming method thereof
CN114551597A (en) Semiconductor structure and forming method thereof
CN114068395B (en) Semiconductor structure and forming method thereof
US20230033570A1 (en) Structure and formation method of semiconductor device with contact structures
CN115117056A (en) Semiconductor structure and forming method thereof
CN114078760A (en) Method of forming a semiconductor structure
CN115084001A (en) Semiconductor structure and forming method thereof
TW202410203A (en) Semiconductor device and method of fabricating the same
CN116847725A (en) Semiconductor structures and methods of forming them
CN118231406A (en) Semiconductor device and method for forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination