[go: up one dir, main page]

CN114934061A - Engineering bacteria and their application in whole-cell catalyzed production of D-pantolactone from ketopantolactone - Google Patents

Engineering bacteria and their application in whole-cell catalyzed production of D-pantolactone from ketopantolactone Download PDF

Info

Publication number
CN114934061A
CN114934061A CN202210556247.6A CN202210556247A CN114934061A CN 114934061 A CN114934061 A CN 114934061A CN 202210556247 A CN202210556247 A CN 202210556247A CN 114934061 A CN114934061 A CN 114934061A
Authority
CN
China
Prior art keywords
pbad
gdh
leu
plasmid
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210556247.6A
Other languages
Chinese (zh)
Other versions
CN114934061B (en
Inventor
朱俊歌
吴胜
陶勇
龚美玲
翟丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microbiology of CAS
Original Assignee
Institute of Microbiology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microbiology of CAS filed Critical Institute of Microbiology of CAS
Priority to CN202210556247.6A priority Critical patent/CN114934061B/en
Publication of CN114934061A publication Critical patent/CN114934061A/en
Application granted granted Critical
Publication of CN114934061B publication Critical patent/CN114934061B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/011682-Dehydropantolactone reductase (A-specific) (1.1.1.168)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/99Oxidoreductases acting on the CH-OH group of donors (1.1) with other acceptors (1.1.99)
    • C12Y101/9901Glucose dehydrogenase (acceptor) (1.1.99.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention belongs to the technical field of biological catalysis. The invention discloses engineering bacteria and application thereof in producing D-pantolactone by catalyzing keto-pantolactone in whole cells. The engineering bacteria of the invention can realize the catalytic synthesis of D-pantolactone in a coenzyme regeneration system by ketopantolactone reductase mutant, the substrate concentration is as high as 100g/L, the conversion rate is more than or equal to 99.0 percent, and the weight yield is as high as 95 percent.

Description

工程菌及其在全细胞催化酮基泛解酸内酯生产D-泛解酸内酯 中的应用Engineering bacteria and their application in whole-cell catalyzed production of D-pantolactone from ketopantolactone

技术领域technical field

本发明属于生物催化技术领域。The invention belongs to the technical field of biocatalysis.

背景技术Background technique

泛酸,又称遍多酸、维生素B5,广泛存在于生物界内,是动物体内合成辅酶A的前体,其主要作用是参与动物体内蛋白质、脂肪和糖的代谢。泛酸的活性成分为D型,但D-泛酸在高温、酸碱下不稳定,因此相比于D-泛酸,其稳定性更好的衍生物在食品、医药、饲料等行业得到了更广泛的应用。目前被广泛应用的泛酸衍生物主要有D-泛酸钙、D-泛醇以及D-泛硫乙胺等,其中主要以D-泛酸钙为主。Pantothenic acid, also known as pantothenic acid and vitamin B 5 , is widely present in the biological world and is the precursor for the synthesis of coenzyme A in animals. Its main function is to participate in the metabolism of protein, fat and sugar in animals. The active ingredient of pantothenic acid is D-type, but D-pantothenic acid is unstable under high temperature, acid and alkali, so compared with D-pantothenic acid, its more stable derivatives have been widely used in food, medicine, feed and other industries. application. Currently widely used pantothenic acid derivatives mainly include D-pantothenate calcium, D-panthenol and D-pantethamine, among which D-pantothenate calcium is the main one.

D-泛酸及其衍生物的工业化生产以D-泛解酸内酯(D-Pantolactone,D-PL)作为前体物质。泛解酸内酯因具有手性碳原子而有三种存在形式:DL-泛解酸内酯(外消旋泛解酸内酯)、D-泛解酸内酯和L-泛解酸内酯,其中只有D-泛解酸内酯具有生物活性,可以作为D-泛酸及其衍生物合成的重要前体。The industrial production of D-pantothenic acid and its derivatives uses D-pantolactone (D-PL) as the precursor material. Pantolactone exists in three forms due to its chiral carbon atom: DL-pantolactone (racemic pantolactone), D-pantolactone and L-pantolactone , of which only D-pantolactone has biological activity and can be used as an important precursor for the synthesis of D-pantothenic acid and its derivatives.

D-泛解酸内酯的合成主要有两种方法:1)化学合成法,以异丁醛—甲醛—氢氰酸经过一系列步骤得到DL-泛解酸内酯,后通过对映体过量结晶法或手性拆分剂获得D-泛解酸内酯,而L-泛解酸内酯经萃取外消旋后再次拆分。该方法在合成路线中涉及有毒化合物氢氰酸的使用,导致生产企业环保压力提高;2)微生物水解酶法,是目前获得D-泛解酸内酯的主要渠道。该方法以化学合成的外消旋泛解酸内酯为原料,利用内酯水解酶选择性水解消旋体中的D-泛解酸内酯,接着分离D-泛解酸和L-泛解酸内酯,分离后的D-泛解酸经酸化成环形成D-泛解酸内酯,而L-泛解酸内酯经消旋后重复参与水解。该工艺不涉及有毒物质的使用,但也存在反复萃取消旋、酸碱耗用高等问题。因此,开发工艺简单、高效环保的不对称还原路线具有重要的研究意义。There are two main methods for the synthesis of D-pantolactone: 1) chemical synthesis method, using isobutyraldehyde-formaldehyde-hydrocyanic acid to obtain DL-pantolactone through a series of steps, and then by enantiomeric excess D-pantolactone is obtained by crystallization or a chiral resolving agent, while L-pantolactone is re-resolved after racemization by extraction. The method involves the use of the toxic compound hydrocyanic acid in the synthetic route, which leads to increased environmental protection pressure on the production enterprise; 2) the microbial hydrolase method is currently the main channel for obtaining D-pantolactone. The method uses chemically synthesized racemic pantolactone as raw material, utilizes lactone hydrolase to selectively hydrolyze D-pantolactone in the racemate, and then separates D-pantoic acid and L-pantolactone. Acid lactone, the separated D-pantoic acid is acidified into a ring to form D-pantoic acid lactone, while L-pantoic acid lactone is repeatedly involved in hydrolysis after racemization. This process does not involve the use of toxic substances, but there are also problems such as repeated extraction racemization and acid-base consumption. Therefore, it is of great research significance to develop a simple, efficient and environmentally friendly asymmetric reduction route.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明提供了一种质粒,所述质粒pBAD-DCR由DCR基因插入到表达载体pBAD获得;所述DCR基因的氨基酸序列如SEQ ID NO.2所示;以及用于辅因子循环的质粒pBAD-GDH,所述质粒pBAD-GDH由GDH基因插入到表达载体pBAD获得;所述GDH基因的氨基酸序列如SEQ ID NO.8所示。In view of this, the present invention provides a plasmid, the plasmid pBAD-DCR is obtained by inserting the DCR gene into the expression vector pBAD; the amino acid sequence of the DCR gene is shown in SEQ ID NO. 2; and it is used for cofactor recycling The plasmid pBAD-GDH is obtained by inserting the GDH gene into the expression vector pBAD; the amino acid sequence of the GDH gene is shown in SEQ ID NO.8.

本发明还提供了一种重组质粒,包括:质粒pBAD-DCR-GDH、质粒pBAD-E224G-GDH和质粒pBAD-E224Q-GDH;所述质粒pBAD-DCR-GDH由T4连接酶连接酶切质粒pBAD-DCR后的DCR片段、酶切权利要求1所述质粒pBAD-GDH后的GDH片段和酶切pBAD后的线性载体片段获得;所述质粒pBAD-E224G-GDH由T4连接酶连接酶切质粒pBAD-E224G后的E224G片段、酶切权利要求1所述质粒pBAD-GDH后的GDH片段和酶切pBAD后的线性载体片段获得;所述质粒pBAD-E224G由E224G基因插入到表达载体pBAD获得;所述E224G基因的氨基酸序列如SEQ ID NO.4所示;所述质粒pBAD-E224Q-GDH由T4连接酶连接酶切质粒pBAD-E224Q的后的E224Q片段、酶切切权利要求1所述质粒pBAD-GDH后的GDH片段和酶切pBAD后的线性载体片段获得;所述质粒pBAD-E224Q由E224Q基因插入到表达载体pBAD获得;所述E224Q基因的氨基酸序列如SEQID NO.6所示。The invention also provides a recombinant plasmid, including: plasmid pBAD-DCR-GDH, plasmid pBAD-E224G-GDH and plasmid pBAD-E224Q-GDH; the plasmid pBAD-DCR-GDH is cut from the plasmid pBAD by T4 ligase ligase -The DCR fragment after DCR, the GDH fragment after digestion of the plasmid pBAD-GDH of claim 1 and the linear vector fragment after digestion of pBAD are obtained; the plasmid pBAD-E224G-GDH is cut from the plasmid pBAD by T4 ligase ligase -The E224G fragment after E224G, the GDH fragment after the plasmid pBAD-GDH according to claim 1 was digested and the linear vector fragment after the digestion of pBAD were obtained; the plasmid pBAD-E224G was obtained by inserting the E224G gene into the expression vector pBAD; the The amino acid sequence of the E224G gene is shown in SEQ ID NO.4; the plasmid pBAD-E224Q-GDH is cut by the T4 ligase ligase to the E224Q fragment after the plasmid pBAD-E224Q, and the plasmid pBAD of claim 1 is cut by restriction enzymes -The GDH fragment after GDH and the linear vector fragment after digestion of pBAD are obtained; the plasmid pBAD-E224Q is obtained by inserting the E224Q gene into the expression vector pBAD; the amino acid sequence of the E224Q gene is shown in SEQID NO.6.

本发明另外还提供了一种工程菌,所述工程菌pBAD-DCR-GDH BW25113由权利要求2所述质粒pBAD-DCR-GDH化转入感受态细胞大肠杆菌BW25113获得工程菌。The present invention further provides an engineering bacterium, the engineering bacterium pBAD-DCR-GDH BW25113 is transformed into the competent cell Escherichia coli BW25113 by transforming the plasmid pBAD-DCR-GDH of claim 2 to obtain the engineering bacterium.

在本发明的具体实施例中,所述工程菌pBAD-E224G-GDH BW25113由权利要求2所述质粒pBAD-E224G-GDH化转入感受态细胞大肠杆菌BW25113获得工程菌pBAD-E224G-GDHBW25113。In a specific embodiment of the present invention, the engineered strain pBAD-E224G-GDH BW25113 is transformed from the plasmid pBAD-E224G-GDH described in claim 2 into a competent cell E. coli BW25113 to obtain the engineered strain pBAD-E224G-GDHBW25113.

在本发明的具体实施例中,所述工程菌pBAD-E224Q-GDH BW25113由权利要求2所述质粒pBAD-E224Q-GDH化转入感受态细胞大肠杆菌BW25113获得工程菌pBAD-E224Q-GDHBW25113。In a specific embodiment of the present invention, the engineered strain pBAD-E224Q-GDH BW25113 is transformed from the plasmid pBAD-E224Q-GDH described in claim 2 into competent cells E. coli BW25113 to obtain the engineered strain pBAD-E224Q-GDHBW25113.

本发明最后提供了工程菌在全细胞催化酮基泛解酸内酯生产D-泛解酸内酯中的应用。The invention finally provides the application of engineering bacteria in whole cell catalyzing ketopantolactone to produce D-pantolactone.

本发明具有以下有益效果:The present invention has the following beneficial effects:

1、使用高效的酮基泛解酸内酯还原酶,以及辅酶再生系统来催化合成D-泛解酸内酯,底物浓度高达100g/L,转化率为≥99.0%,重量收率高达95%。生产成本和产品质量优于化学合成和微生物水解酶法,适合于工业化生产;1. Using efficient ketopantolactone reductase and coenzyme regeneration system to catalyze the synthesis of D-pantolactone, the substrate concentration is as high as 100g/L, the conversion rate is ≥99.0%, and the weight yield is as high as 95% %. The production cost and product quality are better than those of chemical synthesis and microbial hydrolase, suitable for industrial production;

2、酶促反应选择性高,无副产物,产品后提取和精制简单。2. The enzymatic reaction has high selectivity, no by-products, and simple extraction and purification after the product.

附图说明Description of drawings

图1.利用酮基泛解酸内酯还原酶突变体高效催化生产D-泛解酸内酯的路线图。Figure 1. Roadmap for efficient catalytic production of D-pantolactone using mutants of ketopantolactone reductase.

图2.D-泛解酸内酯的气相分析图。Figure 2. Gas phase analysis of D-pantolactone.

图3.D-泛解酸内酯的气相分析图。Figure 3. Gas phase analysis of D-pantolactone.

具体实施方式Detailed ways

以下结合实施例对本发明作进一步详细说明,但并不因此将本发明限制在所述的实施例范围之中。The present invention will be further described in detail below with reference to the embodiments, but the present invention is not limited to the scope of the described embodiments.

酮基泛解酸内酯购自北京伊诺凯科技有限公司Ketopantolactone was purchased from Beijing Inokay Technology Co., Ltd.

大肠杆菌BW25113菌株购自上海泽叶生物科技有限公司。Escherichia coli BW25113 strain was purchased from Shanghai Zeye Biotechnology Co., Ltd.

pBAD载体购自北京庄盟国际生物基因科技有限公司。The pBAD vector was purchased from Beijing Zhuangmeng International Bio-Gene Technology Co., Ltd.

未特别说明的实验步骤均按照试剂说明书操作。Unspecified experimental steps were operated in accordance with the reagent instructions.

实施例1.Example 1.

工程菌pBAD-DCR-GDH BW25113高效催化酮基泛解酸内酯生产D-泛解酸内酯Engineering bacteria pBAD-DCR-GDH BW25113 efficiently catalyzes the production of D-pantolactone from ketopantolactone

在50mM、pH7.0、10mL的PB缓冲溶液中加入制备的工程菌pBAD-DCR-GDH BW25113湿菌体1.0g,加入酮基泛解酸内酯(KPL)0.5g,后加入1倍于KPL投料量的葡萄糖(摩尔比)并通过GDH促使辅因子循环再生,控制pH在7.0、30℃的条件下反应,气相色谱监控进程至KPL反应完全。后用6M HCl酸化至pH=3.5左右,80℃加热反应溶液15min,加入0.5%的H2O2脱色30min,后用等体积乙酸乙酯萃取三次,合并有机相,蒸馏浓缩得到D-泛解酸内酯粗品0.526g。用乙酸乙酯/石油醚(60-90℃)重结晶得到纯品共0.483g。Add 1.0 g of the prepared engineering bacteria pBAD-DCR-GDH BW25113 wet cell to 50 mM, pH 7.0, 10 mL of PB buffer solution, add 0.5 g of ketopantolactone (KPL), and then add 1 times the amount of KPL The feeding amount of glucose (molar ratio) is used to promote the recycling of cofactors through GDH, and the pH is controlled to react under the conditions of 7.0 and 30 ° C. The process is monitored by gas chromatography until the KPL reaction is complete. After acidification to pH=3.5 or so with 6M HCl, the reaction solution was heated at 80°C for 15 min, 0.5% H 2 O 2 was added for decolorization for 30 min, and then extracted three times with an equal volume of ethyl acetate. The organic phases were combined and concentrated by distillation to obtain D-pantolysis. Crude acid lactone 0.526g. It was recrystallized with ethyl acetate/petroleum ether (60-90°C) to obtain a total of 0.483 g of pure product.

D-泛解酸内酯的检测分析条件:取上述样品溶液300ul,加入1/3体积量的6M HCl酸化后于80℃加热15分钟,冷却至室温后加入同等体积的色谱纯乙酸乙酯混匀,12000rpm高速离心2min后取有机相溶液,无水Na2SO4干燥后使用Agilent 7890气相色谱仪分析,所用色谱柱为Astec CHIRALDEX B-PN气相毛细管色谱柱,氮气流速为6.5ml/min,进样口和检测器温度均为200℃,程序升温为100℃(保持2min),0.5℃/min至110℃,共运行12.6min。Detection and analysis conditions of D-pantolactone: Take 300ul of the above sample solution, add 1/3 volume of 6M HCl for acidification, heat at 80°C for 15 minutes, cool to room temperature and add the same volume of chromatographically pure ethyl acetate to mix Evenly, take the organic phase solution after high-speed centrifugation at 12000rpm for 2min, use an Agilent 7890 gas chromatograph to analyze after drying with anhydrous Na 2 SO 4 , the chromatographic column used is an Astec CHIRALDEX B-PN gas capillary chromatographic column, and the nitrogen flow rate is 6.5ml/min, The temperature of the injection port and the detector were both 200°C, the temperature was programmed to be 100°C (maintained for 2 min), and the temperature was 0.5°C/min to 110°C for a total of 12.6 min.

实施例2.Example 2.

工程菌pBAD-E224G-GDH BW25113全细胞催化酮基泛解酸内酯生产D-泛解酸内酯Whole-cell catalyzed production of D-pantolactone by engineering bacteria pBAD-E224G-GDH BW25113

在50mM、pH7.0、10mL的PB缓冲溶液中加入制备的工程菌pBAD-E224G-GDH BW25113湿菌体1.0g,加入酮基泛解酸内酯(KPL)0.70g,后加入1倍于KPL投料量的葡萄糖(摩尔比)并通过GDH促使辅因子循环再生,控制pH在7.0、30℃的条件下反应,气相色谱监控进程至KPL反应完全。后用6M HCl酸化至pH=3.5左右,80℃加热反应溶液15min,加入0.5%的H2O2脱色30min,后用等体积乙酸乙酯萃取三次,合并有机相,蒸馏浓缩得到D-泛解酸内酯粗品0.73g。用乙酸乙酯/石油醚(60-90℃)重结晶得到纯品共0.68g。Add 1.0 g of the prepared engineering bacteria pBAD-E224G-GDH BW25113 wet cell to 50 mM, pH 7.0, 10 mL of PB buffer solution, add 0.70 g of ketopantolactone (KPL), and then add 1 times the amount of KPL The feeding amount of glucose (molar ratio) is used to promote the recycling of cofactors through GDH, and the pH is controlled to react under the conditions of 7.0 and 30 ° C. The process is monitored by gas chromatography until the KPL reaction is complete. After acidification to pH=3.5 or so with 6M HCl, the reaction solution was heated at 80°C for 15 min, 0.5% H 2 O 2 was added for decolorization for 30 min, and then extracted three times with an equal volume of ethyl acetate. The organic phases were combined and concentrated by distillation to obtain D-pantolysis. Crude acid lactone 0.73g. It was recrystallized with ethyl acetate/petroleum ether (60-90°C) to obtain a total of 0.68 g of pure product.

实施例3.Example 3.

工程菌pBAD-E224G-GDH BW25113全细胞催化酮基泛解酸内酯生产D-泛解酸内酯Whole-cell catalyzed production of D-pantolactone by engineering bacteria pBAD-E224G-GDH BW25113

在50mM、pH6.5、10mL的PB缓冲溶液中加入制备的工程菌pBAD-E224G-GDH BW25113湿菌体1.5g,加入酮基泛解酸内酯(KPL)1g,后加入1倍于KPL投料量的葡萄糖(摩尔比)并通过GDH促使辅因子循环再生,控制pH在6.5、30℃的条件下反应,气相色谱监控进程至KPL反应完全。后用6M HCl酸化至pH=3.5左右,80℃加热反应溶液15min,加入0.5%的H2O2脱色30min,后用等体积乙酸乙酯萃取三次,合并有机相,蒸馏浓缩得到D-泛解酸内酯粗品1.05g。用乙酸乙酯/石油醚(60-90℃)重结晶得到纯品共0.97g。Add 1.5 g of the prepared engineering bacteria pBAD-E224G-GDH BW25113 wet cell to 50 mM, pH 6.5, 10 mL PB buffer solution, add 1 g of ketopantolactone (KPL), and then add 1 times the amount of KPL feeding Amount of glucose (molar ratio) and promote the recycling of cofactors through GDH, control pH to react under the conditions of 6.5 and 30 °C, and monitor the progress by gas chromatography until the KPL reaction is complete. After acidification to pH=3.5 or so with 6M HCl, the reaction solution was heated at 80°C for 15 min, 0.5% H 2 O 2 was added for decolorization for 30 min, and then extracted three times with an equal volume of ethyl acetate. The organic phases were combined and concentrated by distillation to obtain D-pantolysis. Crude acid lactone 1.05g. It was recrystallized with ethyl acetate/petroleum ether (60-90°C) to obtain a total of 0.97 g of pure product.

实施例4.Example 4.

工程菌pBAD-E224Q-GDH BW25113全细胞催化酮基泛解酸内酯生产D-泛解酸内酯Whole-cell catalyzed production of D-pantolactone by engineering bacteria pBAD-E224Q-GDH BW25113

在50mM,pH7.0,10mL的PB缓冲溶液中加入制备的pBAD-E224Q-GDH BW25113湿菌体1.5g,加入酮基泛解酸内酯(KPL)0.75g,后加入1倍于底物KPL投料量的葡萄糖(摩尔比)并通过GDH促使辅因子循环再生,控制pH在7.0、30℃的条件下反应,气相色谱监控进程至KPL反应完全。后用6M HCl酸化至pH=3.5左右,80℃加热反应溶液15min,加入0.5%的H2O2脱色30min,后用等体积乙酸乙酯萃取三次,合并有机相,蒸馏浓缩得到D-泛解酸内酯粗品0.78g。用乙酸乙酯/石油醚(60-90℃)重结晶得到纯品共0.73g。Add 1.5 g of the prepared pBAD-E224Q-GDH BW25113 wet cells to 50 mM, pH 7.0, 10 mL of PB buffer solution, add 0.75 g of ketopantolactone (KPL), and then add 1 times the substrate KPL The feeding amount of glucose (molar ratio) is used to promote the recycling of cofactors through GDH, and the pH is controlled to react under the conditions of 7.0 and 30 ° C. The process is monitored by gas chromatography until the KPL reaction is complete. After acidification to pH=3.5 or so with 6M HCl, the reaction solution was heated at 80°C for 15 min, 0.5% H 2 O 2 was added for decolorization for 30 min, and then extracted three times with an equal volume of ethyl acetate. The organic phases were combined and concentrated by distillation to obtain D-pantolysis. Crude acid lactone 0.78g. It was recrystallized with ethyl acetate/petroleum ether (60-90°C) to obtain a total of 0.73 g of pure product.

实施例5.Example 5.

工程菌pBAD-E224Q-GDH BW25113全细胞催化酮基泛解酸内酯生产D-泛解酸内酯Whole-cell catalyzed production of D-pantolactone by engineering bacteria pBAD-E224Q-GDH BW25113

在50mM,pH6.5,10mL的PB缓冲溶液中加入制备的pBAD-E224Q-GDH BW25113湿菌体2.0g,加入酮基泛解酸内酯(KPL)0.95g,后加入1倍于底物KPL投料量的葡萄糖(摩尔比)并通过GDH促使辅因子循环再生,控制pH在6.5、30℃的条件下反应,气相色谱监控进程至KPL反应完全。后用6M HCl酸化至pH=3.5左右,80℃加热反应溶液15min,加入0.5%的H2O2脱色30min,后用等体积乙酸乙酯萃取三次,合并有机相,蒸馏浓缩得到D-泛解酸内酯粗品0.98g。用乙酸乙酯/石油醚(60-90℃)重结晶得到纯品共0.92g。Add 2.0 g of prepared pBAD-E224Q-GDH BW25113 wet cells to 50 mM, pH 6.5, 10 mL of PB buffer solution, add 0.95 g of ketopantolactone (KPL), and then add 1 times the substrate KPL The feeding amount of glucose (molar ratio) is used to promote the recycling of cofactors through GDH, and the pH is controlled to react under the conditions of 6.5 and 30 ° C. The process is monitored by gas chromatography until the KPL reaction is complete. After acidification to pH=3.5 or so with 6M HCl, the reaction solution was heated at 80°C for 15 min, 0.5% H 2 O 2 was added for decolorization for 30 min, and then extracted three times with an equal volume of ethyl acetate. The organic phases were combined and concentrated by distillation to obtain D-pantolysis. Crude acid lactone 0.98g. It was recrystallized with ethyl acetate/petroleum ether (60-90°C) to obtain a total of 0.92 g of pure product.

实施例6Example 6

1、来源于平滑假丝酵母Candida parapsilosis CDC31的新的重组酮基泛解酸内酯还原酶pBAD-DCR-BW25113的构建1. Construction of a new recombinant ketopantolactone reductase pBAD-DCR-BW25113 derived from Candida parapsilosis CDC31

合成来源于平滑假丝酵母Candida parapsilosis CDC31的酮基泛解酸内酯还原酶基因,简称:DCR,Genebank ID:HE605209.1,DCR基因的核苷酸序列如SEQ ID NO.1所示和氨基酸序列如SEQ ID NO.2,DCR基因插入到表达载体pBAD的NdeI和EcoRI位点得到质粒pBAD-DCR。质粒pBAD-DCR随后转入大肠杆菌宿主BW25113,得到pBAD-DCR-BW25113菌株。37℃过夜培养后挑单菌落至装有5mL LB的试管培养(100μg/mL氨苄抗性),以甘油管形式保存菌种。剩余种子液按2%比例接种到800mL,含100μg/mL氨苄抗性的LB培养基,37℃、200rpm培养至OD600=0.6左右,30℃、200rpm下加入终浓度为1%的L-阿拉伯糖进行诱导培养8-10h,离心收集细胞。细胞悬浮于1/20发酵液体积的50mM的磷酸缓冲液(pH 7.0)并超声破碎,离心后得到重组的野生型DCR粗酶液。The ketopantolactone reductase gene derived from Candida parapsilosis CDC31 was synthesized, abbreviation: DCR, Genebank ID: HE605209.1, the nucleotide sequence of DCR gene is shown in SEQ ID NO.1 and the amino acid The sequence is shown in SEQ ID NO. 2, and the DCR gene is inserted into the NdeI and EcoRI sites of the expression vector pBAD to obtain the plasmid pBAD-DCR. Plasmid pBAD-DCR was subsequently transformed into E. coli host BW25113, resulting in strain pBAD-DCR-BW25113. After overnight culture at 37°C, single colonies were picked and cultured in test tubes containing 5 mL of LB (100 μg/mL ampicillin resistance), and the strains were stored in glycerol tubes. The remaining seed solution was inoculated into 800 mL of LB medium containing 100 μg/mL ampicillin resistance at a ratio of 2%, and cultured at 37 °C and 200 rpm until OD600 = about 0.6. At 30 °C and 200 rpm, a final concentration of 1% L-arabinose was added. Induction culture was performed for 8-10 h, and cells were collected by centrifugation. The cells were suspended in 50 mM phosphate buffer (pH 7.0) at 1/20 the volume of the fermentation broth and sonicated, and the recombinant wild-type DCR crude enzyme solution was obtained after centrifugation.

2、构建和获得高活性酮基泛解酸内酯还原酶突变体2. Construction and acquisition of highly active ketopantolactone reductase mutants

利用分子对接软件LeDock(https://lephar.com),将底物分子酮基泛解酸内酯KPL插入到DCR的活性中心进行了分析;蛋白结构比对以及图像的分析、处理等生物信息学操作均通过PyMOL软件完成。分子对接表明酮基泛解酸内酯还原酶DCR的Thr27、Lys28、Glu224以及Thr225残基可能对其还原活力具有潜在影响。Using the molecular docking software LeDock (https://lephar.com), the substrate molecule ketopantolactone KPL was inserted into the active center of DCR for analysis; protein structure comparison, image analysis, processing and other biological information All learning operations are completed by PyMOL software. Molecular docking indicated that Thr27, Lys28, Glu224 and Thr225 residues of ketopantolactone reductase DCR may have potential effects on its reducing activity.

以pBAD-DCR质粒为模板,应用QuickChange定点饱和突变方法构建了上述氨基酸残基位点的饱和突变体,各突变体基因序列经测序验证正确后,将其转入BW25113。后接入50ml含有100μg/ml氨苄抗性的LB液体培养基,在37℃,200rpm/min过夜培养后,用甘油管保存菌种。Using the pBAD-DCR plasmid as a template, the saturation mutants of the above amino acid residues were constructed by the QuickChange site-directed saturation mutagenesis method. After the gene sequences of the mutants were verified by sequencing, they were transferred into BW25113. Then, 50 ml of LB liquid medium containing 100 μg/ml ampicillin resistance was added, and after overnight incubation at 37° C., 200 rpm/min, the bacteria were stored in a glycerol tube.

以野生型pBAD-DCR-BW25113菌株作为对照,将剩余各突变体种子液按照2%的接种量接入800ml LB培养基(100μg/ml氨苄抗性)继续在37℃下振荡培养至OD600=0.6左右,后加入终浓度为1%的L-阿拉伯糖后,在30℃下诱导培养8-10h后离心收集细胞。细胞悬浮于1/20发酵液体积的50mM的磷酸缓冲液(pH 7.0)并超声破碎,离心后得到重组的野生型DCR粗酶液。Taking the wild-type pBAD-DCR-BW25113 strain as a control, the remaining mutant seed liquids were inserted into 800 ml LB medium (100 μg/ml ampicillin resistance) according to 2% of the inoculum and continued to be shaken at 37 ° C to OD600 = 0.6 After adding L-arabinose with a final concentration of 1%, the cells were collected by centrifugation after induction and culture at 30°C for 8-10 hours. The cells were suspended in 50 mM phosphate buffer (pH 7.0) at 1/20 the volume of the fermentation broth and sonicated, and the recombinant wild-type DCR crude enzyme solution was obtained after centrifugation.

在EP管中加入300μL上述裂解酶液和0.078mol酮基泛解酸内酯,在pH7.0,30℃条件下反应5h后,用6M HCl酸化至pH3.5后在80℃加热15min,等体积乙酸乙酯萃取后进气相色谱仪检测。Add 300 μL of the above lyase solution and 0.078 mol of ketopantolactone to the EP tube, react at pH 7.0 at 30 °C for 5 h, acidify with 6M HCl to pH 3.5, and heat at 80 °C for 15 min, etc. After extraction with volumetric ethyl acetate, it was detected by gas chromatography.

通过四轮筛选后获得第224位点残基突变后的活性明显提高的两个突变体E224G和E224Q,所述突变体E224G的核苷酸序列如SEQ ID NO.3所示和氨基酸序列如SEQ ID NO.4所示,所述突变体E224Q的核苷酸序列如SEQ ID NO.5所示和氨基酸序列如SEQ ID NO.6。After four rounds of screening, two mutants E224G and E224Q with significantly improved activity after the mutation of the 224th residue were obtained. The nucleotide sequence of the mutant E224G is shown in SEQ ID NO. 3 and the amino acid sequence is shown in SEQ ID NO. 3. As shown in ID NO.4, the nucleotide sequence of the mutant E224Q is shown as SEQ ID NO.5 and the amino acid sequence is shown as SEQ ID NO.6.

表1.DCR高效突变体的氨基酸残基变化及转化率比较Table 1. Comparison of amino acid residue changes and transformation rates of DCR high-efficiency mutants

菌株名称strain name 氨基酸残基变化Amino acid residue changes 底物substrate 转化率Conversion rate 野生型(Seq ID NO:1 and 2)Wild type (Seq ID NO: 1 and 2) none KPLKPL 2525 E224G(Seq ID NO:3 and 4)E224G (Seq ID NO: 3 and 4) Glu→GlyGlu→Gly KPLKPL 32.432.4 E224Q(Seq ID NO:5 and 6)E224Q (Seq ID NO: 5 and 6) Glu→GlnGlu→Gln KPLKPL 31.531.5

3、酮基泛解酸内酯还原酶DCR与葡萄糖脱氢酶GDH共表达工程菌pBAD-DCR-GDHBW25113的构建3. Construction of engineering strain pBAD-DCR-GDHBW25113 co-expressing ketopantolactone reductase DCR and glucose dehydrogenase GDH

平滑假丝酵母Candida parapsilosis CDC31的酮基泛解酸内酯还原酶DCR,所述DCR基因的核苷酸序列如SEQ ID NO.1所示和氨基酸序列如SEQ ID NO.2所示。Ketopantolactone reductase DCR of Candida parapsilosis CDC31, the nucleotide sequence of the DCR gene is shown in SEQ ID NO.1 and the amino acid sequence is shown in SEQ ID NO.2.

Bacillus megateriu(ATCC 14581)的GDH基因,所述GDH基因的核苷酸序列如SEQID NO.7所示和氨基酸序列如SEQ ID NO.8所示。The GDH gene of Bacillus megateriu (ATCC 14581), the nucleotide sequence of the GDH gene is shown in SEQ ID NO.7 and the amino acid sequence is shown in SEQ ID NO.8.

设计DCR基因引物对:5’-ctagccatggccactcaaagtaacttactaccaaa-3’和5’-ccctcgagctacaaatctttaaattgctcatggaa-3’。The DCR gene primer pairs were designed: 5'-ctagccatggccactcaaagtaacttactaccaaa-3' and 5'-ccctcgagctacaaatctttaaattgctcatggaa-3'.

GDH基因引物对:5’-ccctcgagtctagagaaagaggggacaaactagatgtatacagatttaaaagataaagta-3’和5’-ggggtaccttagcctcttcctgcttggaaagaagggtacagcgtcataccaccatcagca-3’。GDH gene primer pair: 5'-ccctcgagtctagagaaagaggggacaaactagatgtatacagatttaaaagataaagta-3' and 5'-ggggtaccttagcctcttcctgcttggaaagaagggtacagcgtcataccaccatcagca-3'.

Bacillus megateriu(ATCC 14581)的GDH基因,插入到表达载体pBAD的NdeI和EcoRI位点得到质粒pBAD-GDH。所述GDH基因的核苷酸序列如SEQ ID NO.7所示和氨基酸序列如SEQ ID NO.8所示。The GDH gene of Bacillus megateriu (ATCC 14581) was inserted into the NdeI and EcoRI sites of the expression vector pBAD to obtain the plasmid pBAD-GDH. The nucleotide sequence of the GDH gene is shown in SEQ ID NO.7 and the amino acid sequence is shown in SEQ ID NO.8.

分别以质粒pBAD-DCR和pBAD-GDH为模板进行PCR扩增,用NcoI、XhoI和XhoI、KpnI进行酶切,PCR得到的基因序列两端分别带有NcoI、XhoI和XhoI、KpnI两个酶切位点,PCR产物经琼脂糖凝胶电泳纯化,利用琼脂糖凝胶DNA回收试剂盒回收目的片段。NcoI、KpnI酶切pBAD载体,用T4连接酶连接DCR片段、GDH片段和pBAD载体片段,连接产物转化DH5α后涂氨苄抗性平板,过夜培养后挑单菌落至装有5mL LB的试管培养,用质粒提取试剂盒提取质粒,PCR扩增确定插入基因条带大小正确的质粒送测序,保存测序正确的质粒并命名为pBAD-DCR-GDH,按照化转操作流程,转入感受态细胞大肠杆菌BW25113,涂氨苄抗性LB固体平板,37度静置培养过夜,挑单菌落至装有5mL LB的试管培养5h后保存甘油菌种,获得共表达工程菌pBAD-DCR-GDH BW25113。The plasmids pBAD-DCR and pBAD-GDH were used as templates for PCR amplification, and NcoI, XhoI and XhoI, KpnI were used for digestion, and the two ends of the gene sequence obtained by PCR were respectively cut with NcoI, XhoI and XhoI, KpnI. The PCR product was purified by agarose gel electrophoresis, and the target fragment was recovered using the agarose gel DNA recovery kit. The pBAD vector was digested with NcoI and KpnI, and the DCR fragment, GDH fragment and pBAD vector fragment were ligated with T4 ligase. The ligated product was transformed into DH5α and then coated with ampicillin-resistant plates. The plasmid was extracted by the plasmid extraction kit, and the plasmid with the correct size of the inserted gene band was confirmed by PCR amplification and sent for sequencing. The correctly sequenced plasmid was saved and named pBAD-DCR-GDH. According to the transformation operation process, it was transformed into competent cells E. coli BW25113 , coated with ampicillin-resistant LB solid plate, and cultured overnight at 37°C. Single colonies were picked to a test tube containing 5 mL of LB for 5 hours, and then the glycerol strains were stored to obtain the co-expression engineering strain pBAD-DCR-GDH BW25113.

4、突变体E224G与葡萄糖脱氢酶GDH共表达工程菌pBAD-E224G-GDH的构建4. Construction of engineering strain pBAD-E224G-GDH co-expressing mutant E224G and glucose dehydrogenase GDH

分别以质粒pBAD-E224G和pBAD-GDH为模板进行PCR扩增,所用引物、酶切位点以及操作流程均同共表达重组菌株pBAD-DCR-GDH BW25113的构建一致,从而获得工程菌pBAD-E224G-GDH BW25113。The plasmids pBAD-E224G and pBAD-GDH were used as templates for PCR amplification. The primers, restriction sites and operation procedures were the same as the construction of the co-expression recombinant strain pBAD-DCR-GDH BW25113, thereby obtaining the engineering bacteria pBAD-E224G. - GDH BW25113.

5、突变体E224Q与葡萄糖脱氢酶GDH共表达工程菌pBAD-E224Q-GDH的构建5. Construction of engineering strain pBAD-E224Q-GDH co-expressing mutant E224Q and glucose dehydrogenase GDH

分别以质粒pBAD-E224Q和pBAD-GDH为模板进行PCR扩增,所用引物、酶切位点以及操作流程均同共表达重组菌株pBAD-DCR-GDH BW25113的构建一致,从而获得工程菌pBAD-E224Q-GDH BW25113。The plasmids pBAD-E224Q and pBAD-GDH were used as templates for PCR amplification, and the primers, restriction sites and operation procedures were the same as the construction of the co-expression recombinant strain pBAD-DCR-GDH BW25113, thereby obtaining the engineering bacteria pBAD-E224Q - GDH BW25113.

6、工程菌的培养6. Cultivation of engineering bacteria

1)工程菌pBAD-DCR-GDH BW25113:1) Engineering bacteria pBAD-DCR-GDH BW25113:

吸取甘油菌种管保存的菌种pBAD-DCR-GDH BW25113于5mL,含100μg/mL氨苄霉素的LB液体培养基中,37℃、200rpm培养5h。后按2%比例转接入800mL,含100μg/mL卡那霉素的LB培养基,37℃、200rpm培养至OD600约0.6左右。25℃、200rpm条件下加入终浓度为1%的L-阿拉伯糖进行诱导培养8-10h,离心收集细胞。Pipette the strain pBAD-DCR-GDH BW25113 stored in the glycerol strain tube into 5 mL of LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37° C. and 200 rpm for 5 h. Then, it was transferred to 800 mL of LB medium containing 100 μg/mL kanamycin at a ratio of 2%, and cultured at 37° C. and 200 rpm to an OD600 of about 0.6. L-arabinose with a final concentration of 1% was added at 25° C. and 200 rpm for induction and culture for 8-10 h, and the cells were collected by centrifugation.

2)工程菌pBAD-E224G-GDH BW25113:2) Engineering bacteria pBAD-E224G-GDH BW25113:

吸取甘油菌种管保存的菌种pBAD-E224G-GDH BW25113于5mL,含100μg/mL氨苄霉素的LB液体培养基中,37℃、200rpm培养5h。后按2%比例接种到800mL,含100μg/mL卡那霉素的LB培养基,37℃、200rpm培养至OD600约0.6左右。25℃、200rpm条件下加入终浓度为1%的L-阿拉伯糖进行诱导培养8-10h,离心收集细胞。Pipette the strain pBAD-E224G-GDH BW25113 stored in a glycerol strain tube into 5 mL of LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37° C. and 200 rpm for 5 h. Then, it was inoculated into 800 mL of LB medium containing 100 μg/mL kanamycin at a ratio of 2%, and cultured at 37° C. and 200 rpm to an OD600 of about 0.6. L-arabinose with a final concentration of 1% was added at 25° C. and 200 rpm for induction and culture for 8-10 h, and the cells were collected by centrifugation.

3)工程菌pBAD-E224Q-GDH BW25113:3) Engineering bacteria pBAD-E224Q-GDH BW25113:

吸取甘油菌种管保存的菌种pBAD-E224Q-GDH BW25113于5mL,含100μg/mL氨苄霉素的LB液体培养基中,37℃、200rpm培养5h。后按2%比例接种到800mL,含100μg/mL卡那霉素的LB发酵培养基,37℃、200rpm培养至OD600约0.6左右。25℃、200rpm条件下加入终浓度为1%的L-阿拉伯糖进行诱导培养8-10h,离心收集细胞。Pipette the strain pBAD-E224Q-GDH BW25113 stored in a glycerol strain tube into 5 mL of LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37° C. and 200 rpm for 5 h. Then, it was inoculated into 800 mL of LB fermentation medium containing 100 μg/mL kanamycin at a ratio of 2%, and cultured at 37° C. and 200 rpm to an OD600 of about 0.6. L-arabinose with a final concentration of 1% was added at 25° C. and 200 rpm for induction and culture for 8-10 h, and the cells were collected by centrifugation.

以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.

序列表 sequence listing

<110> 中国科学院微生物研究所<110> Institute of Microbiology, Chinese Academy of Sciences

<120> 工程菌及其在全细胞催化酮基泛解酸内酯生产D-泛解酸内酯中的应用<120> Engineering bacteria and its application in whole-cell catalyzed production of D-pantolactone from ketopantolactone

<130> IM2022057I<130> IM2022057I

<160> 8<160> 8

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 924<211> 924

<212> DNA<212> DNA

<213> 平滑假丝酵母(Candida parapsilosis)<213> Candida parapsilosis

<400> 1<400> 1

atgactcaaa gtaacttact accaaaaaca tttcgtacca aatctgggaa ggagatatca 60atgactcaaa gtaacttact accaaaaaca tttcgtacca aatctgggaa ggagatatca 60

attgcacttg gaacagggac caaatggaaa caagcccaaa caattaacga tgttagtact 120attgcacttg gaacagggac caaatggaaa caagcccaaa caattaacga tgttagtact 120

gagttggtgg acaatatcct tttggggtta aagttgggtt ttagacacat tgatactgct 180gagttggtgg acaatatcct tttggggtta aagttgggtt ttagacacat tgatactgct 180

gaagcttaca acacgcaaaa ggaagttggt gaagccctca aaagaaccga tgttccaaga 240gaagcttaca acacgcaaaa ggaagttggt gaagccctca aaagaaccga tgttccaaga 240

gaggatattt gggttaccac aaaatatagt ccaggttggg gttcaatcaa ggcatacagt 300gaggatattt gggttaccac aaaatatagt ccaggttggg gttcaatcaa ggcatacagt 300

aaatcgccaa gtgattcaat tgataaagct ttggcacagc ttggtgttga ctacgttgat 360aaatcgccaa gtgattcaat tgataaagct ttggcacagc ttggtgttga ctacgttgat 360

ttatttttga ttcactcccc attcttcacc actgagcaaa ctcatggata tacattagag 420ttatttttga ttcactcccc attcttcacc actgagcaaa ctcatggata tacattagag 420

caagcttggg aagctttggt tgaagcaaag aaggcgggaa aggttagaga aattggtatc 480caagcttggg aagctttggt tgaagcaaag aaggcgggaa aggttagaga aattggtatc 480

tcaaatgctg ctattccaca cttggaaaaa ctctttgctg cctccccgag tcctgagtac 540tcaaatgctg ctattccaca cttggaaaaa ctctttgctg cctccccgag tcctgagtac 540

taccctgttg tcaaccaaat tgaattccat ccattcttgc aaaaccaatc taaaaacatt 600taccctgttg tcaaccaaat tgaattccat ccattcttgc aaaaccaatc taaaaacatt 600

gttagatttt gtcaagagca tgggatcttg gtcgaagctt tttcgccatt ggcgccattg 660gttagatttt gtcaagagca tgggatcttg gtcgaagctt tttcgccatt ggcgccattg 660

gcaagagttg aaactaatgc tctcgctgag acattaaaga gattggcgga aaagtacaaa 720gcaagagttg aaactaatgc tctcgctgag acattaaaga gattggcgga aaagtacaaa 720

aagaccgaag ctcaagtttt attgaggtat actttgcaaa gaggtatttt gccagtgaca 780aagaccgaag ctcaagtttt attgaggtat actttgcaaa gaggtatttt gccagtgaca 780

acatcgtcaa aggaaagcag attaaaagag tctttgaatt tgtttgactt tgaattgact 840acatcgtcaa aggaaagcag attaaaagag tctttgaatt tgtttgactt tgaattgact 840

gacgaggagg ttaatgaaat caacaagatt ggcgatgcta atccctatag agctttcttc 900gacgaggagg ttaatgaaat caacaagatt ggcgatgcta atccctatag agctttcttc 900

catgagcaat ttaaagattt gtag 924catgagcaat ttaaagattt gtag 924

<210> 2<210> 2

<211> 307<211> 307

<212> PRT<212> PRT

<213> 平滑假丝酵母(Candida parapsilosis)<213> Candida parapsilosis

<400> 2<400> 2

Met Thr Gln Ser Asn Leu Leu Pro Lys Thr Phe Arg Thr Lys Ser GlyMet Thr Gln Ser Asn Leu Leu Pro Lys Thr Phe Arg Thr Lys Ser Gly

1 5 10 151 5 10 15

Lys Glu Ile Ser Ile Ala Leu Gly Thr Gly Thr Lys Trp Lys Gln AlaLys Glu Ile Ser Ile Ala Leu Gly Thr Gly Thr Lys Trp Lys Gln Ala

20 25 30 20 25 30

Gln Thr Ile Asn Asp Val Ser Thr Glu Leu Val Asp Asn Ile Leu LeuGln Thr Ile Asn Asp Val Ser Thr Glu Leu Val Asp Asn Ile Leu Leu

35 40 45 35 40 45

Gly Leu Lys Leu Gly Phe Arg His Ile Asp Thr Ala Glu Ala Tyr AsnGly Leu Lys Leu Gly Phe Arg His Ile Asp Thr Ala Glu Ala Tyr Asn

50 55 60 50 55 60

Thr Gln Lys Glu Val Gly Glu Ala Leu Lys Arg Thr Asp Val Pro ArgThr Gln Lys Glu Val Gly Glu Ala Leu Lys Arg Thr Asp Val Pro Arg

65 70 75 8065 70 75 80

Glu Asp Ile Trp Val Thr Thr Lys Tyr Ser Pro Gly Trp Gly Ser IleGlu Asp Ile Trp Val Thr Thr Lys Tyr Ser Pro Gly Trp Gly Ser Ile

85 90 95 85 90 95

Lys Ala Tyr Ser Lys Ser Pro Ser Asp Ser Ile Asp Lys Ala Leu AlaLys Ala Tyr Ser Lys Ser Pro Ser Asp Ser Ile Asp Lys Ala Leu Ala

100 105 110 100 105 110

Gln Leu Gly Val Asp Tyr Val Asp Leu Phe Leu Ile His Ser Pro PheGln Leu Gly Val Asp Tyr Val Asp Leu Phe Leu Ile His Ser Pro Phe

115 120 125 115 120 125

Phe Thr Thr Glu Gln Thr His Gly Tyr Thr Leu Glu Gln Ala Trp GluPhe Thr Thr Glu Gln Thr His Gly Tyr Thr Leu Glu Gln Ala Trp Glu

130 135 140 130 135 140

Ala Leu Val Glu Ala Lys Lys Ala Gly Lys Val Arg Glu Ile Gly IleAla Leu Val Glu Ala Lys Lys Ala Gly Lys Val Arg Glu Ile Gly Ile

145 150 155 160145 150 155 160

Ser Asn Ala Ala Ile Pro His Leu Glu Lys Leu Phe Ala Ala Ser ProSer Asn Ala Ala Ile Pro His Leu Glu Lys Leu Phe Ala Ala Ser Pro

165 170 175 165 170 175

Ser Pro Glu Tyr Tyr Pro Val Val Asn Gln Ile Glu Phe His Pro PheSer Pro Glu Tyr Tyr Pro Val Val Asn Gln Ile Glu Phe His Pro Phe

180 185 190 180 185 190

Leu Gln Asn Gln Ser Lys Asn Ile Val Arg Phe Cys Gln Glu His GlyLeu Gln Asn Gln Ser Lys Asn Ile Val Arg Phe Cys Gln Glu His Gly

195 200 205 195 200 205

Ile Leu Val Glu Ala Phe Ser Pro Leu Ala Pro Leu Ala Arg Val GluIle Leu Val Glu Ala Phe Ser Pro Leu Ala Pro Leu Ala Arg Val Glu

210 215 220 210 215 220

Thr Asn Ala Leu Ala Glu Thr Leu Lys Arg Leu Ala Glu Lys Tyr LysThr Asn Ala Leu Ala Glu Thr Leu Lys Arg Leu Ala Glu Lys Tyr Lys

225 230 235 240225 230 235 240

Lys Thr Glu Ala Gln Val Leu Leu Arg Tyr Thr Leu Gln Arg Gly IleLys Thr Glu Ala Gln Val Leu Leu Arg Tyr Thr Leu Gln Arg Gly Ile

245 250 255 245 250 255

Leu Pro Val Thr Thr Ser Ser Lys Glu Ser Arg Leu Lys Glu Ser LeuLeu Pro Val Thr Thr Ser Ser Lys Glu Ser Arg Leu Lys Glu Ser Leu

260 265 270 260 265 270

Asn Leu Phe Asp Phe Glu Leu Thr Asp Glu Glu Val Asn Glu Ile AsnAsn Leu Phe Asp Phe Glu Leu Thr Asp Glu Glu Val Asn Glu Ile Asn

275 280 285 275 280 285

Lys Ile Gly Asp Ala Asn Pro Tyr Arg Ala Phe Phe His Glu Gln PheLys Ile Gly Asp Ala Asn Pro Tyr Arg Ala Phe Phe His Glu Gln Phe

290 295 300 290 295 300

Lys Asp LeuLys Asp Leu

305305

<210> 3<210> 3

<211> 924<211> 924

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

atgactcaaa gtaacttact accaaaaaca tttcgtacca aatctgggaa ggagatatca 60atgactcaaa gtaacttact accaaaaaca tttcgtacca aatctgggaa ggagatatca 60

attgcacttg gaacagggac caaatggaaa caagcccaaa caattaacga tgttagtact 120attgcacttg gaacagggac caaatggaaa caagcccaaa caattaacga tgttagtact 120

gagttggtgg acaatatcct tttggggtta aagttgggtt ttagacacat tgatactgct 180gagttggtgg acaatatcct tttggggtta aagttgggtt ttagacacat tgatactgct 180

gaagcttaca acacgcaaaa ggaagttggt gaagccctca aaagaaccga tgttccaaga 240gaagcttaca acacgcaaaa ggaagttggt gaagccctca aaagaaccga tgttccaaga 240

gaggatattt gggttaccac aaaatatagt ccaggttggg gttcaatcaa ggcatacagt 300gaggatattt gggttaccac aaaatatagt ccaggttggg gttcaatcaa ggcatacagt 300

aaatcgccaa gtgattcaat tgataaagct ttggcacagc ttggtgttga ctacgttgat 360aaatcgccaa gtgattcaat tgataaagct ttggcacagc ttggtgttga ctacgttgat 360

ttatttttga ttcactcccc attcttcacc actgagcaaa ctcatggata tacattagag 420ttatttttga ttcactcccc attcttcacc actgagcaaa ctcatggata tacattagag 420

caagcttggg aagctttggt tgaagcaaag aaggcgggaa aggttagaga aattggtatc 480caagcttggg aagctttggt tgaagcaaag aaggcgggaa aggttagaga aattggtatc 480

tcaaatgctg ctattccaca cttggaaaaa ctctttgctg cctccccgag tcctgagtac 540tcaaatgctg ctattccaca cttggaaaaa ctctttgctg cctccccgag tcctgagtac 540

taccctgttg tcaaccaaat tgaattccat ccattcttgc aaaaccaatc taaaaacatt 600taccctgttg tcaaccaaat tgaattccat ccattcttgc aaaaccaatc taaaaacatt 600

gttagatttt gtcaagagca tgggatcttg gtcgaagctt tttcgccatt ggcgccattg 660gttagatttt gtcaagagca tgggatcttg gtcgaagctt tttcgccatt ggcgccattg 660

gcaagagttg gtactaatgc tctcgctgag acattaaaga gattggcgga aaagtacaaa 720gcaagagttg gtactaatgc tctcgctgag acattaaaga gattggcgga aaagtacaaa 720

aagaccgaag ctcaagtttt attgaggtat actttgcaaa gaggtatttt gccagtgaca 780aagaccgaag ctcaagtttt attgaggtat actttgcaaa gaggtatttt gccagtgaca 780

acatcgtcaa aggaaagcag attaaaagag tctttgaatt tgtttgactt tgaattgact 840acatcgtcaa aggaaagcag attaaaagag tctttgaatt tgtttgactt tgaattgact 840

gacgaggagg ttaatgaaat caacaagatt ggcgatgcta atccctatag agctttcttc 900gacgaggagg ttaatgaaat caacaagatt ggcgatgcta atccctatag agctttcttc 900

catgagcaat ttaaagattt gtag 924catgagcaat ttaaagattt gtag 924

<210> 4<210> 4

<211> 307<211> 307

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

Met Thr Gln Ser Asn Leu Leu Pro Lys Thr Phe Arg Thr Lys Ser GlyMet Thr Gln Ser Asn Leu Leu Pro Lys Thr Phe Arg Thr Lys Ser Gly

1 5 10 151 5 10 15

Lys Glu Ile Ser Ile Ala Leu Gly Thr Gly Thr Lys Trp Lys Gln AlaLys Glu Ile Ser Ile Ala Leu Gly Thr Gly Thr Lys Trp Lys Gln Ala

20 25 30 20 25 30

Gln Thr Ile Asn Asp Val Ser Thr Glu Leu Val Asp Asn Ile Leu LeuGln Thr Ile Asn Asp Val Ser Thr Glu Leu Val Asp Asn Ile Leu Leu

35 40 45 35 40 45

Gly Leu Lys Leu Gly Phe Arg His Ile Asp Thr Ala Glu Ala Tyr AsnGly Leu Lys Leu Gly Phe Arg His Ile Asp Thr Ala Glu Ala Tyr Asn

50 55 60 50 55 60

Thr Gln Lys Glu Val Gly Glu Ala Leu Lys Arg Thr Asp Val Pro ArgThr Gln Lys Glu Val Gly Glu Ala Leu Lys Arg Thr Asp Val Pro Arg

65 70 75 8065 70 75 80

Glu Asp Ile Trp Val Thr Thr Lys Tyr Ser Pro Gly Trp Gly Ser IleGlu Asp Ile Trp Val Thr Thr Lys Tyr Ser Pro Gly Trp Gly Ser Ile

85 90 95 85 90 95

Lys Ala Tyr Ser Lys Ser Pro Ser Asp Ser Ile Asp Lys Ala Leu AlaLys Ala Tyr Ser Lys Ser Pro Ser Asp Ser Ile Asp Lys Ala Leu Ala

100 105 110 100 105 110

Gln Leu Gly Val Asp Tyr Val Asp Leu Phe Leu Ile His Ser Pro PheGln Leu Gly Val Asp Tyr Val Asp Leu Phe Leu Ile His Ser Pro Phe

115 120 125 115 120 125

Phe Thr Thr Glu Gln Thr His Gly Tyr Thr Leu Glu Gln Ala Trp GluPhe Thr Thr Glu Gln Thr His Gly Tyr Thr Leu Glu Gln Ala Trp Glu

130 135 140 130 135 140

Ala Leu Val Glu Ala Lys Lys Ala Gly Lys Val Arg Glu Ile Gly IleAla Leu Val Glu Ala Lys Lys Ala Gly Lys Val Arg Glu Ile Gly Ile

145 150 155 160145 150 155 160

Ser Asn Ala Ala Ile Pro His Leu Glu Lys Leu Phe Ala Ala Ser ProSer Asn Ala Ala Ile Pro His Leu Glu Lys Leu Phe Ala Ala Ser Pro

165 170 175 165 170 175

Ser Pro Glu Tyr Tyr Pro Val Val Asn Gln Ile Glu Phe His Pro PheSer Pro Glu Tyr Tyr Pro Val Val Asn Gln Ile Glu Phe His Pro Phe

180 185 190 180 185 190

Leu Gln Asn Gln Ser Lys Asn Ile Val Arg Phe Cys Gln Glu His GlyLeu Gln Asn Gln Ser Lys Asn Ile Val Arg Phe Cys Gln Glu His Gly

195 200 205 195 200 205

Ile Leu Val Glu Ala Phe Ser Pro Leu Ala Pro Leu Ala Arg Val GlyIle Leu Val Glu Ala Phe Ser Pro Leu Ala Pro Leu Ala Arg Val Gly

210 215 220 210 215 220

Thr Asn Ala Leu Ala Glu Thr Leu Lys Arg Leu Ala Glu Lys Tyr LysThr Asn Ala Leu Ala Glu Thr Leu Lys Arg Leu Ala Glu Lys Tyr Lys

225 230 235 240225 230 235 240

Lys Thr Glu Ala Gln Val Leu Leu Arg Tyr Thr Leu Gln Arg Gly IleLys Thr Glu Ala Gln Val Leu Leu Arg Tyr Thr Leu Gln Arg Gly Ile

245 250 255 245 250 255

Leu Pro Val Thr Thr Ser Ser Lys Glu Ser Arg Leu Lys Glu Ser LeuLeu Pro Val Thr Thr Ser Ser Lys Glu Ser Arg Leu Lys Glu Ser Leu

260 265 270 260 265 270

Asn Leu Phe Asp Phe Glu Leu Thr Asp Glu Glu Val Asn Glu Ile AsnAsn Leu Phe Asp Phe Glu Leu Thr Asp Glu Glu Val Asn Glu Ile Asn

275 280 285 275 280 285

Lys Ile Gly Asp Ala Asn Pro Tyr Arg Ala Phe Phe His Glu Gln PheLys Ile Gly Asp Ala Asn Pro Tyr Arg Ala Phe Phe His Glu Gln Phe

290 295 300 290 295 300

Lys Asp LeuLys Asp Leu

305305

<210> 5<210> 5

<211> 924<211> 924

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

atgactcaaa gtaacttact accaaaaaca tttcgtacca aatctgggaa ggagatatca 60atgactcaaa gtaacttact accaaaaaca tttcgtacca aatctgggaa ggagatatca 60

attgcacttg gaacagggac caaatggaaa caagcccaaa caattaacga tgttagtact 120attgcacttg gaacagggac caaatggaaa caagcccaaa caattaacga tgttagtact 120

gagttggtgg acaatatcct tttggggtta aagttgggtt ttagacacat tgatactgct 180gagttggtgg acaatatcct tttggggtta aagttgggtt ttagacacat tgatactgct 180

gaagcttaca acacgcaaaa ggaagttggt gaagccctca aaagaaccga tgttccaaga 240gaagcttaca acacgcaaaa ggaagttggt gaagccctca aaagaaccga tgttccaaga 240

gaggatattt gggttaccac aaaatatagt ccaggttggg gttcaatcaa ggcatacagt 300gaggatattt gggttaccac aaaatatagt ccaggttggg gttcaatcaa ggcatacagt 300

aaatcgccaa gtgattcaat tgataaagct ttggcacagc ttggtgttga ctacgttgat 360aaatcgccaa gtgattcaat tgataaagct ttggcacagc ttggtgttga ctacgttgat 360

ttatttttga ttcactcccc attcttcacc actgagcaaa ctcatggata tacattagag 420ttatttttga ttcactcccc attcttcacc actgagcaaa ctcatggata tacattagag 420

caagcttggg aagctttggt tgaagcaaag aaggcgggaa aggttagaga aattggtatc 480caagcttggg aagctttggt tgaagcaaag aaggcgggaa aggttagaga aattggtatc 480

tcaaatgctg ctattccaca cttggaaaaa ctctttgctg cctccccgag tcctgagtac 540tcaaatgctg ctattccaca cttggaaaaa ctctttgctg cctccccgag tcctgagtac 540

taccctgttg tcaaccaaat tgaattccat ccattcttgc aaaaccaatc taaaaacatt 600taccctgttg tcaaccaaat tgaattccat ccattcttgc aaaaccaatc taaaaacatt 600

gttagatttt gtcaagagca tgggatcttg gtcgaagctt tttcgccatt ggcgccattg 660gttagatttt gtcaagagca tgggatcttg gtcgaagctt tttcgccatt ggcgccattg 660

gcaagagttc agactaatgc tctcgctgag acattaaaga gattggcgga aaagtacaaa 720gcaagagttc agactaatgc tctcgctgag acattaaaga gattggcgga aaagtacaaa 720

aagaccgaag ctcaagtttt attgaggtat actttgcaaa gaggtatttt gccagtgaca 780aagaccgaag ctcaagtttt attgaggtat actttgcaaa gaggtatttt gccagtgaca 780

acatcgtcaa aggaaagcag attaaaagag tctttgaatt tgtttgactt tgaattgact 840acatcgtcaa aggaaagcag attaaaagag tctttgaatt tgtttgactt tgaattgact 840

gacgaggagg ttaatgaaat caacaagatt ggcgatgcta atccctatag agctttcttc 900gacgaggagg ttaatgaaat caacaagatt ggcgatgcta atccctatag agctttcttc 900

catgagcaat ttaaagattt gtag 924catgagcaat ttaaagattt gtag 924

<210> 6<210> 6

<211> 307<211> 307

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

Met Thr Gln Ser Asn Leu Leu Pro Lys Thr Phe Arg Thr Lys Ser GlyMet Thr Gln Ser Asn Leu Leu Pro Lys Thr Phe Arg Thr Lys Ser Gly

1 5 10 151 5 10 15

Lys Glu Ile Ser Ile Ala Leu Gly Thr Gly Thr Lys Trp Lys Gln AlaLys Glu Ile Ser Ile Ala Leu Gly Thr Gly Thr Lys Trp Lys Gln Ala

20 25 30 20 25 30

Gln Thr Ile Asn Asp Val Ser Thr Glu Leu Val Asp Asn Ile Leu LeuGln Thr Ile Asn Asp Val Ser Thr Glu Leu Val Asp Asn Ile Leu Leu

35 40 45 35 40 45

Gly Leu Lys Leu Gly Phe Arg His Ile Asp Thr Ala Glu Ala Tyr AsnGly Leu Lys Leu Gly Phe Arg His Ile Asp Thr Ala Glu Ala Tyr Asn

50 55 60 50 55 60

Thr Gln Lys Glu Val Gly Glu Ala Leu Lys Arg Thr Asp Val Pro ArgThr Gln Lys Glu Val Gly Glu Ala Leu Lys Arg Thr Asp Val Pro Arg

65 70 75 8065 70 75 80

Glu Asp Ile Trp Val Thr Thr Lys Tyr Ser Pro Gly Trp Gly Ser IleGlu Asp Ile Trp Val Thr Thr Lys Tyr Ser Pro Gly Trp Gly Ser Ile

85 90 95 85 90 95

Lys Ala Tyr Ser Lys Ser Pro Ser Asp Ser Ile Asp Lys Ala Leu AlaLys Ala Tyr Ser Lys Ser Pro Ser Asp Ser Ile Asp Lys Ala Leu Ala

100 105 110 100 105 110

Gln Leu Gly Val Asp Tyr Val Asp Leu Phe Leu Ile His Ser Pro PheGln Leu Gly Val Asp Tyr Val Asp Leu Phe Leu Ile His Ser Pro Phe

115 120 125 115 120 125

Phe Thr Thr Glu Gln Thr His Gly Tyr Thr Leu Glu Gln Ala Trp GluPhe Thr Thr Glu Gln Thr His Gly Tyr Thr Leu Glu Gln Ala Trp Glu

130 135 140 130 135 140

Ala Leu Val Glu Ala Lys Lys Ala Gly Lys Val Arg Glu Ile Gly IleAla Leu Val Glu Ala Lys Lys Ala Gly Lys Val Arg Glu Ile Gly Ile

145 150 155 160145 150 155 160

Ser Asn Ala Ala Ile Pro His Leu Glu Lys Leu Phe Ala Ala Ser ProSer Asn Ala Ala Ile Pro His Leu Glu Lys Leu Phe Ala Ala Ser Pro

165 170 175 165 170 175

Ser Pro Glu Tyr Tyr Pro Val Val Asn Gln Ile Glu Phe His Pro PheSer Pro Glu Tyr Tyr Pro Val Val Asn Gln Ile Glu Phe His Pro Phe

180 185 190 180 185 190

Leu Gln Asn Gln Ser Lys Asn Ile Val Arg Phe Cys Gln Glu His GlyLeu Gln Asn Gln Ser Lys Asn Ile Val Arg Phe Cys Gln Glu His Gly

195 200 205 195 200 205

Ile Leu Val Glu Ala Phe Ser Pro Leu Ala Pro Leu Ala Arg Val GlnIle Leu Val Glu Ala Phe Ser Pro Leu Ala Pro Leu Ala Arg Val Gln

210 215 220 210 215 220

Thr Asn Ala Leu Ala Glu Thr Leu Lys Arg Leu Ala Glu Lys Tyr LysThr Asn Ala Leu Ala Glu Thr Leu Lys Arg Leu Ala Glu Lys Tyr Lys

225 230 235 240225 230 235 240

Lys Thr Glu Ala Gln Val Leu Leu Arg Tyr Thr Leu Gln Arg Gly IleLys Thr Glu Ala Gln Val Leu Leu Arg Tyr Thr Leu Gln Arg Gly Ile

245 250 255 245 250 255

Leu Pro Val Thr Thr Ser Ser Lys Glu Ser Arg Leu Lys Glu Ser LeuLeu Pro Val Thr Thr Ser Ser Lys Glu Ser Arg Leu Lys Glu Ser Leu

260 265 270 260 265 270

Asn Leu Phe Asp Phe Glu Leu Thr Asp Glu Glu Val Asn Glu Ile AsnAsn Leu Phe Asp Phe Glu Leu Thr Asp Glu Glu Val Asn Glu Ile Asn

275 280 285 275 280 285

Lys Ile Gly Asp Ala Asn Pro Tyr Arg Ala Phe Phe His Glu Gln PheLys Ile Gly Asp Ala Asn Pro Tyr Arg Ala Phe Phe His Glu Gln Phe

290 295 300 290 295 300

Lys Asp LeuLys Asp Leu

305305

<210> 7<210> 7

<211> 786<211> 786

<212> DNA<212> DNA

<213> Bacillus megateriu<213> Bacillus megateriu

<400> 7<400> 7

atgtatacag atttaaaaga taaagtagtt gtaattacag gtggatcaac aggtttagga 60atgtatacag atttaaaaga taaagtagtt gtaattacag gtggatcaac aggtttagga 60

cgcgcaatgg ctgttcgttt cggtcaagaa gaagcaaaag ttgttattaa ctattacaac 120cgcgcaatgg ctgttcgttt cggtcaagaa gaagcaaaag ttgttattaa ctattacaac 120

aatgaagaag aagctttaga tgcgaaaaaa gaagtagaag aagcaggcgg acaagcaatc 180aatgaagaag aagctttaga tgcgaaaaaa gaagtagaag aagcaggcgg acaagcaatc 180

atcgttcaag gcgacgtaac aaaagaagaa gatgttgtaa accttgttca aacagctatt 240atcgttcaag gcgacgtaac aaaagaagaa gatgttgtaa accttgttca aacagctatt 240

aaagaattcg gtacattaga cgttatgatt aataacgctg gtgttgaaaa cccagttcct 300aaagaattcg gtacattaga cgttatgatt aataacgctg gtgttgaaaa cccagttcct 300

tctcatgagt tatctttaga caactggaat aaagtaatcg atacaaactt aacgggcgca 360tctcatgagt tatctttaga caactggaat aaagtaatcg atacaaactt aacgggcgca 360

tttttaggaa gccgcgaagc gattaaatat tttgttgaaa acgacattaa aggaaacgtt 420tttttaggaa gccgcgaagc gattaaatat tttgttgaaa acgacattaa aggaaacgtt 420

attaacatgt ctagtgttca tgaaatgatt ccttggccat tatttgttca ttacgcagca 480attaacatgt ctagtgttca tgaaatgatt ccttggccat tatttgttca ttacgcagca 480

agtaaaggcg gtatgaaact aatgacgaaa acattggctc ttgaatatgc gccaaaaggt 540agtaaaggcg gtatgaaact aatgacgaaa acattggctc ttgaatatgc gccaaaaggt 540

atccgcgtaa ataacattgg accaggtgcg atgaacacac caattaacgc agagaaattt 600atccgcgtaa ataacattgg accaggtgcg atgaacacac caattaacgc agagaaattt 600

gcagatcctg tacaacgtgc agacgtagaa agcatgattc caatgggtta catcggtaaa 660gcagatcctg tacaacgtgc agacgtagaa agcatgattc caatgggtta catcggtaaa 660

ccagaagaag tagcagcagt tgcagcattc ttagcatcat cacaagcaag ctatgtaaca 720ccagaagaag tagcagcagt tgcagcattc ttagcatcat cacaagcaag ctatgtaaca 720

ggtattacat tatttgctga tggtggtatg acgctgtacc cttctttcca agcaggaaga 780ggtattacat tatttgctga tggtggtatg acgctgtacc cttctttcca agcaggaaga 780

ggctaa 786ggctaa 786

<210> 8<210> 8

<211> 261<211> 261

<212> PRT<212> PRT

<213> Bacillus megateriu<213> Bacillus megateriu

<400> 8<400> 8

Met Tyr Thr Asp Leu Lys Asp Lys Val Val Val Ile Thr Gly Gly SerMet Tyr Thr Asp Leu Lys Asp Lys Val Val Val Ile Thr Gly Gly Ser

1 5 10 151 5 10 15

Thr Gly Leu Gly Arg Ala Met Ala Val Arg Phe Gly Gln Glu Glu AlaThr Gly Leu Gly Arg Ala Met Ala Val Arg Phe Gly Gln Glu Glu Ala

20 25 30 20 25 30

Lys Val Val Ile Asn Tyr Tyr Asn Asn Glu Glu Glu Ala Leu Asp AlaLys Val Val Ile Asn Tyr Tyr Asn Asn Glu Glu Glu Ala Leu Asp Ala

35 40 45 35 40 45

Lys Lys Glu Val Glu Glu Ala Gly Gly Gln Ala Ile Ile Val Gln GlyLys Lys Glu Val Glu Glu Ala Gly Gly Gln Ala Ile Ile Val Gln Gly

50 55 60 50 55 60

Asp Val Thr Lys Glu Glu Asp Val Val Asn Leu Val Gln Thr Ala IleAsp Val Thr Lys Glu Glu Asp Val Val Asn Leu Val Gln Thr Ala Ile

65 70 75 8065 70 75 80

Lys Glu Phe Gly Thr Leu Asp Val Met Ile Asn Asn Ala Gly Val GluLys Glu Phe Gly Thr Leu Asp Val Met Ile Asn Asn Ala Gly Val Glu

85 90 95 85 90 95

Asn Pro Val Pro Ser His Glu Leu Ser Leu Asp Asn Trp Asn Lys ValAsn Pro Val Pro Ser His Glu Leu Ser Leu Asp Asn Trp Asn Lys Val

100 105 110 100 105 110

Ile Asp Thr Asn Leu Thr Gly Ala Phe Leu Gly Ser Arg Glu Ala IleIle Asp Thr Asn Leu Thr Gly Ala Phe Leu Gly Ser Arg Glu Ala Ile

115 120 125 115 120 125

Lys Tyr Phe Val Glu Asn Asp Ile Lys Gly Asn Val Ile Asn Met SerLys Tyr Phe Val Glu Asn Asp Ile Lys Gly Asn Val Ile Asn Met Ser

130 135 140 130 135 140

Ser Val His Glu Met Ile Pro Trp Pro Leu Phe Val His Tyr Ala AlaSer Val His Glu Met Ile Pro Trp Pro Leu Phe Val His Tyr Ala Ala

145 150 155 160145 150 155 160

Ser Lys Gly Gly Met Lys Leu Met Thr Lys Thr Leu Ala Leu Glu TyrSer Lys Gly Gly Met Lys Leu Met Thr Lys Thr Leu Ala Leu Glu Tyr

165 170 175 165 170 175

Ala Pro Lys Gly Ile Arg Val Asn Asn Ile Gly Pro Gly Ala Met AsnAla Pro Lys Gly Ile Arg Val Asn Asn Ile Gly Pro Gly Ala Met Asn

180 185 190 180 185 190

Thr Pro Ile Asn Ala Glu Lys Phe Ala Asp Pro Val Gln Arg Ala AspThr Pro Ile Asn Ala Glu Lys Phe Ala Asp Pro Val Gln Arg Ala Asp

195 200 205 195 200 205

Val Glu Ser Met Ile Pro Met Gly Tyr Ile Gly Lys Pro Glu Glu ValVal Glu Ser Met Ile Pro Met Gly Tyr Ile Gly Lys Pro Glu Glu Val

210 215 220 210 215 220

Ala Ala Val Ala Ala Phe Leu Ala Ser Ser Gln Ala Ser Tyr Val ThrAla Ala Val Ala Ala Phe Leu Ala Ser Ser Gln Ala Ser Tyr Val Thr

225 230 235 240225 230 235 240

Gly Ile Thr Leu Phe Ala Asp Gly Gly Met Thr Leu Tyr Pro Ser PheGly Ile Thr Leu Phe Ala Asp Gly Gly Met Thr Leu Tyr Pro Ser Phe

245 250 255 245 250 255

Gln Ala Gly Arg GlyGln Ala Gly Arg Gly

260 260

Claims (7)

1.质粒pBAD-GDH,其特征在于,所述质粒pBAD-GDH由GDH基因插入到表达载体pBAD获得;所述GDH基因的氨基酸序列如SEQ ID NO.8所示。1. Plasmid pBAD-GDH, characterized in that, the plasmid pBAD-GDH is obtained by inserting the GDH gene into the expression vector pBAD; the amino acid sequence of the GDH gene is shown in SEQ ID NO.8. 2.重组质粒,其特征在于,包括:质粒pBAD-DCR-GDH、质粒pBAD-E224G-GDH和质粒pBAD-E224Q-GDH;2. a recombinant plasmid, comprising: plasmid pBAD-DCR-GDH, plasmid pBAD-E224G-GDH and plasmid pBAD-E224Q-GDH; 所述质粒pBAD-DCR-GDH由T4连接酶连接酶切质粒pBAD-DCR后的DCR片段、酶切权利要求1所述质粒pBAD-GDH后的GDH片段和酶切pBAD后的线性载体片段获得;所述质粒pBAD-DCR由DCR基因插入到表达载体pBAD获得;所述DCR基因的氨基酸序列如SEQ ID NO.2所示;Described plasmid pBAD-DCR-GDH is obtained by the DCR fragment after T4 ligase ligase cuts the plasmid pBAD-DCR, the GDH fragment after restriction enzyme cuts the plasmid pBAD-GDH of claim 1 and the linear vector fragment after restriction enzyme cuts pBAD; The plasmid pBAD-DCR is obtained by inserting the DCR gene into the expression vector pBAD; the amino acid sequence of the DCR gene is shown in SEQ ID NO.2; 所述质粒pBAD-E224G-GDH由T4连接酶连接酶切质粒pBAD-E224G后的E224G片段、酶切权利要求1所述质粒pBAD-GDH后的GDH片段和酶切pBAD后的线性载体片段获得;所述质粒pBAD-E224G由E224G基因插入到表达载体pBAD获得;所述E224G基因的氨基酸序列如SEQ IDNO.4所示;The plasmid pBAD-E224G-GDH is obtained from the E224G fragment after the plasmid pBAD-E224G is cut by T4 ligase ligase, the GDH fragment after the plasmid pBAD-GDH according to claim 1 is cut, and the linear vector fragment after the enzyme cut pBAD; The plasmid pBAD-E224G is obtained by inserting the E224G gene into the expression vector pBAD; the amino acid sequence of the E224G gene is shown in SEQ ID NO.4; 所述质粒pBAD-E224Q-GDH由T4连接酶连接酶切质粒pBAD-E224Q后的E224Q片段、酶切切权利要求1所述质粒pBAD-GDH后的GDH片段和酶切pBAD后的线性载体片段获得;所述质粒pBAD-E224Q由E224Q基因插入到表达载体pBAD获得;所述E224Q基因的氨基酸序列如SEQ IDNO.6所示。The plasmid pBAD-E224Q-GDH is obtained from the E224Q fragment after the T4 ligase ligase cut the plasmid pBAD-E224Q, the GDH fragment after the plasmid pBAD-GDH according to claim 1 is cut, and the linear vector fragment after the enzyme cut pBAD. ; The plasmid pBAD-E224Q is obtained by inserting the E224Q gene into the expression vector pBAD; the amino acid sequence of the E224Q gene is shown in SEQ ID NO.6. 3.工程菌,其特征在于,所述工程菌pBAD-DCR-GDH BW25113由权利要求2所述质粒pBAD-DCR-GDH化转入感受态细胞大肠杆菌BW25113获得工程菌。3. Engineering bacteria, characterized in that, the engineering bacteria pBAD-DCR-GDH BW25113 is transformed into competent cells Escherichia coli BW25113 by transforming the plasmid pBAD-DCR-GDH described in claim 2 into the engineering bacteria. 4.工程菌,其特征在于,所述工程菌pBAD-E224G-GDH BW25113由权利要求2所述质粒pBAD-E224G-GDH化转入感受态细胞大肠杆菌BW25113获得工程菌pBAD-E224G-GDHBW25113。4. Engineering bacteria, characterized in that, the engineering bacteria pBAD-E224G-GDH BW25113 is transformed into competent cells E. coli BW25113 by transforming the plasmid pBAD-E224G-GDH described in claim 2 into the engineering bacteria pBAD-E224G-GDHBW25113. 5.工程菌,其特征在于,所述工程菌pBAD-E224Q-GDH BW25113由权利要求2所述质粒pBAD-E224Q-GDH化转入感受态细胞大肠杆菌BW25113获得工程菌pBAD-E224Q-GDHBW25113。5. Engineering bacteria, characterized in that, the engineering bacteria pBAD-E224Q-GDH BW25113 is transformed into competent cells Escherichia coli BW25113 by transforming the plasmid pBAD-E224Q-GDH described in claim 2 into the engineering bacteria pBAD-E224Q-GDHBW25113. 6.权利要求3至5任一工程菌在全细胞催化酮基泛解酸内酯生产D-泛解酸内酯中的应用。6. The application of any one of the engineering bacteria of claims 3 to 5 in the whole-cell catalysis of ketopantolactone to produce D-pantolactone. 7.依据权利要求6所述工程菌在全细胞催化酮基泛解酸内酯生产D-泛解酸内酯中的应用,其特征在于,所述工程菌与酮基泛解酸内酯加入量的质量比为2-4:1-2。7. according to the application of engineering bacteria described in claim 6 in whole cell catalysis ketopantolactone to produce D-pantolactone, it is characterized in that, described engineering bacteria and ketopantolactone add The mass ratio of quantity is 2-4:1-2.
CN202210556247.6A 2022-05-20 2022-05-20 Engineering bacterium and application thereof in whole-cell catalysis of ketopantolactone to produce D-pantolactone Active CN114934061B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210556247.6A CN114934061B (en) 2022-05-20 2022-05-20 Engineering bacterium and application thereof in whole-cell catalysis of ketopantolactone to produce D-pantolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210556247.6A CN114934061B (en) 2022-05-20 2022-05-20 Engineering bacterium and application thereof in whole-cell catalysis of ketopantolactone to produce D-pantolactone

Publications (2)

Publication Number Publication Date
CN114934061A true CN114934061A (en) 2022-08-23
CN114934061B CN114934061B (en) 2024-12-17

Family

ID=82864336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210556247.6A Active CN114934061B (en) 2022-05-20 2022-05-20 Engineering bacterium and application thereof in whole-cell catalysis of ketopantolactone to produce D-pantolactone

Country Status (1)

Country Link
CN (1) CN114934061B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409303A (en) * 2020-12-09 2021-02-26 合肥工业大学 Purification method of D-pantoic acid lactone

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520849A (en) * 2015-09-11 2017-03-22 杭州酶易生物技术有限公司 Method for preparing chiral 2-chloro-3,4-difluorophenethyl alcohol
CN110396505A (en) * 2019-05-05 2019-11-01 杭州鑫富科技有限公司 Ketopantolactone reductase and its application
CN110396507A (en) * 2019-05-05 2019-11-01 杭州鑫富科技有限公司 L-pantolactone dehydrogenase from Cnuibacter physcomitrellae
CN110423717A (en) * 2019-05-05 2019-11-08 杭州鑫富科技有限公司 Multienzyme recombinant cell and multienzyme cascade the method for catalyzing and synthesizing D-pantoyl lactone
CN110452861A (en) * 2019-07-10 2019-11-15 杭州师范大学 A kind of genetically recombined engineering bacteria and its application in catalytic synthesis of D-panthenolactone
CN113913399A (en) * 2021-11-19 2022-01-11 万华化学集团股份有限公司 Ketopantolactone reductase derived from Candida maltosa Xu316
CN114085820A (en) * 2021-11-19 2022-02-25 万华化学集团股份有限公司 Ketopantolactone reductase derived from Candida viswanathii

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520849A (en) * 2015-09-11 2017-03-22 杭州酶易生物技术有限公司 Method for preparing chiral 2-chloro-3,4-difluorophenethyl alcohol
CN110396505A (en) * 2019-05-05 2019-11-01 杭州鑫富科技有限公司 Ketopantolactone reductase and its application
CN110396507A (en) * 2019-05-05 2019-11-01 杭州鑫富科技有限公司 L-pantolactone dehydrogenase from Cnuibacter physcomitrellae
CN110423717A (en) * 2019-05-05 2019-11-08 杭州鑫富科技有限公司 Multienzyme recombinant cell and multienzyme cascade the method for catalyzing and synthesizing D-pantoyl lactone
CN110452861A (en) * 2019-07-10 2019-11-15 杭州师范大学 A kind of genetically recombined engineering bacteria and its application in catalytic synthesis of D-panthenolactone
CN113913399A (en) * 2021-11-19 2022-01-11 万华化学集团股份有限公司 Ketopantolactone reductase derived from Candida maltosa Xu316
CN114085820A (en) * 2021-11-19 2022-02-25 万华化学集团股份有限公司 Ketopantolactone reductase derived from Candida viswanathii

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FANG-YING ZHU等: "Development of an Escherichia coli whole cell catalyst harboring conjugated polyketone reductase from Candida glabrata for synthesis of d-(−)-pantolactone", PROCESS BIOCHEMISTRY, vol. 112, 8 December 2021 (2021-12-08), pages 223 - 233 *
KATAOKA M等: "Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis", APPL MICROBIOL BIOTECHNOL, vol. 64, no. 3, 31 October 2003 (2003-10-31), pages 1 - 3, XP019623550 *
QIN HM等: "Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 98, no. 1, 5 July 2013 (2013-07-05), pages 243 - 249 *
WANG J等: "Discovery of a new NADPH-dependent aldo-keto reductase from Candida orthopsilosis catalyzing the stereospecific synthesis of (R)-pantolactone by genome mining", JOURNAL OF BIOTECHNOLOGY, 26 December 2018 (2018-12-26), pages 26 - 34 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409303A (en) * 2020-12-09 2021-02-26 合肥工业大学 Purification method of D-pantoic acid lactone

Also Published As

Publication number Publication date
CN114934061B (en) 2024-12-17

Similar Documents

Publication Publication Date Title
US20210009981A1 (en) Nitrilase mutant, construction method therefor, and application thereof
CN113151201B (en) High thermostability and high activity isoeugenol monooxygenase mutant and its application
CN112877307B (en) Amino acid dehydrogenase mutant and application thereof
CN108467860B (en) A kind of method for high-yield γ-aminobutyric acid
CN114164197B (en) A kind of thermostability and activity improved nitrilase mutant and application thereof
CN113913399B (en) Ketopantolactone reductase from Candida maltosa Xu316
CN110272856B (en) A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application
CN112626057B (en) Chimeric plant nitrilase mutant, coding gene and application thereof
CN112908417B (en) Gene mining method combining functional sequence and structure simulation, NADH-preferring glufosinate dehydrogenase mutant and its application
AU2013227067A1 (en) Hydrocarbon synthase gene, and use thereof
CN114934061B (en) Engineering bacterium and application thereof in whole-cell catalysis of ketopantolactone to produce D-pantolactone
JP2017108740A (en) Modified meso-diaminopimelic acid dehydrogenase
CN113652408A (en) Carbonyl reductase mutant and application thereof in synthesis of (R) -4-chloro-3-hydroxybutyric acid ethyl ester
CN110172435B (en) A kind of recombinant bacteria for catalyzing synthesis of 2,5-dimethylpyrazine
CN108034646B (en) PvEH3 mutant with improved catalytic activity and improved enantiotropic normalization
CN114350630B (en) L-pantolactone dehydrogenase, mutants and applications thereof
CN114958934B (en) Method for preparing L-glufosinate
US11760988B2 (en) L-aspartate alpha-decarboxylase mutant and application thereof
CN112831532B (en) Method for enzymatic synthesis of D-leucine
CN112553185B (en) Nitrilase mutant with improved nitrile hydrolysis activity specificity and application thereof
CN107177564A (en) A kind of L lactic dehydrogenases in Lactobacillus casei source and its application
CN112481320A (en) Method for preparing (-) gamma-lactam with high catalytic efficiency
CN109897872B (en) Enzymatic preparation of (2S, 3S) -N-t-butoxycarbonyl-3-amino-1-chloro-2-hydroxy-4-phenylbutane
CN105969755A (en) Tyrosine decarboxylase mutant and gene and application thereof
CN115029329B (en) Carbonyl reductase mutant and application thereof in preparation of R-mandelic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant