CN113638078A - A kind of polyelectrolyte composite hydrogel fiber and preparation method thereof - Google Patents
A kind of polyelectrolyte composite hydrogel fiber and preparation method thereof Download PDFInfo
- Publication number
- CN113638078A CN113638078A CN202110816229.2A CN202110816229A CN113638078A CN 113638078 A CN113638078 A CN 113638078A CN 202110816229 A CN202110816229 A CN 202110816229A CN 113638078 A CN113638078 A CN 113638078A
- Authority
- CN
- China
- Prior art keywords
- polyelectrolyte
- solution
- fiber
- electrolyte
- polyvalent metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/04—Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
- D01F11/06—Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/26—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from other polymers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/10—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/18—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/01—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
- D06M15/03—Polysaccharides or derivatives thereof
- D06M15/13—Alginic acid or derivatives thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/356—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
- D06M15/3562—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/61—Polyamines polyimines
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/10—Animal fibres
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Mechanical Engineering (AREA)
- Artificial Filaments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention relates to a polyelectrolyte complex hydrogel fiber and a preparation method thereof, the method comprises the steps of firstly, taking a solution X as a spinning solution to carry out wet spinning, after coagulation bath compounding, completely immersing the fiber in a solution containing polyvalent metal ions C for treatment, and finally carrying out water absorption treatment to obtain the fiber; when the solution X is a solution in which the polycationic electrolyte a is a solute, the solute of the solution Y as a coagulation bath is a polyanionic electrolyte B; when the solution X is a solution with polyanionic electrolyte B as a solute, the solute of the solution Y as a coagulation bath is polycationic electrolyte A; the prepared fiber has a skin-core structure, electrostatic force is formed between the skin layer and the core layer, and carboxylate radicals in the polyanionic electrolyte B and polyvalent metal ions C form a coordination crosslinking structure; hydrogel fibers were completely immersed in deionized water and tested after 2 days of immersion: the elongation at break is 80-160%, the strength of a monofilament is 10-45 MPa, the initial modulus is 12-180 MPa, and a heavy object with the weight 2 thousand-1 ten thousand times of the self weight can be pulled.
Description
Technical Field
The invention belongs to the technical field of hydrogel fibers, relates to a polyelectrolyte complex hydrogel fiber and a preparation method thereof, and particularly relates to a polyelectrolyte complex hydrogel fiber applicable to artificial tendon tissue and a preparation method thereof.
Background
Hydrogels are a class of materials with good biocompatibility and softness, three-dimensional network structures with extremely high hydrophilic capacity, which swell rapidly in water and retain a large volume of water in this swollen state without dissolution. The material has high water content, good biocompatibility and easy modification, and can realize reversible expansion and contraction under the stimulation of some factors (such as pH and temperature). Hydrogels are commonly used as adsorbents, drug carriers, and the like, and have important applications in the fields of drug therapy, biological detection, and the like. However, the mechanical properties and anti-swelling ability of conventional hydrogels are generally poor, resulting in limited practical applications thereof.
In recent years, the construction of hydrogels with double network structures and hydrogels with interpenetrating network structures have become a hot point of research. A strong network structure and a weak network structure are constructed in a hydrogel network system, the strong network plays a role in maintaining the integrity of the network structure, and the weak network plays a role in dissipating energy, so that the mechanical property of the hydrogel can be improved. Or constructing a hybrid hydrogel with nanoparticles can also improve the toughness and strength of the hydrogel. The loaded nano composite gel has the characteristics of both nano materials and gel, and the synergistic enhancement of the components can be realized after the nano composite gel is compounded. However, the above methods generally use organic solvents or have complicated chemical synthesis steps, which destroy the chemical properties of the original hydrogel, and the nanoclusters are easily agglomerated during the gelation process, thereby greatly affecting the use of the hydrogel. How to construct hydrogel with excellent mechanical properties by a green and simple method becomes a hot point for research and development of extensive researchers.
Polyelectrolyte complexes have different characteristics from those of common polymer materials, and are often used for the preparation of hydrogels due to their biocompatibility. The surface of the polyelectrolyte complex is charged, so that the polyelectrolyte complex is often very sensitive to conditions such as temperature, pH value, humidity and the like. This property often results in poor mechanical properties of the polyelectrolyte complex when used as a hydrogel.
Therefore, the research on the polyelectrolyte composite hydrogel fiber with simple preparation method and good mechanical property and the preparation method thereof have very important significance.
Disclosure of Invention
In order to solve the problems in the prior art, the invention provides a polyelectrolyte complex hydrogel fiber and a preparation method thereof. By utilizing a method combining interface compounding and wet spinning, a polycation electrolyte solution is extruded into a polyanion electrolyte solution as a spinning solution, or the polyanion electrolyte solution is extruded into the polycation electrolyte solution as the spinning solution, and at the moment, the interface of the polyanion electrolyte solution and the polycation electrolyte solution which are in mutual contact is compounded due to electrostatic interaction, so as to assist the fiber to be formed, and the polyelectrolyte composite fiber with a skin-core structure is obtained; and then the polyelectrolyte composite fiber is further subjected to coordination crosslinking, so that the polyelectrolyte composite hydrogel fiber with an electrostatic force crosslinking network and a coordination crosslinking network can be obtained, and the polyelectrolyte composite hydrogel fiber has excellent performance.
In order to achieve the purpose, the invention adopts the following scheme:
a polyelectrolyte complex hydrogel fiber comprises a polyelectrolyte complex fiber and polyvalent metal ions C in the polyelectrolyte complex fiber;
the polyelectrolyte composite fiber has a skin-core structure, and electrostatic force is formed between the skin layer and the core layer; when the skin layer is the polycation electrolyte A, the core layer is the polyanion electrolyte B; when the core layer is the polycation electrolyte A, the skin layer is the polyanion electrolyte B;
the carboxylate in the polyanionic electrolyte B in the polyelectrolyte composite fiber and the polyvalent metal ion C form a coordination crosslinking structure (if no coordination interaction is introduced, although the polyelectrolyte composite fiber can still be used as a hydrogel fiber, the polyelectrolyte composite fiber has extremely poor mechanical properties and is not suitable for subsequent applications, such as being not used for imitating artificial tendon tissue and the like).
As a preferred technical scheme:
according to the polyelectrolyte composite hydrogel fiber, the mass ratio of the polyelectrolyte forming the skin layer to the polyelectrolyte forming the core layer is 1-2: 9-8; the mass ratio of the polyanionic electrolyte B to the polyvalent metal ions C is 8-12: 1-2.
In the polyelectrolyte composite hydrogel fiber, the polycation electrolyte A is more than one of chitosan, polyallylamine and polydiallyldimethylammonium chloride, and the multi-component compounding process is complex and the performance is not greatly improved, so that a single polymer is preferably used; the polyanion electrolyte B is more than one of sodium alginate, N-dicarboxymethyl polyallylamine, N-dicarboxymethyl branched polyethyleneimine and N, N-dicarboxymethyl-based polyethyleneimine, and the multi-component compounding process is complex and the performance is not greatly improved, so that a single polymer is preferably used.
The polyelectrolyte complex hydrogel fiber has the advantages that the polyvalent metal ion C is Ca2+、Fe3+、Cu2+、Zn2+、Ce3+、Eu3+Or Tb3+When the polyvalent metal ion added is Ca2+、Fe3+、Cu2+Or Zn2+When the metal ions are used, a small amount of the metal ions are harmless to human bodies and can be widely applied; when the added polyvalent metal ion is Ce3+、Eu3+Or Tb3+Such metals can then be used to prepare fluorescent hydrogel fibers; although coordination crosslinking can be formed by adding a plurality of polyvalent metal ions, the polyvalent metal ions with weak coordination ability hardly participate in coordination due to the competitive relationship among the metal ions, and even if added, beneficial contribution in performance cannot be generated.
According to the polyelectrolyte composite hydrogel fiber, the monofilament diameter of the polyelectrolyte composite hydrogel fiber is 50-75 microns, the breaking elongation is 10-160%, the monofilament strength is 10-230 MPa, and the initial modulus is 12-4000 MPa; the mechanical properties of the hydrogel fibers can be greatly changed due to different water contents of the hydrogel fibers, and the properties listed here are the range of the mechanical properties of the hydrogel fibers from low water contents to fully absorbed water;
completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 80-160%, the strength of a monofilament is 10-45 MPa, the initial modulus is 12-180 MPa, and a heavy object with the weight 2 thousand-1 ten thousand times of the self weight can be pulled. The elongation at break, the monofilament strength and the initial modulus are obtained by testing with a monofilament strength tensile tester, and the test standard is shown in DOI: 10.1021/acsapm.0c00056.
The invention also provides a method for preparing the polyelectrolyte composite hydrogel fiber, which comprises the steps of firstly carrying out wet spinning by using the polyelectrolyte solution X as a spinning solution, and compounding by using a coagulating bath to obtain the polyelectrolyte composite fiber (the method is similar to the wet spinning, the coagulating bath is a polyelectrolyte solution with opposite charges, and the method can enable the composite to be compounded and formed at the same time, and cannot be processed into the fiber if the coagulating bath is not adopted); completely soaking the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment, and finally placing the fiber under a certain humidity or soaking the fiber in water for water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber;
when the polyelectrolyte solution X is a solution with polycation electrolyte A as a solute, the solute of the polyelectrolyte solution Y as a coagulation bath is polyanion electrolyte B;
when the polyelectrolyte solution X is a solution in which the polyanionic electrolyte B is a solute, the solute of the polyelectrolyte solution Y as the coagulation bath is the polycationic electrolyte a.
The spinning solution is subjected to centrifugal deaeration before spinning.
The polycation electrolyte A and the polyanion electrolyte B can form a polyelectrolyte complex due to electrostatic interaction; a large number of carboxylate groups exist in the polyanion electrolyte B, and the polyanion electrolyte B can form a polyelectrolyte compound with the polycation electrolyte A due to electrostatic interaction and can also form coordination crosslinking with the metal ions C.
The water absorption treatment means: placing the fiber in a constant temperature and humidity box under different humidity, wherein the water content can reach 0-15%; the fiber is placed in water for different times, and the water content can reach 15-88%. At the same time, the excess inorganic salts and the like on the surface can also be removed.
As a preferred technical scheme:
in the method, the mass fractions of the polyelectrolytes in the polyelectrolyte solution X and the polyelectrolyte in the polyelectrolyte solution Y are both 0.5-1.5 wt.%; the polyelectrolyte solution X and the polyelectrolyte solution Y are prepared by dissolving polyelectrolyte in water with certain pH value, and the polyelectrolyte is in a complete dissolved state, wherein acid for adjusting the pH value is hydrochloric acid and/or acetic acid, and alkali is sodium hydroxide; when the concentration of the spinning solution (polyelectrolyte solution X) is too high, the viscosity is too high and is not suitable for extrusion, and the concentration is too low, the fluid is not stable during extrusion; when the concentration of the coagulation bath (polyelectrolyte solution Y) is too high, the spinning solution can not stably flow in the coagulation bath, the concentration is too low, and the compounding process is slow;
the concentration of the solution containing the metal ions C is 1-2 mg/mL, excessive surface adsorption of excessive metal ions can be caused by excessive concentration of the solution containing the metal ions C, and the efficiency of coordination and recombination is influenced by too low concentration.
According to the method, the residence time of the extruded spinning solution in the coagulating bath is 15 min-24 h; the time is too low, the fiber compounding process is incomplete, and the fiber performance is poor; the time reaches 24h, the compounding process is basically finished, and no more benefit is generated by prolonging the time. The technological parameters of wet spinning are as follows: the extrusion speed is 0.8mL/min, the spinneret orifice type is 20mm long, the outer diameter is 0.31mm, and the inner diameter is 0.13 mm.
In the method, the polyelectrolyte composite fiber is completely immersed in the solution containing the polyvalent metal ions C for less than or equal to 24 hours. At this time, the polyvalent metal ion C in the solution containing the polyvalent metal ion C diffuses into the fiber, and the fibers with different coordination amounts can be obtained at different impregnation times due to the strong coordination interaction between the carboxylic acid and the metal in the polyelectrolyte composite fiber.
According to the method, the polyelectrolyte composite fiber is washed for 10-30 s and then completely immersed in the solution containing the polyvalent metal ions C, and the purpose of washing is to remove redundant acid, alkali and polyelectrolyte on the surface.
The principle of the invention is as follows:
the concentration of the polycation electrolyte A (hereinafter referred to as A) and the concentration of the polyanion electrolyte B (hereinafter referred to as B) are 0.5-1.5 wt.%, and the A and the B can form a polyelectrolyte complex in an aqueous solution through electrostatic interaction. In the method for preparing polyelectrolyte composite fibers researched in the prior art, an interface drafting method is adopted, two liquid drops A and B are contacted with each other to form a composite layer on a contact interface, and then the composite layer is drafted manually. The invention combines interface recombination and wet spinning, as shown in figure 1, firstly, the solution A is extruded into the solution B through a spinneret orifice, and when the solution A and the solution B just contact, a layer of compound protective film is formed on the surface of the fluid A due to the electrostatic interaction of the solution A and the solution B, thereby protecting the stability of the fluid A. With the prolonging of the compounding time in the solution B, more solution B diffuses inwards to be compounded with the solution A, the conformational entropy is reduced, more water molecules are extruded out of the system, and finally the polyelectrolyte composite fiber with the core layer A and the skin layer B is formed. Similarly, if the solution B is extruded into the solution a as a spinning solution, the polyelectrolyte composite fiber with the core layer B and the skin layer a is finally formed, and electrostatic force is formed between the skin layer and the core layer (as shown in fig. 2). And then immersing the polyelectrolyte composite fiber into a solution of the polyvalent metal ion C, wherein 2 oxygens in the carboxylate radicals are resonant and can be used as coordination atoms, so that the polyvalent metal ion C and the carboxylate radicals in the polyvalent metal ion B form coordination bonds (as shown in FIG. 3), and the bond energy of the coordination bonds is between covalent bonds and ionic bonds, so that a strong cross-linked network structure can be formed.
Water molecules entering the polyelectrolyte complex can be used as a plasticizer to change the mechanical property of the polyelectrolyte complex. When a small amount of water molecules enter the polyelectrolyte complex, the molecular chain movement space is increased due to the lubricating effect, the whole chain moves more freely, and the macro expression of the material is that the material becomes softer. When more water molecules enter the polyelectrolyte compound, the water molecules and some polar groups in the polymer generate stronger hydrogen bond action, ion pairs (polycation and polyanion ion pairs) generated by compounding are damaged, and the material macroscopically shows that the material is further swelled and even decomposed for a long time. After the coordination bonds are introduced, the polyvalent metal ions and the carboxylate radicals in the polyanion generate strong crosslinking, and the bonding strength of the coordination bonds is between that of the ionic bonds and the covalent bonds, so that the coordination network can be used as a strong network to maintain the integrity of the material. Therefore, the finally prepared hydrogel fiber can have good mechanical strength in a water environment.
Advantageous effects
(1) According to the preparation method of the polyelectrolyte complex hydrogel fiber, the hydrogel fiber with excellent mechanical property is constructed in a green and simple manner, the mechanical property can be comparable to that of muscle fiber in muscle tissue, the monofilament strength of the hydrogel fiber can be adjusted between 10-230 MPa, the corresponding elongation can be adjusted between 10-160%, the initial modulus is 12-180 MPa in a water environment for a long time, a weight 2 thousand-1 ten thousand times of the self weight can be lifted, and all the properties meet the use requirement of artificial tendon tissue (the mechanical strength of the muscle fiber in the human tendon tissue is 0.35MPa at most, the elongation is 20%, and the modulus is 10-60 MPa), so that the preparation method is expected to be applied to the field of artificial tendons;
(2) the preparation method of the polyelectrolyte complex hydrogel fiber can effectively control the mechanical property of the hydrogel fiber, and can obtain hydrogel fibers with different coordination crosslinking ratios by changing the time for soaking the polyvalent metal ion solution;
(3) the polyelectrolyte complex hydrogel fiber prepared by the method disclosed by the invention is excellent in mechanical property, can still have good mechanical strength in a water environment, and has a wide application prospect.
Drawings
FIG. 1 is a process flow diagram of the present invention;
FIG. 2 is a schematic representation of the electrostatic forces of the skin and core layers in the coagulation bath of the present invention;
FIG. 3 is a schematic diagram showing a coordination structure in coordination crosslinking in the present invention.
Detailed Description
The invention will be further illustrated with reference to specific embodiments. It should be understood that these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. Further, it should be understood that various changes or modifications of the present invention may be made by those skilled in the art after reading the teaching of the present invention, and such equivalents may fall within the scope of the present invention as defined in the appended claims.
Example A1
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving chitosan in an acetic acid solution, adjusting the pH value of the solution to 3.5, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 1.5 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving sodium alginate in deionized water, and centrifuging and defoaming to obtain a polyelectrolyte solution Y with the mass fraction of 1.5 wt.% of polyelectrolyte;
solution containing metal ion C: adding CaCl2Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 24 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 20 seconds to obtain a polyelectrolyte composite fiber with a skin-core structure; electrostatic force is formed between the skin layer and the core layer, the core layer is made of chitosan, and the skin layer is made of sodium alginate; the mass ratio of the sodium alginate forming the skin layer to the chitosan forming the core layer is 1: 8;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 1h, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 70% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, carboxylate radicals in sodium alginate and polyvalent metal ions C form a coordination crosslinking structure, and the sodium alginate and the polyvalent metal ions C (Ca)2+) In a mass ratio of 8: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 160%, the monofilament strength is 10MPa, the initial modulus is 15MPa, and a weight 2 thousand times of the self weight can be pulled.
Comparative example 1
A method for preparing a polyelectrolyte complex hydrogel fiber, which comprises the same steps as those of example A1, except that the polyelectrolyte complex fiber prepared in step (2) was directly tested without performing step (3), and the results were as follows:
the polyelectrolyte complex fiber had the same structure as in example A1, but the polyelectrolyte complex hydrogel fiber had the following properties: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 200%, the monofilament strength is 0.1MPa, the initial modulus is 0.05MPa, and a weight 10 times of the self weight can be pulled.
Example A2
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving polyallylamine in deionized water, adjusting the pH value to 3.5, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 0.8 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving N, N-dicarboxymethylpolyallylamine in deionized water, adjusting the pH value to 3.5, and centrifuging and defoaming to obtain a polyelectrolyte solution Y with the mass fraction of 1 wt.% of polyelectrolyte;
solution containing metal ion C: FeCl is added3Dissolving in deionized water to obtain a solution containing metal ion C with the concentration of 1.5 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 18h by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 15s to obtain the polyelectrolyte composite fiber with a skin-core structure; electrostatic force is formed between the skin layer and the core layer, the core layer is polyallylamine, and the skin layer is N, N-dicarboxymethylpolyallylamine; the mass ratio of the skin layer to the core layer is 1: 9;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 2 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 65% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, the carboxylate radical in the N, N-dicarboxymethyl polyallylamine and the polyvalent metal ion C form a coordination crosslinking structure, and the N, N-dicarboxymethyl polyallylamine and the polyvalent metal ion C (Fe)3+) In a mass ratio of 9: 2.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 150%, the monofilament strength is 20MPa, the initial modulus is 30MPa, and a weight 4 thousand times of the self weight can be lifted.
Example A3
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving poly (diallyldimethylammonium chloride) in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 1.2 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving N, N-dicarboxymethyl branched polyethyleneimine in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution Y with the mass fraction of 1.5 wt.%;
solution containing metal ion C: mixing EuCl3Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, carrying out composite for 12 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing with water for 25s to obtain the polyelectrolyte composite fiber with a skin-core structure; electrostatic force is formed between the skin layer and the core layer, the core layer is poly diallyl dimethyl ammonium chloride, and the skin layer is N, N-dicarboxymethyl branched polyethyleneimine; the mass ratio of the skin layer to the core layer is 2: 9;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 5 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 75% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, carboxylate radicals in N, N-dicarboxymethyl branched polyethyleneimine and polyvalent metal ions C form a coordination crosslinking structure, and the N, N-dicarboxymethyl branched polyethyleneimine and the polyvalent metal ions C (Eu)3+) In a mass ratio of 10: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 140%, the monofilament strength is 15MPa, the initial modulus is 25MPa, and a weight which is 3 thousand times of the self weight can be lifted.
Example A4
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving a mixture of chitosan and polyallylamine in a mass ratio of 1:1 in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 1.1 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving N, N-dicarboxyl baseline polyethyleneimine in deionized water, adjusting the pH value to 3, and performing centrifugal deaeration to obtain a polyelectrolyte solution Y with the mass fraction of 1 wt.% of polyelectrolyte;
solution containing metal ion C: adding CuCl2Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1.2 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 24 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 30s to obtain the polyelectrolyte composite fiber with a skin-core structure; electrostatic force is formed between the skin layer and the core layer, the core layer is a mixture of chitosan and polyallylamine in a mass ratio of 1:1, and the skin layer is N, N-dicarboxylic acid methyl linear polyethyleneimine; the mass ratio of the skin layer to the core layer is 2: 8;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 6 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 75% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, carboxylate radicals in N, N-dicarboxyl-based polyethyleneimine and polyvalent metal ions C form a coordination crosslinking structure, and the N, N-dicarboxyl-based polyethyleneimine and the polyvalent metal ions C (Cu)2+) In a mass ratio of 9: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 160%, the monofilament strength is 10MPa, the initial modulus is 12MPa, and a weight 2 thousand times of the self weight can be pulled.
Example A5
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving chitosan in an acetic acid solution, adjusting the pH value of the solution to 3.5, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 1.5 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving a mixture of sodium alginate and N, N-dicarboxymethyl polyallylamine in a mass ratio of 1:1 in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution Y with the mass fraction of polyelectrolyte of 1.5 wt%;
solution containing metal ion C: reacting ZnCl2Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1.8 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 20 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 10 seconds to obtain a polyelectrolyte composite fiber; wherein electrostatic force is formed between the skin layer and the core layer, the core layer is chitosan, and the skin layer is a mixture composed of sodium alginate and N, N-dicarboxymethylpolyallylamine with a mass ratio of 1: 1; the mass ratio of the skin layer to the core layer is 1: 8;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 8 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 85% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, the carboxylate in the mixture forming the skin layer forms a coordination crosslinking structure with the polyvalent metal ion C, and the mixture and the polyvalent metal ion C (Zn)2+) In a mass ratio of 9: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 135%, the monofilament strength is 20MPa, the initial modulus is 20MPa, and a weight 2 thousand times of the self weight can be pulled.
Example B1
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving sodium alginate in deionized water, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 1.5 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving chitosan in an acetic acid solution, adjusting the pH value of the solution to 3.5, and performing centrifugal defoaming to obtain a polyelectrolyte solution Y with the mass fraction of polyelectrolyte of 0.5 wt.%;
solution containing metal ion C: adding CaCl2Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 24 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 20 seconds to obtain a polyelectrolyte composite fiber with a skin-core structure; wherein the skin layer is chitosan, the core layer is sodium alginate, and electrostatic force is formed between the skin layer and the core layer; the mass ratio of the skin layer to the core layer is 1: 8;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 1h, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 72% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, carboxylate radicals in sodium alginate and polyvalent metal ions C form a coordination crosslinking structure, and the sodium alginate and the polyvalent metal ions C (Ca)2+) In a mass ratio of 8: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 110%, the monofilament strength is 28MPa, the initial modulus is 89MPa, and a weight 1 ten thousand times of the self weight can be pulled.
Example B2
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving N, N-dicarboxymethylpolyallylamine in deionized water, adjusting the pH value to 3.5, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of polyelectrolyte of 0.8 wt%;
polyelectrolyte solution Y: dissolving polyallylamine in deionized water, adjusting the pH value to 3.5, and performing centrifugal defoaming to obtain a polyelectrolyte solution Y with the mass fraction of polyelectrolyte of 0.5 wt.%;
solution containing metal ion C: FeCl is added3Dissolving in deionized water to obtain a solution containing metal ion C with the concentration of 1.5 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 18h by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 15s to obtain the polyelectrolyte composite fiber with a skin-core structure; wherein the skin layer is polyallylamine, the core layer is N, N-dicarboxymethyl polyallylamine, and electrostatic force is formed between the skin layer and the core layer; the mass ratio of the skin layer to the core layer is 1: 9;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 2 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with water content of 68% and still maintaining a skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, the carboxylate radical in the N, N-dicarboxymethyl polyallylamine and the polyvalent metal ion C form a coordination crosslinking structure, and the N, N-dicarboxymethyl polyallylamine and the polyvalent metal ion C (Fe)3+) In a mass ratio of 9: 2.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 80%, the monofilament strength is 40MPa, the initial modulus is 180MPa, and a weight 1 ten thousand times of the self weight can be lifted.
Example B3
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving N, N-dicarboxymethyl branched polyethyleneimine in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 0.8 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving poly (diallyldimethylammonium chloride) in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution Y with the mass fraction of polyelectrolyte of 0.8 wt.%;
solution containing metal ion C: mixing EuCl3Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, carrying out composite for 12 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing with water for 25s to obtain the polyelectrolyte composite fiber with a skin-core structure; wherein the skin layer is poly diallyl dimethyl ammonium chloride, the core layer is N, N-dicarboxymethyl branched polyethyleneimine, and electrostatic force is formed between the skin layer and the core layer; the mass ratio of the skin layer to the core layer is 2: 9;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 5 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 72% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, carboxylate radicals in N, N-dicarboxymethyl branched polyethyleneimine and polyvalent metal ions C form a coordination crosslinking structure, and the N, N-dicarboxymethyl branched polyethyleneimine and the polyvalent metal ions C (Eu)3+) In a mass ratio of 10: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 95%, the monofilament strength is 35MPa, the initial modulus is 150MPa, and a weight 1 ten thousand times of the self weight can be lifted.
Example B4
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving N, N-dicarboxyl baseline polyethyleneimine in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 1.1 wt.% of polyelectrolyte;
polyelectrolyte solution Y: dissolving polyallylamine and polydiallyldimethylammonium chloride in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution Y with the mass fraction of 1 wt.% of polyelectrolyte;
solution containing metal ion C: adding CuCl2Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1.2 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 24 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 30s to obtain the polyelectrolyte composite fiber with a skin-core structure; wherein the skin layer is polyallylamine and polydiallyldimethylammonium chloride, the core layer is N, N-dicarboxymethyl-based polyethyleneimine, and electrostatic force is formed between the skin layer and the core layer; the mass ratio of the skin layer to the core layer is 2: 8;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 6 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 78% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, carboxylate radicals in N, N-dicarboxyl-based polyethyleneimine and polyvalent metal ions C form a coordination crosslinking structure, and the N, N-dicarboxyl-based polyethyleneimine and the polyvalent metal ions C (Cu)2+) In a mass ratio of 9: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 120%, the monofilament strength is 10MPa, the initial modulus is 35MPa, and a heavy object with the weight 5 thousand times of the self weight can be pulled.
Example B5
A preparation method of a polyelectrolyte complex hydrogel fiber comprises the following specific steps:
(1) preparing raw materials:
polyelectrolyte solution X: dissolving a mixture of N, N-dicarboxymethyl branched polyethyleneimine and N, N-dicarboxymethyl polyallylamine in a mass ratio of 1:1 in deionized water, adjusting the pH value to 3, and performing centrifugal defoaming to obtain a polyelectrolyte solution X with the mass fraction of 1 wt.%;
polyelectrolyte solution Y: dissolving chitosan in an acetic acid solution, adjusting the pH value of the solution to 3.5, and performing centrifugal defoaming to obtain a polyelectrolyte solution Y with the mass fraction of polyelectrolyte of 1 wt.%;
solution containing metal ion C: reacting ZnCl2Dissolving in deionized water to obtain a solution containing metal ions C with the concentration of 1.8 mg/mL;
(2) carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, compounding for 20 hours by taking a polyelectrolyte solution Y as a coagulating bath, and then washing for 10 seconds to obtain the polyelectrolyte composite fiber with a skin-core structure; wherein the skin layer is chitosan, the core layer is a mixture of N, N-dicarboxymethyl branched polyethyleneimine and N, N-dicarboxymethyl polyallylamine with the mass ratio of 1:1, and electrostatic force is formed between the skin layer and the core layer; the mass ratio of the skin layer to the core layer is 1: 8;
(3) completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment for 8 hours, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber with the water content of 88% and still maintaining the skin-core structure;
in the prepared polyelectrolyte complex hydrogel fiber, carboxylate in the mixture forming the core layer and polyvalent metal ion C form a coordination crosslinking structure, and the mixture and polyvalent metal ion C (Zn)2+) In a mass ratio of 9: 1.
The performance of the polyelectrolyte complex hydrogel fiber is tested as follows: completely soaking the polyelectrolyte composite hydrogel fiber into deionized water, and testing the mechanical properties after soaking for 2 days: the elongation at break is 115%, the monofilament strength is 15MPa, the initial modulus is 50MPa, and a weight 6 thousand times of the self weight can be pulled.
Example B6
A method for preparing a polyelectrolyte complex hydrogel fiber, which has the same steps as those of the embodiment B5, except that a solution containing metal ions C is replaced by: CeCl3Dissolving in deionized water to obtain a solution; completely soaking the prepared polyelectrolyte composite hydrogel fiber into deionized water for 2 days, and testing the mechanical properties of the polyelectrolyte composite hydrogel fiber as follows: the elongation at break is 105%, the monofilament strength is 30MPa, the initial modulus is 80MPa, and a weight 1 ten thousand times of the self weight can be lifted.
Example B7
A method for preparing a polyelectrolyte complex hydrogel fiber, which has the same steps as those of the embodiment B5, except that a solution containing metal ions C is replaced by: TbCl3Dissolving in deionized water to obtain a solution; completely soaking the prepared polyelectrolyte composite hydrogel fiber into deionized water for 2 days, and testing the mechanical properties of the polyelectrolyte composite hydrogel fiber as follows: the elongation at break is 100%, the monofilament strength is 35MPa, the initial modulus is 100MPa, and a weight 1 ten thousand times of the self weight can be pulled.
Claims (10)
1. A polyelectrolyte complex hydrogel fiber, characterized by: comprises polyelectrolyte composite fiber and polyvalent metal ion C;
the polyelectrolyte composite fiber has a skin-core structure, and electrostatic force is formed between the skin layer and the core layer; when the skin layer is the polycation electrolyte A, the core layer is the polyanion electrolyte B; when the core layer is the polycation electrolyte A, the skin layer is the polyanion electrolyte B;
carboxylate radicals in the polyanionic electrolyte B in the polyelectrolyte composite fiber and polyvalent metal ions C form a coordination crosslinking structure.
2. The polyelectrolyte complex hydrogel fiber as claimed in claim 1, wherein the mass ratio of the polyelectrolyte forming the skin layer to the polyelectrolyte forming the core layer is 1-2: 9-8; the mass ratio of the polyanionic electrolyte B to the polyvalent metal ions C is 8-12: 1-2.
3. The polyelectrolyte complex hydrogel fiber as claimed in claim 1, wherein the polycation electrolyte A is one or more of chitosan, polyallylamine and polydiallyldimethylammonium chloride; the polyanionic electrolyte B is more than one of sodium alginate, N-dicarboxymethyl polyallylamine, N-dicarboxymethyl branched polyethyleneimine and N, N-dicarboxymethyl baseline polyethyleneimine.
4. The polyelectrolyte complex hydrogel fiber as claimed in claim 1, wherein the polyvalent metal ion C is Ca2+、Fe3+、Cu2+、Zn2+、Ce3+、Eu3+Or Tb3+。
5. The polyelectrolyte complex hydrogel fiber according to claim 1, wherein the polyelectrolyte complex hydrogel fiber is completely immersed in deionized water, and the mechanical properties of the polyelectrolyte complex hydrogel fiber are tested after being immersed for 2 days as follows: the elongation at break is 80-160%, the strength of a monofilament is 10-45 MPa, the initial modulus is 12-180 MPa, and a heavy object with the weight 2 thousand-1 ten thousand times of the self weight can be pulled.
6. A method for preparing the polyelectrolyte complex hydrogel fiber as claimed in any one of claims 1 to 5, characterized in that: firstly, carrying out wet spinning by taking a polyelectrolyte solution X as a spinning solution, and compounding by a coagulating bath to obtain a polyelectrolyte composite fiber; completely immersing the polyelectrolyte composite fiber into a solution containing polyvalent metal ions C for treatment, and finally performing water absorption treatment to obtain the polyelectrolyte composite hydrogel fiber;
when the polyelectrolyte solution X is a solution with polycation electrolyte A as a solute, the solute of the polyelectrolyte solution Y as a coagulation bath is polyanion electrolyte B;
when the polyelectrolyte solution X is a solution in which the polyanionic electrolyte B is a solute, the solute of the polyelectrolyte solution Y as the coagulation bath is the polycationic electrolyte a.
7. The method according to claim 6, wherein the mass fraction of polyelectrolyte in polyelectrolyte solution X and the mass fraction of polyelectrolyte in polyelectrolyte solution Y are both 0.5 to 1.5 wt.%;
the concentration of the solution containing the metal ions C is 1-2 mg/mL.
8. The process according to claim 6, wherein the residence time of the dope in the coagulation bath after extrusion is 15min to 24 h.
9. The method according to claim 6, wherein the polyelectrolyte complex fiber is treated for 24 hours or less by being completely immersed in the solution containing the polyvalent metal ion C.
10. The method according to claim 6, wherein the polyelectrolyte composite fiber is washed with water for 10-30 s and then completely immersed in the solution containing the polyvalent metal ion C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110816229.2A CN113638078B (en) | 2021-07-20 | 2021-07-20 | A kind of polyelectrolyte composite hydrogel fiber and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110816229.2A CN113638078B (en) | 2021-07-20 | 2021-07-20 | A kind of polyelectrolyte composite hydrogel fiber and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113638078A true CN113638078A (en) | 2021-11-12 |
CN113638078B CN113638078B (en) | 2022-12-20 |
Family
ID=78417745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110816229.2A Active CN113638078B (en) | 2021-07-20 | 2021-07-20 | A kind of polyelectrolyte composite hydrogel fiber and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113638078B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114908568A (en) * | 2022-05-11 | 2022-08-16 | 东华大学 | Ligament fiber constructed by natural polymer and preparation method thereof |
CN114959926A (en) * | 2022-04-29 | 2022-08-30 | 上海华峰超纤科技股份有限公司 | Drafting process of PET (polyethylene terephthalate) nascent fiber |
CN115747996A (en) * | 2022-11-04 | 2023-03-07 | 苏州大学 | Polyelectrolyte compound-based modified acrylic fiber and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1940153A (en) * | 2006-09-21 | 2007-04-04 | 青岛大学 | Chitose graft alginate fibre, its production and use |
CN106702533A (en) * | 2015-07-27 | 2017-05-24 | 吴玉松 | High-strength alginate composite fiber, and preparation method and use thereof |
CN108998858A (en) * | 2018-08-01 | 2018-12-14 | 青岛海赛尔新材料科技有限公司 | A kind of aquogel type alginate fiber film cloth and preparation method thereof |
CN109208112A (en) * | 2018-07-19 | 2019-01-15 | 恒天纤维集团有限公司 | Fiber and preparation method thereof containing polyelectrolyte |
CN110804773A (en) * | 2019-10-22 | 2020-02-18 | 东华大学 | Anionic-cationic polyelectrolyte composite material and salt inhibition preparation process thereof |
WO2020063094A1 (en) * | 2018-09-30 | 2020-04-02 | 青岛大学 | Method for preparing space structure fiber, and fiber and application thereof |
-
2021
- 2021-07-20 CN CN202110816229.2A patent/CN113638078B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1940153A (en) * | 2006-09-21 | 2007-04-04 | 青岛大学 | Chitose graft alginate fibre, its production and use |
CN106702533A (en) * | 2015-07-27 | 2017-05-24 | 吴玉松 | High-strength alginate composite fiber, and preparation method and use thereof |
CN109208112A (en) * | 2018-07-19 | 2019-01-15 | 恒天纤维集团有限公司 | Fiber and preparation method thereof containing polyelectrolyte |
CN108998858A (en) * | 2018-08-01 | 2018-12-14 | 青岛海赛尔新材料科技有限公司 | A kind of aquogel type alginate fiber film cloth and preparation method thereof |
WO2020063094A1 (en) * | 2018-09-30 | 2020-04-02 | 青岛大学 | Method for preparing space structure fiber, and fiber and application thereof |
CN110804773A (en) * | 2019-10-22 | 2020-02-18 | 东华大学 | Anionic-cationic polyelectrolyte composite material and salt inhibition preparation process thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114959926A (en) * | 2022-04-29 | 2022-08-30 | 上海华峰超纤科技股份有限公司 | Drafting process of PET (polyethylene terephthalate) nascent fiber |
CN114959926B (en) * | 2022-04-29 | 2023-11-28 | 上海华峰超纤科技股份有限公司 | Drawing process of PET (polyethylene terephthalate) nascent fiber |
CN114908568A (en) * | 2022-05-11 | 2022-08-16 | 东华大学 | Ligament fiber constructed by natural polymer and preparation method thereof |
CN114908568B (en) * | 2022-05-11 | 2023-02-24 | 东华大学 | Ligament fiber constructed by natural polymer and preparation method thereof |
CN115747996A (en) * | 2022-11-04 | 2023-03-07 | 苏州大学 | Polyelectrolyte compound-based modified acrylic fiber and preparation method thereof |
CN115747996B (en) * | 2022-11-04 | 2024-03-05 | 苏州大学 | Modified acrylic fiber based on polyelectrolyte composite and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113638078B (en) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113638078A (en) | A kind of polyelectrolyte composite hydrogel fiber and preparation method thereof | |
Dai et al. | Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties | |
Huang et al. | Recent advances in bacterial cellulose | |
Qin | Alginate fibres: an overview of the production processes and applications in wound management | |
CN106521706B (en) | A kind of preparation method of cellulose nanometer fibril/alginate composite fiber | |
Lee et al. | Advances in chitosan material and its hybrid derivatives: a review | |
CN103993380B (en) | A kind of preparation method of Chitosan Fiber With High Tenacity | |
Cai et al. | Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness | |
CN106496639A (en) | A kind of nano-cellulose polypyrrole polyvinyl alcohol composite conducting hydrogel and its preparation method and application | |
Qi | Novel functional materials based on cellulose | |
Mirabedini et al. | Fabrication of Coaxial Wet‐Spun Graphene–Chitosan Biofibers | |
Wang et al. | Assembling nanocelluloses into fibrous materials and their emerging applications | |
CN106012103B (en) | A kind of preparation method of high intensity alginate fibre | |
Yang et al. | The synthesis, mechanisms, and additives for bio‐compatible polyvinyl alcohol hydrogels: A review on current advances, trends, and future outlook | |
CN111228213A (en) | A kind of preparation method and application of biocompatible nanocomposite hydrogel | |
Ju et al. | Seaweed polysaccharide fibers: Solution properties, processing and applications | |
Latif et al. | Carbon quantum dots (CQDs)-modified polymers: a review of non-optical applications | |
CN103469351A (en) | Preparation method of vitamin C-loaded silk fibroin/hyaluronic acid composite nanofibers | |
CN106046390A (en) | Conductive silk fibroin material and preparation method thereof | |
CN112957525B (en) | Nano-hydroxyapatite/silk fibroin/cellulose composite aerogel and preparation method thereof | |
CN109295546B (en) | A kind of bionic multi-level helical super-tough nano composite fiber and preparation method thereof | |
Pan et al. | Cellulose materials with high light transmittance and high haze: a review | |
Liu et al. | Recent advances in bio‐sourced polymeric carbohydrate/nanotube composites | |
CN104262690B (en) | Nanometer lotus fiber/alginate porous material and preparation method thereof | |
Su et al. | Polysaccharides-based ultra-thin membrane with high haze, conductivity, and recyclability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |