CN113629145B - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN113629145B CN113629145B CN202010387029.5A CN202010387029A CN113629145B CN 113629145 B CN113629145 B CN 113629145B CN 202010387029 A CN202010387029 A CN 202010387029A CN 113629145 B CN113629145 B CN 113629145B
- Authority
- CN
- China
- Prior art keywords
- layer
- isolation layer
- forming
- opening
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 123
- 239000004065 semiconductor Substances 0.000 title claims abstract description 61
- 238000002955 isolation Methods 0.000 claims abstract description 222
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 238000005530 etching Methods 0.000 claims abstract description 34
- 239000010410 layer Substances 0.000 claims description 397
- 239000000463 material Substances 0.000 claims description 53
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 23
- 229910052710 silicon Inorganic materials 0.000 claims description 23
- 239000010703 silicon Substances 0.000 claims description 23
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 21
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 21
- 239000011810 insulating material Substances 0.000 claims description 16
- 238000005468 ion implantation Methods 0.000 claims description 15
- 239000002313 adhesive film Substances 0.000 claims description 12
- 238000000231 atomic layer deposition Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000001039 wet etching Methods 0.000 claims description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 6
- 229910052582 BN Inorganic materials 0.000 claims description 5
- CFOAUMXQOCBWNJ-UHFFFAOYSA-N [B].[Si] Chemical compound [B].[Si] CFOAUMXQOCBWNJ-UHFFFAOYSA-N 0.000 claims description 5
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 5
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 239000012790 adhesive layer Substances 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- -1 silicon carbide nitride Chemical class 0.000 claims description 3
- 230000007547 defect Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 238000001312 dry etching Methods 0.000 description 6
- 229910052732 germanium Inorganic materials 0.000 description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- CZXRMHUWVGPWRM-UHFFFAOYSA-N strontium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Sr+2].[Ba+2] CZXRMHUWVGPWRM-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/834—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET] comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
- H10D30/0241—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET] doping of vertical sidewalls, e.g. using tilted or multi-angled implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0158—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及半导体制造技术领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the field of semiconductor manufacturing technology, and in particular to a semiconductor structure and a forming method thereof.
背景技术Background Art
随着集成电路的制作向超大规模集成电路的发展,其内部电路的密度越来越大,元件数量不断增加,器件尺寸不断缩小。As the production of integrated circuits develops towards very large-scale integrated circuits, the density of their internal circuits is getting higher and higher, the number of components is increasing, and the size of devices is shrinking.
半导体集成电路的制作过程极其复杂,需要在一小面积的硅片上制作出特定电路所需要的各种电子组件,并且还需要在各个组件间制作适当的内连导线形成电性连接,才能发挥其所期望实现的功能。晶体管作为最基本的半导体器件目前正被广泛应用,所述晶体管包括:衬底;位于衬底上的栅极结构;位于栅极结构两侧的源漏掺杂区。为了实现晶体管与衬底上的其他半导体器件形成电连接,还需要制作大量的导电结构,例如,位于源漏掺杂区表面的导电插塞或电互连线,这些导电结构性能的好坏对电路的整体性能有着重要的影响。The manufacturing process of semiconductor integrated circuits is extremely complicated. It is necessary to manufacture various electronic components required for a specific circuit on a small area of silicon wafer, and it is also necessary to make appropriate internal wires between the components to form electrical connections in order to achieve the desired functions. Transistors, as the most basic semiconductor devices, are currently being widely used. The transistors include: a substrate; a gate structure located on the substrate; and source and drain doping regions located on both sides of the gate structure. In order to achieve electrical connection between the transistor and other semiconductor devices on the substrate, a large number of conductive structures need to be manufactured, such as conductive plugs or electrical interconnects located on the surface of the source and drain doping regions. The performance of these conductive structures has an important impact on the overall performance of the circuit.
然而,现有技术形成的半导体结构的性能有待提升。However, the performance of the semiconductor structure formed by the prior art needs to be improved.
发明内容Summary of the invention
本发明解决的技术问题是提供一种半导体结构及其形成方法,以提高形成的半导体结构的性能。The technical problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, so as to improve the performance of the formed semiconductor structure.
为解决上述技术问题,本发明技术方案提供一种半导体结构,包括:基底,所述基底上具有栅极结构,且所述栅极结构两侧的基底内分别具有源漏掺杂区;位于所述基底上覆盖所述栅极结构表面和源漏掺杂区表面的介质层,且所述介质层内具有暴露出源漏掺杂区顶部表面的开口;位于所述开口侧壁表面的第一隔离层;位于所述第一隔离层上和源漏掺杂区表面的导电结构,且所述导电结构填充满所述开口。In order to solve the above technical problems, the technical solution of the present invention provides a semiconductor structure, including: a substrate, a gate structure is provided on the substrate, and source and drain doping regions are respectively provided in the substrate on both sides of the gate structure; a dielectric layer located on the substrate and covering the surface of the gate structure and the surface of the source and drain doping regions, and the dielectric layer has an opening exposing the top surface of the source and drain doping regions; a first isolation layer located on the side wall surface of the opening; and a conductive structure located on the first isolation layer and on the surface of the source and drain doping regions, and the conductive structure fills the opening.
可选的,所述第一隔离层沿垂直于开口侧壁表面方向上的尺寸范围为3纳米至6纳米。Optionally, a dimension of the first isolation layer in a direction perpendicular to the surface of the side wall of the opening ranges from 3 nanometers to 6 nanometers.
可选的,所述第一隔离层的材料为绝缘材料,所述绝缘材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。Optionally, a material of the first isolation layer is an insulating material, and the insulating material includes: silicon oxide, silicon nitride, silicon carbide, silicon boron nitride, silicon carbon nitride or silicon oxynitride.
可选的,所述开口沿垂直于开口侧壁表面方向上的尺寸范围为10纳米至30纳米。Optionally, a dimension of the opening in a direction perpendicular to a surface of a side wall of the opening ranges from 10 nanometers to 30 nanometers.
可选的,还包括:位于所述第一隔离层表面的第二隔离层,且所述第二隔离层位于所述导电结构和第一隔离层之间。Optionally, it further includes: a second isolation layer located on the surface of the first isolation layer, and the second isolation layer is located between the conductive structure and the first isolation layer.
可选的,所述第二隔离层沿垂直于开口侧壁表面方向上的尺寸范围为3纳米至6纳米。Optionally, a dimension of the second isolation layer in a direction perpendicular to the surface of the sidewall of the opening ranges from 3 nanometers to 6 nanometers.
可选的,所述第二隔离层的材料为绝缘材料,所述绝缘材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。Optionally, a material of the second isolation layer is an insulating material, and the insulating material includes: silicon oxide, silicon nitride, silicon carbide, silicon boron nitride, silicon carbon nitride or silicon oxynitride.
可选的,所述导电结构包括:位于所述源漏掺杂区表面和第一隔离层上的粘附层、位于所述粘附层表面的导电层,且所述导电层填充满所述开口。Optionally, the conductive structure includes: an adhesion layer located on the surface of the source/drain doped region and the first isolation layer, and a conductive layer located on the surface of the adhesion layer, and the conductive layer completely fills the opening.
可选的,所述基底包括衬底和位于所述衬底表面的鳍部,所述栅极结构横跨所述鳍部,且所述栅极结构位于部分所述鳍部的顶部表面和侧壁表面,所述源漏掺杂区位于所述栅极结构两侧的鳍部内。Optionally, the base includes a substrate and a fin located on the surface of the substrate, the gate structure spans the fin, and the gate structure is located on a portion of the top surface and sidewall surface of the fin, and the source and drain doping regions are located in the fins on both sides of the gate structure.
可选的,所述介质层的顶部表面高于栅极结构的顶部表面。Optionally, a top surface of the dielectric layer is higher than a top surface of the gate structure.
可选的,所述栅极结构包括:位于基底表面的栅介质层、位于栅介质层表面的栅极层、以及位于所述栅介质层顶部表面和栅极层顶部表面的阻挡层。Optionally, the gate structure includes: a gate dielectric layer located on the surface of the substrate, a gate layer located on the surface of the gate dielectric layer, and a barrier layer located on the top surfaces of the gate dielectric layer and the gate layer.
可选的,所述相邻栅极结构之间的距离范围为10纳米至55纳米。Optionally, the distance between adjacent gate structures ranges from 10 nanometers to 55 nanometers.
相应的,本发明技术方案还提供一种半导体结构的形成方法,包括:提供基底,所述基底上具有栅极结构,且所述栅极结构两侧的基底内分别具有源漏掺杂区;在所述基底上形成介质层,且所述介质层覆盖所述栅极结构和源漏掺杂区表面;在所述介质层内形成暴露出源漏掺杂区顶部表面的开口;在所述开口侧壁表面形成第一隔离层;在所述第一隔离层上和源漏掺杂区表面形成导电结构,且所述导电结构填充满所述开口。Correspondingly, the technical solution of the present invention also provides a method for forming a semiconductor structure, including: providing a substrate, having a gate structure on the substrate, and having source and drain doping regions in the substrate on both sides of the gate structure respectively; forming a dielectric layer on the substrate, and the dielectric layer covers the gate structure and the surface of the source and drain doping regions; forming an opening in the dielectric layer to expose the top surface of the source and drain doping regions; forming a first isolation layer on the side wall surface of the opening; forming a conductive structure on the first isolation layer and the surface of the source and drain doping regions, and the conductive structure fills the opening.
可选的,所述开口的形成方法包括:在所述介质层表面形成第一图形化层,所述第一图形化层暴露出部分所述介质层表面;以所述第一图形化层为掩膜,刻蚀所述介质层,直至暴露出所述源漏掺杂区顶部表面,形成所述开口。Optionally, the method for forming the opening includes: forming a first patterned layer on the surface of the dielectric layer, the first patterned layer exposing a portion of the surface of the dielectric layer; using the first patterned layer as a mask, etching the dielectric layer until the top surface of the source and drain doped region is exposed to form the opening.
可选的,所述第一隔离层的形成方法包括:在所述开口底部表面和侧壁表面、以及第一图形化层表面形成初始第一隔离层;回刻蚀所述初始第一隔离层,直至暴露出源漏掺杂区顶部表面和第一图形化层表面,形成所述第一隔离层。Optionally, the method for forming the first isolation layer includes: forming an initial first isolation layer on the bottom surface and side wall surfaces of the opening, and the surface of the first patterned layer; and etching back the initial first isolation layer until the top surface of the source and drain doped regions and the surface of the first patterned layer are exposed to form the first isolation layer.
可选的,所述初始第一隔离层的形成工艺包括:原子层沉积工艺;所述初始第一隔离层沿垂直于开口侧壁表面方向上的尺寸范围为4纳米至7纳米。Optionally, the formation process of the initial first isolation layer includes: an atomic layer deposition process; the size of the initial first isolation layer in a direction perpendicular to the surface of the opening sidewall is in a range of 4 nanometers to 7 nanometers.
可选的,还包括:形成所述第一隔离层之后,形成导电结构之前,去除所述第一图形化层。Optionally, the method further includes: after forming the first isolation layer and before forming the conductive structure, removing the first patterned layer.
可选的,所述第一图形化层的材料和介质层的材料不同;所述第一图形化层的材料包括:氮化钛、氮化硅或者氮氧化硅中的一种或几种组合。Optionally, the material of the first patterned layer is different from the material of the dielectric layer; the material of the first patterned layer includes: titanium nitride, silicon nitride or silicon oxynitride, or a combination of several of them.
可选的,去除所述第一图形化层的工艺包括:湿法刻蚀工艺。Optionally, the process of removing the first patterned layer includes: a wet etching process.
可选的,还包括:形成所述第一隔离层之后,形成所述导电结构之前,对所述源漏掺杂区进行离子注入工艺。Optionally, the method further includes: after forming the first isolation layer and before forming the conductive structure, performing an ion implantation process on the source and drain doping regions.
可选的,所述离子注入工艺的方法包括:在所述介质层表面形成第二图形化层,所述第二图形化层暴露出开口;以所述第二图形化层为掩膜,对所述开口底部的源漏掺杂区进行离子注入;所述离子注入之后,去除所述第二图形化层。Optionally, the ion implantation process includes: forming a second patterned layer on the surface of the dielectric layer, wherein the second patterned layer exposes an opening; using the second patterned layer as a mask, implanting ions into the source and drain doping regions at the bottom of the opening; and removing the second patterned layer after the ion implantation.
可选的,还包括:所述离子注入工艺之后,形成所述导电结构之前,在所述第一隔离层表面形成第二隔离层。Optionally, the method further includes: after the ion implantation process and before forming the conductive structure, forming a second isolation layer on the surface of the first isolation layer.
可选的,所述第二隔离层的形成方法包括:在所述开口底部表面、第一隔离层表面、以及介质层表面形成初始第二隔离层;回刻蚀所述初始第二隔离层,直至暴露出源漏掺杂区顶部表面和介质层表面,形成所述第二隔离层。Optionally, the method for forming the second isolation layer includes: forming an initial second isolation layer on the bottom surface of the opening, the surface of the first isolation layer, and the surface of the dielectric layer; etching back the initial second isolation layer until the top surface of the source and drain doped regions and the surface of the dielectric layer are exposed to form the second isolation layer.
可选的,所述初始第二隔离层的形成工艺包括:原子层沉积工艺;所述初始第二隔离层沿垂直于开口侧壁表面方向上的尺寸范围为4纳米至7纳米。Optionally, the formation process of the initial second isolation layer includes: an atomic layer deposition process; the size of the initial second isolation layer in a direction perpendicular to the surface of the opening sidewall is in a range of 4 nanometers to 7 nanometers.
可选的,所述导电结构的形成方法包括:在所述源漏掺杂区表面和第一隔离层上、以及介质层表面形成粘附膜;在所述粘附膜表面形成导电膜,且所述导电膜填充满所述开口;平坦化所述粘附膜和导电膜,直至暴露出介质层表面,使粘附膜形成粘附层,使所述导电膜形成导电层,在所述开口内形成导电结构。Optionally, the method for forming the conductive structure includes: forming an adhesive film on the surface of the source/drain doped region and the first isolation layer, and on the surface of the dielectric layer; forming a conductive film on the surface of the adhesive film, and the conductive film fills the opening; flattening the adhesive film and the conductive film until the surface of the dielectric layer is exposed, so that the adhesive film forms an adhesive layer, and the conductive film forms a conductive layer, and a conductive structure is formed in the opening.
与现有技术相比,本发明的技术方案具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
本发明技术方案提供的半导体结构中,所述开口侧壁表面具有第一隔离层;所述导电结构位于所述第一隔离层上。由于所述第一隔离层具有一定的厚度,且所述第一隔离层具有隔离作用,所述第一隔离层占据了开口内一定的空间,使得相邻栅极结构之间的距离较小的情况下,能够形成宽度足够大的开口,从而降低形成所述开口的刻蚀工艺的难度,同时,所述第一隔离层能够有效防止导电结构和栅极结构之间发生短接,有效减少漏电流的产生,使得形成的半导体结构的性能较好。In the semiconductor structure provided by the technical solution of the present invention, the surface of the side wall of the opening has a first isolation layer; the conductive structure is located on the first isolation layer. Since the first isolation layer has a certain thickness and has an isolation function, the first isolation layer occupies a certain space in the opening, so that when the distance between adjacent gate structures is small, an opening with a sufficiently large width can be formed, thereby reducing the difficulty of the etching process for forming the opening. At the same time, the first isolation layer can effectively prevent the short circuit between the conductive structure and the gate structure, effectively reduce the generation of leakage current, and make the performance of the formed semiconductor structure better.
进一步,所述第一隔离层表面形成第二隔离层,所述第二隔离层位于所述第一隔离层和导电结构之间。一方面,所述第二隔离层具有一定的厚度,所述第二隔离层占据开口内一定的空间,能够弥补所述第一隔离层形成之后,受到工艺的影响产生的材料损耗,从而保证第一隔离层和第二隔离层共同具有一定的厚度,使得相邻栅极结构之间的距离较小的情况下,能够形成宽度足够大的开口,从而有效降低形成所述开口的刻蚀工艺的难度。另一方面,所述第二隔离层材料的质量和表面缺陷较少,有利于提高后续形成的导电结构的形貌和性能。综上,所述第二隔离层有利于提高形成的半导体结构的性能。Furthermore, a second isolation layer is formed on the surface of the first isolation layer, and the second isolation layer is located between the first isolation layer and the conductive structure. On the one hand, the second isolation layer has a certain thickness, and the second isolation layer occupies a certain space in the opening, which can make up for the material loss caused by the process after the first isolation layer is formed, thereby ensuring that the first isolation layer and the second isolation layer have a certain thickness together, so that when the distance between adjacent gate structures is small, an opening with a large enough width can be formed, thereby effectively reducing the difficulty of the etching process for forming the opening. On the other hand, the quality and surface defects of the second isolation layer material are relatively small, which is conducive to improving the morphology and performance of the conductive structure formed subsequently. In summary, the second isolation layer is conducive to improving the performance of the formed semiconductor structure.
本发明技术方案提供的半导体结构的形成方法中,在所述开口侧壁表面形成第一隔离层之后,在所述开口内形成导电结构。由于所述第一隔离层具有一定的厚度,且所述第一隔离层具有隔离作用,所述第一隔离层占据了开口内一定的空间,使得相邻栅极结构之间的距离较小的情况下,能够形成宽度足够大的开口,从而降低形成所述开口的刻蚀工艺的难度,同时,所述第一隔离层能够有效防止导电结构和栅极结构之间发生短接,有效减少漏电流的产生,使得形成的半导体结构的性能较好。In the method for forming a semiconductor structure provided by the technical solution of the present invention, after forming a first isolation layer on the surface of the side wall of the opening, a conductive structure is formed in the opening. Since the first isolation layer has a certain thickness and has an isolation function, the first isolation layer occupies a certain space in the opening, so that when the distance between adjacent gate structures is small, an opening with a sufficiently large width can be formed, thereby reducing the difficulty of the etching process for forming the opening. At the same time, the first isolation layer can effectively prevent short circuits between the conductive structure and the gate structure, effectively reduce the generation of leakage current, and make the performance of the formed semiconductor structure better.
进一步,所述半导体结构的形成方法还包括:在所述离子注入工艺之后,形成所述导电结构之前,在所述第一隔离层表面形成第二隔离层。一方面,所述第二隔离层具有一定的厚度,所述第二隔离层占据开口内一定的空间,能够弥补所述第一隔离层形成之后,受到工艺的影响产生的材料损耗,从而保证第一隔离层和第二隔离层共同具有一定的厚度,使得相邻栅极结构之间的距离较小的情况下,能够形成宽度足够大的开口,从而有效降低形成所述开口的刻蚀工艺的难度。另一方面,所述第二隔离层材料的质量和表面缺陷较少,有利于提高后续形成的导电结构的形貌和性能。综上,所述第二隔离层有利于提高形成的半导体结构的性能。Furthermore, the method for forming the semiconductor structure also includes: after the ion implantation process and before the conductive structure is formed, forming a second isolation layer on the surface of the first isolation layer. On the one hand, the second isolation layer has a certain thickness, and the second isolation layer occupies a certain space in the opening, which can make up for the material loss caused by the process after the first isolation layer is formed, thereby ensuring that the first isolation layer and the second isolation layer have a certain thickness together, so that when the distance between adjacent gate structures is small, an opening with a sufficiently large width can be formed, thereby effectively reducing the difficulty of the etching process for forming the opening. On the other hand, the quality and surface defects of the second isolation layer material are relatively small, which is conducive to improving the morphology and performance of the conductive structure formed subsequently. In summary, the second isolation layer is conducive to improving the performance of the formed semiconductor structure.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1至图4是一种半导体结构的形成方法各步骤的结构示意图;1 to 4 are schematic structural diagrams of various steps of a method for forming a semiconductor structure;
图5至图15是本发明一实施例中的半导体结构的形成方法各步骤的结构示意图。5 to 15 are schematic structural diagrams of various steps of a method for forming a semiconductor structure in an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
首先,对现有半导体结构的性能较差的原因结合附图进行详细说明,图1至图4是一种现有半导体结构的形成方法各步骤的结构示意图。First, the reasons why the performance of the existing semiconductor structure is poor are described in detail with reference to the accompanying drawings. FIG. 1 to FIG. 4 are schematic structural diagrams of various steps of a method for forming an existing semiconductor structure.
请参考图1,提供基底100,所述基底100上具有栅极结构110,且所述栅极结构110两侧的基底100内分别具有源漏掺杂区120。Referring to FIG. 1 , a substrate 100 is provided. A gate structure 110 is formed on the substrate 100 , and source and drain doped regions 120 are respectively formed in the substrate 100 on both sides of the gate structure 110 .
请参考图2,在所述基底100上形成介质层130,且所述介质层130覆盖所述栅极结构110和源漏掺杂区120表面。Referring to FIG. 2 , a dielectric layer 130 is formed on the substrate 100 , and the dielectric layer 130 covers the surface of the gate structure 110 and the source-drain doped region 120 .
请参考图3,在所述介质层130内形成暴露出源漏掺杂区120顶部表面的开口140。Referring to FIG. 3 , an opening 140 is formed in the dielectric layer 130 to expose the top surface of the source/drain doped region 120 .
请参考图4,在所述开口140内形成导电结构150。Referring to FIG. 4 , a conductive structure 150 is formed in the opening 140 .
上述方法中,所述开口140的形成方法包括:在所述介质层130表面形成图形化层,所述图形化层暴露出部分介质层130表面;以所述图形化层为掩膜,刻蚀所述介质层130,直至暴露出源漏掺杂区120表面。In the above method, the method for forming the opening 140 includes: forming a patterned layer on the surface of the dielectric layer 130, wherein the patterned layer exposes a portion of the surface of the dielectric layer 130; using the patterned layer as a mask, etching the dielectric layer 130 until the surface of the source and drain doped region 120 is exposed.
然而,随着半导体技术的发展,对半导体集成度越来越高,相邻器件之间的距离越来越小,在刻蚀所述介质层130形成开口140的过程中,容易导致对栅极结构110的材料造成刻蚀损伤,进而引起后续在开口140内形成的导电结构150和栅极结构110之间发生短接,从而产生漏电流。However, with the development of semiconductor technology, the integration of semiconductors is getting higher and higher, and the distance between adjacent devices is getting smaller and smaller. In the process of etching the dielectric layer 130 to form the opening 140, it is easy to cause etching damage to the material of the gate structure 110, thereby causing a short circuit between the conductive structure 150 subsequently formed in the opening 140 and the gate structure 110, thereby generating leakage current.
为了解决上述问题,通过减小开口140的尺寸,能够增大开口140和栅极结构110之间的距离,从而减少后续在开口140内形成的导电结构150和栅极结构110之间发生短接的可能。然而,形成尺寸进一步减小的开口140,超过了现有的光刻工艺的极限,增大了形成开口140的刻蚀难度,使得形成的开口140的形貌较差,甚至无法形成暴露出源漏掺杂区120顶部表面的开口140,导致形成的半导体结构的性能较差。In order to solve the above problem, by reducing the size of the opening 140, the distance between the opening 140 and the gate structure 110 can be increased, thereby reducing the possibility of short circuit between the conductive structure 150 and the gate structure 110 formed in the opening 140. However, forming the opening 140 with a further reduced size exceeds the limit of the existing photolithography process, increases the difficulty of etching to form the opening 140, and makes the morphology of the formed opening 140 poor, and even fails to form the opening 140 that exposes the top surface of the source-drain doped region 120, resulting in poor performance of the formed semiconductor structure.
为解决上述技术问题,本发明实施例提供一种半导体结构的形成方法,通过在所述开口侧壁表面形成第一隔离层之后,在所述第一隔离层上和源漏掺杂区表面形成导电结构,且所述导电结构填充满所述开口。由于所述第一隔离层具有一定的厚度,且所述第一隔离层具有隔离作用,能够降低形成所述开口的刻蚀工艺的难度的同时,有效减少漏电流的产生。In order to solve the above technical problems, an embodiment of the present invention provides a method for forming a semiconductor structure, wherein after forming a first isolation layer on the surface of the sidewall of the opening, a conductive structure is formed on the first isolation layer and on the surface of the source and drain doping regions, and the conductive structure fills the opening. Since the first isolation layer has a certain thickness and the first isolation layer has an isolation function, the difficulty of the etching process for forming the opening can be reduced while effectively reducing the generation of leakage current.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above-mentioned objects, features and beneficial effects of the present invention more obvious and easy to understand, specific embodiments of the present invention are described in detail below with reference to the accompanying drawings.
需要说明的是,本说明书中的“表面”,用于描述空间的相对位置关系,并不限定于是否直接接触。It should be noted that the “surface” in this specification is used to describe the relative position relationship in space and is not limited to whether there is direct contact.
图5至图15是本发明一实施例中的半导体结构的形成方法各步骤的结构示意图。5 to 15 are schematic structural diagrams of various steps of a method for forming a semiconductor structure in an embodiment of the present invention.
请参考图5,提供基底200,所述基底200上具有栅极结构210,且所述栅极结构210两侧的基底200内分别具有源漏掺杂区220。Referring to FIG. 5 , a substrate 200 is provided. A gate structure 210 is formed on the substrate 200 , and source and drain doped regions 220 are respectively formed in the substrate 200 on both sides of the gate structure 210 .
在本实施例中,所述基底200包括衬底和位于所述衬底表面的鳍部,所述栅极结构210横跨所述鳍部,且所述栅极结构210位于部分所述鳍部的顶部表面和侧壁表面,所述源漏掺杂区220位于所述栅极结构210两侧的鳍部内。In this embodiment, the base 200 includes a substrate and a fin located on the surface of the substrate, the gate structure 210 spans the fin, and the gate structure 210 is located on the top surface and sidewall surface of a portion of the fin, and the source and drain doped regions 220 are located in the fins on both sides of the gate structure 210.
在其他实施例中,所述衬底上不具有鳍部。In other embodiments, the substrate has no fins thereon.
在本实施例中,所述基底200的形成方法包括:提供初始衬底(未示出);所述初始衬底上具有掩膜层,所述掩膜层暴露出部分初始衬底的表面;以所述掩膜层为掩膜,刻蚀所述初始衬底,形成衬底和位于所述衬底表面的鳍部。In this embodiment, the method for forming the base 200 includes: providing an initial substrate (not shown); the initial substrate has a mask layer, and the mask layer exposes a portion of the surface of the initial substrate; using the mask layer as a mask, etching the initial substrate to form a substrate and a fin located on the surface of the substrate.
在本实施例中,所述初始衬底的材料为硅。相应的,所述衬底和鳍部的材料为硅。In this embodiment, the material of the initial substrate is silicon. Accordingly, the material of the substrate and the fin is silicon.
在其他实施例中,所述初始衬底的材料包括:锗、锗硅、绝缘体上硅或绝缘体上锗。相应的,衬底的材料包括:锗、锗硅、绝缘体上硅或绝缘体上锗。鳍部的材料包括:锗、锗硅、绝缘体上硅或绝缘体上锗。In other embodiments, the material of the initial substrate includes: germanium, silicon germanium, silicon on insulator or germanium on insulator. Correspondingly, the material of the substrate includes: germanium, silicon germanium, silicon on insulator or germanium on insulator. The material of the fin includes: germanium, silicon germanium, silicon on insulator or germanium on insulator.
所述相邻栅极结构210之间的距离范围为10纳米至55纳米。The distance between adjacent gate structures 210 ranges from 10 nanometers to 55 nanometers.
所述栅极结构210和源漏掺杂区220的形成方法包括:在所述基底200上形成伪栅结构(图中未示出);在所述伪栅结构两侧的基底200内形成源漏掺杂区220;在所述基底200上形成第一层介质层(图中未示出),所述第一层介质层位于所述伪栅结构表面和源漏掺杂区220表面;去除所述伪栅结构,在所述第一层介质层内形成伪栅开口;在所述伪栅开口内形成栅极结构210。The method for forming the gate structure 210 and the source-drain doped region 220 includes: forming a dummy gate structure (not shown in the figure) on the substrate 200; forming source-drain doped regions 220 in the substrate 200 on both sides of the dummy gate structure; forming a first dielectric layer (not shown in the figure) on the substrate 200, the first dielectric layer being located on the surface of the dummy gate structure and the surface of the source-drain doped region 220; removing the dummy gate structure, forming a dummy gate opening in the first dielectric layer; and forming a gate structure 210 in the dummy gate opening.
在本实施例中,所述栅极结构210包括:位于所述基底200表面的栅介质层(图中未标示);位所述栅介质层表面的栅极层(图中未标示)、以及位于所述栅介质层顶部表面和栅极层顶部表面的阻挡层(图中未标示)。In this embodiment, the gate structure 210 includes: a gate dielectric layer (not shown in the figure) located on the surface of the substrate 200; a gate layer (not shown in the figure) located on the surface of the gate dielectric layer, and a blocking layer (not shown in the figure) located on the top surface of the gate dielectric layer and the top surface of the gate layer.
在本实施例中,所述栅介质层位于所述伪栅开口的侧壁和底部表面。In this embodiment, the gate dielectric layer is located on the sidewalls and bottom surfaces of the dummy gate opening.
在本实施例中,所述栅极结构210还包括:位于所述阻挡层和栅介质层侧壁表面的侧墙(图中未标示)。In this embodiment, the gate structure 210 further includes: sidewalls (not shown in the figure) located on the sidewall surfaces of the barrier layer and the gate dielectric layer.
所述栅介质层的材料为高K(K大于3.9)介质材料,包括:氧化铪、氧化锆、氧化铪硅、氧化镧、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛或氧化铝。在本实施例中,所述栅介质层的材料为氧化铪。The material of the gate dielectric layer is a high-K (K greater than 3.9) dielectric material, including: hafnium oxide, zirconium oxide, hafnium silicon oxide, lanthanum oxide, zirconium silicon oxide, titanium oxide, tantalum oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide or aluminum oxide. In this embodiment, the material of the gate dielectric layer is hafnium oxide.
所述栅极层的材料包括:铜、钨、铝、钛、镍、氮化钛和氮化钽中的一种或多种组合。在本实施例中,所述栅极层的材料为钨。The material of the gate layer includes: one or more combinations of copper, tungsten, aluminum, titanium, nickel, titanium nitride and tantalum nitride. In this embodiment, the material of the gate layer is tungsten.
所述阻挡层用于保护栅极层和栅介质层的表面,减少受到后续工艺的影响,有利于栅极结构210的形貌和性能。The barrier layer is used to protect the surfaces of the gate layer and the gate dielectric layer, reduce the impact of subsequent processes, and is beneficial to the morphology and performance of the gate structure 210 .
所述阻挡层的材料包括:氮化硅、氮氧化硅或者二氧化钛。The material of the barrier layer includes silicon nitride, silicon oxynitride or titanium dioxide.
需要说明的是,在本实施例中,所述第一层介质层顶部表面齐平于栅极结构210的顶部表面,为后续介质层的一部分。It should be noted that, in this embodiment, the top surface of the first dielectric layer is flush with the top surface of the gate structure 210 and is a part of the subsequent dielectric layer.
请参考图6,在所述基底200上形成介质层230,且所述介质层230覆盖所述栅极结构210和源漏掺杂区220表面。Referring to FIG. 6 , a dielectric layer 230 is formed on the substrate 200 , and the dielectric layer 230 covers the surface of the gate structure 210 and the source-drain doped region 220 .
所述介质层230的作用在于,一方面,为后续形成导电结构提供支撑,另一方面,用于电隔离不同器件。The dielectric layer 230 has the following functions: on the one hand, it provides support for the subsequent formation of a conductive structure; on the other hand, it is used to electrically isolate different devices.
所述介质层230的材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the dielectric layer 230 includes silicon oxide, silicon nitride, silicon carbide nitride, silicon boron nitride, silicon carbon nitride oxide or silicon nitride oxide.
在本实施例中,所述介质层230的材料为氧化硅。In this embodiment, the material of the dielectric layer 230 is silicon oxide.
在本实施例中,所述介质层230包括:第一层介质层(图中未标示)和位于第一层介质层表面的第二层介质层(图中未标示),所述第一层介质层顶部表面齐平于栅极结构210顶部表面,所述第二层介质层顶部表面高于所述栅极结构210顶部表面。In this embodiment, the dielectric layer 230 includes: a first dielectric layer (not shown in the figure) and a second dielectric layer (not shown in the figure) located on the surface of the first dielectric layer, the top surface of the first dielectric layer is flush with the top surface of the gate structure 210, and the top surface of the second dielectric layer is higher than the top surface of the gate structure 210.
具体的,在本实施例中,在基底200上的第一层介质层表面形成第二层介质层,从而在所述基底200上形成介质层230。Specifically, in this embodiment, a second dielectric layer is formed on the surface of the first dielectric layer on the substrate 200 , thereby forming a dielectric layer 230 on the substrate 200 .
所述介质层230的顶部表面高于栅极结构210的顶部表面。The top surface of the dielectric layer 230 is higher than the top surface of the gate structure 210 .
接着,在所述介质层230内形成暴露出源漏掺杂区220顶部表面的开口,具体形成所述开口的过程请参考图7至图8。Next, an opening is formed in the dielectric layer 230 to expose the top surface of the source-drain doped region 220 . Please refer to FIG. 7 to FIG. 8 for the specific process of forming the opening.
请参考图7,在所述介质层230表面形成第一图形化层240,所述第一图形化层240暴露出部分所述介质层230表面。Referring to FIG. 7 , a first patterned layer 240 is formed on the surface of the dielectric layer 230 , and the first patterned layer 240 exposes a portion of the surface of the dielectric layer 230 .
所述第一图形化层240用于作为后续形成开口的掩膜。The first patterned layer 240 is used as a mask for subsequently forming openings.
所述第一图形化层240的材料和介质层230的材料不同;所述第一图形化层的材料包括:氮化钛、氮化硅或者氮氧化硅中的一种或几种组合。在本实施例中,所述第一图形化层240的材料为氮化钛。The material of the first patterned layer 240 is different from that of the dielectric layer 230. The material of the first patterned layer includes: titanium nitride, silicon nitride or silicon oxynitride or a combination thereof. In this embodiment, the material of the first patterned layer 240 is titanium nitride.
所述第一图形化层240的形成方法包括:在所述介质层230表面形成初始第一图形化层(图中未示出);在所述初始第一图形化层表面形成掩膜层(图中未示出);以所述掩膜层为掩膜,刻蚀所述初始第一图形化层,形成第一图形化层240,所述第一图形化层240内具有图案。The method for forming the first patterned layer 240 includes: forming an initial first patterned layer (not shown in the figure) on the surface of the dielectric layer 230; forming a mask layer (not shown in the figure) on the surface of the initial first patterned layer; using the mask layer as a mask, etching the initial first patterned layer to form the first patterned layer 240, wherein the first patterned layer 240 has a pattern.
在本实施例中,所述掩膜层的材料为光刻胶。In this embodiment, the material of the mask layer is photoresist.
请参考图8,以所述第一图形化层240为掩膜,刻蚀所述介质层230,直至暴露出所述源漏掺杂区220顶部表面,形成所述开口250。Referring to FIG. 8 , the dielectric layer 230 is etched using the first patterned layer 240 as a mask until the top surface of the source/drain doped region 220 is exposed, thereby forming the opening 250 .
所述开口250为后续形成导电结构提供空间。The opening 250 provides space for subsequently forming a conductive structure.
所述开口250沿垂直于开口250侧壁表面方向上的尺寸范围为10纳米至30纳米。The size of the opening 250 along a direction perpendicular to the sidewall surface of the opening 250 ranges from 10 nanometers to 30 nanometers.
刻蚀所述介质层230的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of etching the dielectric layer 230 includes: a dry etching process and a wet etching process, or a combination of the two.
在本实施例中,刻蚀所述介质层230的工艺为干法刻蚀工艺。In this embodiment, the process of etching the dielectric layer 230 is a dry etching process.
接着,形成所述开口250之后,在所述开口250侧壁表面形成第一隔离层,具体形成所述第一隔离层的过程请参考图9至图10。Next, after the opening 250 is formed, a first isolation layer is formed on the sidewall surface of the opening 250 . For the specific process of forming the first isolation layer, please refer to FIG. 9 to FIG. 10 .
请参考图9,在所述开口250底部表面和侧壁表面、以及第一图形化层240表面形成初始第一隔离层251。Referring to FIG. 9 , an initial first isolation layer 251 is formed on the bottom surface and sidewall surface of the opening 250 , and on the surface of the first patterned layer 240 .
所述初始第一隔离层251用于为后续形成第一隔离层提供材料。The initial first isolation layer 251 is used to provide material for subsequently forming a first isolation layer.
所述初始第一隔离层251的材料为绝缘材料,所述绝缘材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the initial first isolation layer 251 is an insulating material, and the insulating material includes silicon oxide, silicon nitride, silicon carbonitride, silicon boronitride, silicon carbonitride or silicon oxynitride.
在本实施例中,所述初始第一隔离层251的材料为氮化硅。In this embodiment, the material of the initial first isolation layer 251 is silicon nitride.
所述初始第一隔离层251的形成工艺包括:原子层沉积工艺、化学气相沉积工艺或者物理气相沉积工艺。The formation process of the initial first isolation layer 251 includes: atomic layer deposition process, chemical vapor deposition process or physical vapor deposition process.
在本实施例中,所述初始第一隔离层251的形成工艺为原子层沉积工艺。In this embodiment, the initial first isolation layer 251 is formed by an atomic layer deposition process.
所述原子层沉积工艺形成的初始第一隔离层251的致密性较高,有利于提高后续形成的第一隔离层的隔离效果和阻挡作用,同时所述初始第一隔离层251的填充性较好,利于填充开口250侧壁存在的表面缺陷,避免后续形成的导电结构和栅极结构210之间发生短接。The initial first isolation layer 251 formed by the atomic layer deposition process has high density, which is beneficial to improving the isolation effect and blocking effect of the subsequently formed first isolation layer. At the same time, the initial first isolation layer 251 has good filling properties, which is beneficial to filling the surface defects on the side walls of the opening 250 and avoiding short circuits between the subsequently formed conductive structure and the gate structure 210.
所述初始第一隔离层251沿垂直于开口侧壁表面方向上的尺寸范围为4纳米至7纳米。The size of the initial first isolation layer 251 along the direction perpendicular to the sidewall surface of the opening ranges from 4 nanometers to 7 nanometers.
选择所述尺寸范围的原因在于,若所述尺寸大于7纳米,所述初始第一隔离层251的厚度过大,从而由初始第一隔离层251形成的第一隔离层的厚度过大,从而占据开口250的空间过大,使后续填充于开口250内的导电结构的尺寸过小,使得接触电阻过大,不利于形成的半导体结构的性能;若所述尺寸小于4纳米,所述初始第一隔离层251的过薄,从而由初始第一隔离层251形成的第一隔离层的厚度过薄,在后续的工艺中不能充分起到隔离和阻挡作用,从而后续在开口250内形成的导电结构和栅极结构210发生短接,到导致形成的半导体结构的性能仍较差。The reason for selecting the size range is that, if the size is greater than 7 nanometers, the thickness of the initial first isolation layer 251 is too large, and thus the thickness of the first isolation layer formed by the initial first isolation layer 251 is too large, thereby occupying too much space in the opening 250, making the size of the subsequent conductive structure filled in the opening 250 too small, resulting in excessive contact resistance, which is not conducive to the performance of the formed semiconductor structure; if the size is less than 4 nanometers, the initial first isolation layer 251 is too thin, and thus the thickness of the first isolation layer formed by the initial first isolation layer 251 is too thin, and cannot fully play an isolation and blocking role in the subsequent process, thereby causing a short circuit between the conductive structure and the gate structure 210 subsequently formed in the opening 250, resulting in the performance of the formed semiconductor structure still being poor.
请参考图10,回刻蚀所述初始第一隔离层251,直至暴露出源漏掺杂区220顶部表面和第一图形化层240表面,形成所述第一隔离层252。Referring to FIG. 10 , the initial first isolation layer 251 is etched back until the top surface of the source/drain doped region 220 and the surface of the first patterned layer 240 are exposed, thereby forming the first isolation layer 252 .
回刻蚀所述初始第一隔离层251的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of etching back the initial first isolation layer 251 includes: one of a dry etching process and a wet etching process or a combination of the two.
在本实施例中,回刻蚀所述第一隔离层251的工艺为各向异性干法刻蚀工艺。In this embodiment, the process of etching back the first isolation layer 251 is an anisotropic dry etching process.
所述第一隔离层252由回刻蚀所述初始第一隔离层251而形成,相应的,所述第一隔离层252的材料为绝缘材料。在本实施例中,所述第一隔离层252的材料为氮化硅。The first isolation layer 252 is formed by etching back the initial first isolation layer 251. Accordingly, the material of the first isolation layer 252 is an insulating material. In this embodiment, the material of the first isolation layer 252 is silicon nitride.
由于所述第一隔离层252具有一定的厚度,且所述第一隔离层252具有隔离作用,所述第一隔离层252占据了开口内一定的空间,使得相邻栅极结构210之间的距离较小的情况下,能够形成宽度足够大的开口250,从而降低形成所述开口250的刻蚀工艺的难度,同时,所述第一隔离层252能够有效防止后续形成的导电结构和栅极结构210之间发生短接,有效减少漏电流的产生,使得形成的半导体结构的性能较好。Since the first isolation layer 252 has a certain thickness and has an isolation function, the first isolation layer 252 occupies a certain space in the opening, so that when the distance between adjacent gate structures 210 is small, an opening 250 with a sufficiently large width can be formed, thereby reducing the difficulty of the etching process for forming the opening 250. At the same time, the first isolation layer 252 can effectively prevent a short circuit between the subsequently formed conductive structure and the gate structure 210, effectively reduce the generation of leakage current, and make the formed semiconductor structure have better performance.
请参考图11,形成所述第一隔离层252之后,去除所述第一图形化层240。Referring to FIG. 11 , after the first isolation layer 252 is formed, the first patterned layer 240 is removed.
在本实施例中,去除所述第一图形化层240的工艺为湿法刻蚀工艺,所述湿法刻蚀工艺的参数包括:采用的刻蚀溶液包括硫酸溶液和双氧水,所述硫酸溶液和双氧水的体积比例关系为4.5:1至10.5:1,温度为25摄氏度至140摄氏度。In this embodiment, the process for removing the first patterned layer 240 is a wet etching process, and the parameters of the wet etching process include: the etching solution used includes sulfuric acid solution and hydrogen peroxide, the volume ratio of the sulfuric acid solution and hydrogen peroxide is 4.5:1 to 10.5:1, and the temperature is 25 degrees Celsius to 140 degrees Celsius.
由于开口250侧壁表面具有所述第一隔离层252,所述第一隔离层252可以保护所述开口250的侧壁表面,从而有效减少对开口侧壁、以及临近开口250的栅极结构210造成的刻蚀损耗,进而防止后续在开口内形成导电结构和栅极结构210之间发生短接,有效减少漏电流的产生,使得形成的半导体结构的性能较好。Since the side wall surface of the opening 250 has the first isolation layer 252, the first isolation layer 252 can protect the side wall surface of the opening 250, thereby effectively reducing the etching loss caused to the side wall of the opening and the gate structure 210 adjacent to the opening 250, thereby preventing the subsequent short circuit between the conductive structure formed in the opening and the gate structure 210, effectively reducing the generation of leakage current, and making the performance of the formed semiconductor structure better.
需要说明的是,所述第一隔离层252在去除所述第一图形化层240的过程中,会受到一定的刻蚀损耗,使得所述第一隔离层252的厚度减小,且所述第一隔离层252表面具有一定缺陷。It should be noted that the first isolation layer 252 will be subjected to certain etching losses during the process of removing the first patterned layer 240 , so that the thickness of the first isolation layer 252 is reduced and the surface of the first isolation layer 252 has certain defects.
请参考图12,形成所述第一隔离层252之后,对所述源漏掺杂区220进行离子注入工艺。Please refer to FIG. 12 , after forming the first isolation layer 252 , an ion implantation process is performed on the source/drain doping region 220 .
所述离子注入工艺用于降低后续形成的导电结构和源漏掺杂区220之间的接触电阻。The ion implantation process is used to reduce the contact resistance between the subsequently formed conductive structure and the source/drain doped region 220 .
在本实施例中,去除所述第一图形化层240之后,进行所述离子注入工艺。In this embodiment, the ion implantation process is performed after the first patterned layer 240 is removed.
在本实施例中,所述离子注入工艺的方法包括:在所述介质层230表面形成第二图形化层(图中未示出),所述第二图形化层暴露出开口250;以所述第二图形化层为掩膜,对所述开口240底部的源漏掺杂区220进行离子注入;所述离子注入之后,去除所述第二图形化层。In this embodiment, the method of the ion implantation process includes: forming a second patterned layer (not shown in the figure) on the surface of the dielectric layer 230, wherein the second patterned layer exposes the opening 250; using the second patterned layer as a mask, ion implanting the source/drain doping region 220 at the bottom of the opening 240; after the ion implantation, removing the second patterned layer.
所述第二图形化层的材料和介质层230的材料不同;所述第二图形化层的材料包括:氮化钛、氮化硅或者氮氧化硅中的一种或几种组合。The material of the second patterned layer is different from the material of the dielectric layer 230 ; the material of the second patterned layer includes: titanium nitride, silicon nitride or silicon oxynitride, or a combination of several of them.
在本实施例中,所述第二图形化层的材料为氮化钛。In this embodiment, the material of the second patterned layer is titanium nitride.
去除所述第二图形化层的工艺包括:湿法刻蚀工艺。The process of removing the second patterned layer includes: a wet etching process.
需要说明的是,所述第一隔离层252在去除所述第二图形化层的过程中,会受到一定的刻蚀损耗,使得所述第一隔离层252的厚度减小,且使所述第一隔离层252表面产生一定缺陷。It should be noted that, during the process of removing the second patterned layer, the first isolation layer 252 will be subjected to a certain amount of etching loss, so that the thickness of the first isolation layer 252 is reduced and certain defects are generated on the surface of the first isolation layer 252 .
需要说明的是,所述厚度指的是沿垂直于开口250侧壁方向上的尺寸。It should be noted that the thickness refers to the dimension in a direction perpendicular to the side wall of the opening 250 .
接着,在所述第一隔离层252表面形成第二隔离层,具体形成所述第二隔离层的过程请参考图13至图14。Next, a second isolation layer is formed on the surface of the first isolation layer 252 . For the specific process of forming the second isolation layer, please refer to FIG. 13 and FIG. 14 .
请参考图13,在所述开口250底部表面、第一隔离层252表面、以及介质层230表面形成初始第二隔离层261。Referring to FIG. 13 , an initial second isolation layer 261 is formed on the bottom surface of the opening 250 , the surface of the first isolation layer 252 , and the surface of the dielectric layer 230 .
所述初始第二隔离层261为后续形成第二隔离层提供材料。The initial second isolation layer 261 provides material for subsequently forming a second isolation layer.
所述初始第二隔离层261的形成工艺包括:原子层沉积工艺。The formation process of the initial second isolation layer 261 includes: an atomic layer deposition process.
所述初始第二隔离层261的形成工艺包括:原子层沉积工艺、化学气相沉积工艺或者物理气相沉积工艺。The formation process of the initial second isolation layer 261 includes: atomic layer deposition process, chemical vapor deposition process or physical vapor deposition process.
在本实施例中,所述初始第二隔离层261的形成工艺为原子层沉积工艺。In this embodiment, the initial second isolation layer 261 is formed by an atomic layer deposition process.
采用所述原子层沉积工艺,一方面,形成的初始第二隔离层261的致密性较高,有利于提高后续形成的第二隔离层的隔离效果和阻挡作用,另一方面,所述初始第二隔离层261的形貌较好,且表面缺陷较少,有利于提高后续在第二隔离层表面形成的导电结构的材料质量,从而利于导电结构的电学性能。By adopting the atomic layer deposition process, on the one hand, the initial second isolation layer 261 formed has a higher density, which is beneficial to improving the isolation effect and blocking effect of the subsequently formed second isolation layer. On the other hand, the initial second isolation layer 261 has a better morphology and fewer surface defects, which is beneficial to improving the material quality of the conductive structure subsequently formed on the surface of the second isolation layer, thereby benefiting the electrical properties of the conductive structure.
所述初始第二隔离层261沿垂直于开口250侧壁表面方向上的尺寸范围为4纳米至7纳米。The size of the initial second isolation layer 261 along a direction perpendicular to the sidewall surface of the opening 250 ranges from 4 nanometers to 7 nanometers.
选择所述尺寸范围的原因在于,若所述尺寸大于7纳米,所述初始第二隔离层261的厚度过大,从而由初始第二隔离层261形成的第二隔离层的厚度过大,从而占据开口250的空间过大,使后续填充于开口250内的导电结构的尺寸过小,使得接触电阻过大,不利于形成的半导体结构的性能;若所述尺寸小于4纳米,所述初始第二隔离层261的过薄,从而由初始第二隔离层261形成的第二隔离层的厚度较薄,不能弥补第一隔离层252材料的损耗,且表面形貌和质量较差,不利于后续导电结构的形貌,导致形成的半导体结构的性能仍较差。The reason for selecting the size range is that, if the size is greater than 7 nanometers, the thickness of the initial second isolation layer 261 is too large, and thus the thickness of the second isolation layer formed by the initial second isolation layer 261 is too large, so that the space occupied by the opening 250 is too large, and the size of the subsequent conductive structure filled in the opening 250 is too small, resulting in excessive contact resistance, which is not conducive to the performance of the formed semiconductor structure; if the size is less than 4 nanometers, the initial second isolation layer 261 is too thin, and thus the thickness of the second isolation layer formed by the initial second isolation layer 261 is relatively thin, which cannot make up for the loss of the first isolation layer 252 material, and the surface morphology and quality are poor, which is not conducive to the morphology of the subsequent conductive structure, resulting in the formed semiconductor structure The performance is still poor.
请参考图14,回刻蚀所述初始第二隔离层261,直至暴露出源漏掺杂区220顶部表面和介质层230表面,形成所述第二隔离层262。Referring to FIG. 14 , the initial second isolation layer 261 is etched back until the top surface of the source/drain doped region 220 and the surface of the dielectric layer 230 are exposed, thereby forming the second isolation layer 262 .
回刻蚀所述初始第二隔离层261的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of etching back the initial second isolation layer 261 includes: one of a dry etching process and a wet etching process or a combination of the two.
在本实施例中,回刻蚀初始第二隔离层261的工艺为各向异性干法刻蚀工艺。In this embodiment, the process of etching back the initial second isolation layer 261 is an anisotropic dry etching process.
所述第二隔离层262由回刻蚀所述初始第二隔离层261而形成,相应的,所述第二隔离层262的材料为绝缘材料。The second isolation layer 262 is formed by etching back the initial second isolation layer 261 . Accordingly, the material of the second isolation layer 262 is an insulating material.
在本实施例中,所述第二隔离层262和第一隔离层261的材料相同,均为氮化硅。In this embodiment, the second isolation layer 262 and the first isolation layer 261 are made of the same material, which is silicon nitride.
在其他实施例中,所述第二隔离层材料和第一隔离层的材料还可以不同。In other embodiments, the material of the second isolation layer and the material of the first isolation layer may be different.
在所述第一隔离层252表面形成第二隔离层262。一方面,所述第二隔离层262具有一定的厚度,所述第二隔离层262占据开口内一定的空间,能够弥补所述第一隔离层252形成之后,受到工艺的影响产生的材料损耗,从而保证第一隔离层252和第二隔离层262共同具有一定的厚度,使得相邻栅极结构210之间的距离较小的情况下,能够形成宽度足够大的开口250,从而有效降低形成所述开口250的刻蚀工艺的难度。另一方面,所述第二隔离层262材料的质量和表面缺陷较少,有利于提高后续形成的导电结构的形貌和性能,进而有利于提高形成的半导体结构的性能。A second isolation layer 262 is formed on the surface of the first isolation layer 252. On the one hand, the second isolation layer 262 has a certain thickness, and the second isolation layer 262 occupies a certain space in the opening, which can make up for the material loss caused by the process after the first isolation layer 252 is formed, thereby ensuring that the first isolation layer 252 and the second isolation layer 262 have a certain thickness together, so that when the distance between adjacent gate structures 210 is small, an opening 250 with a sufficiently large width can be formed, thereby effectively reducing the difficulty of the etching process for forming the opening 250. On the other hand, the quality of the material of the second isolation layer 262 and the surface defects are relatively small, which is conducive to improving the morphology and performance of the conductive structure formed subsequently, and further conducive to improving the performance of the formed semiconductor structure.
请参考图15,在所述第一隔离层252上和源漏掺杂区220表面形成导电结构270,且所述导电结构270填充满所述开口250。Referring to FIG. 15 , a conductive structure 270 is formed on the first isolation layer 252 and on the surface of the source/drain doped region 220 , and the conductive structure 270 completely fills the opening 250 .
所述导电结构270的形成方法包括:在所述源漏掺杂区220表面和第一隔离层252上、以及介质层230表面形成粘附膜(图中未示出);在所述粘附膜表面形成导电膜(图中未示出),且所述导电膜填充满所述开口250;平坦化所述粘附膜和导电膜,直至暴露出介质层230表面,使粘附膜形成粘附层,使所述导电膜形成导电层,在所述开口250内形成导电结构。The method for forming the conductive structure 270 includes: forming an adhesive film (not shown in the figure) on the surface of the source/drain doped region 220 and the first isolation layer 252, and on the surface of the dielectric layer 230; forming a conductive film (not shown in the figure) on the surface of the adhesive film, and the conductive film fills the opening 250; planarizing the adhesive film and the conductive film until the surface of the dielectric layer 230 is exposed, so that the adhesive film forms an adhesive layer, and the conductive film forms a conductive layer, and a conductive structure is formed in the opening 250.
在本实施例中,所述第一隔离层252表面具有第二隔离层262,所述导电结构270位于所述第二隔离层262表面和源漏掺杂区220表面,且填充满所述开口250。In this embodiment, a second isolation layer 262 is disposed on the surface of the first isolation layer 252 . The conductive structure 270 is located on the surface of the second isolation layer 262 and the surface of the source-drain doped region 220 and fills the opening 250 .
相应的,本发明实施例还提供一种采用上述方法形成的半导体结构,请继续参考图15,包括:基底200,所述基底200上具有栅极结构210,且所述栅极结构210两侧的基底200内分别具有源漏掺杂区220;位于所述基底200上覆盖所述栅极结构210表面和源漏掺杂区220表面的介质层230,且所述介质层230内具有暴露出源漏掺杂区220顶部表面的开口250;位于所述开口250侧壁表面的第一隔离层252;位于所述第一隔离层252上和源漏掺杂区表面220的导电结构270,且所述导电结构270填充满所述开口250。Correspondingly, an embodiment of the present invention also provides a semiconductor structure formed by the above method, please continue to refer to Figure 15, including: a substrate 200, the substrate 200 has a gate structure 210, and the substrate 200 on both sides of the gate structure 210 has source and drain doping regions 220 respectively; a dielectric layer 230 located on the substrate 200 covering the surface of the gate structure 210 and the surface of the source and drain doping region 220, and the dielectric layer 230 has an opening 250 exposing the top surface of the source and drain doping region 220; a first isolation layer 252 located on the side wall surface of the opening 250; a conductive structure 270 located on the first isolation layer 252 and the surface of the source and drain doping region 220, and the conductive structure 270 fills the opening 250.
所述开口250侧壁表面具有第一隔离层252;所述导电结构270位于所述第一隔离层252上。由于所述第一隔离层252具有一定的厚度,且所述第一隔离层252具有隔离作用,所述第一隔离层252占据了开口250内一定的空间,使得相邻栅极结构210之间的距离较小的情况下,能够形成宽度足够大的开口250,从而降低形成所述开口250的刻蚀工艺的难度,同时,所述第一隔离层252能够有效防止导电结构270和栅极结构210之间发生短接,有效减少漏电流的产生,使得形成的半导体结构的性能较好。The sidewall surface of the opening 250 has a first isolation layer 252; the conductive structure 270 is located on the first isolation layer 252. Since the first isolation layer 252 has a certain thickness and has an isolation function, the first isolation layer 252 occupies a certain space in the opening 250, so that when the distance between adjacent gate structures 210 is small, an opening 250 with a sufficiently large width can be formed, thereby reducing the difficulty of the etching process for forming the opening 250. At the same time, the first isolation layer 252 can effectively prevent the short circuit between the conductive structure 270 and the gate structure 210, effectively reduce the generation of leakage current, and make the performance of the formed semiconductor structure better.
以下结合附图进行详细说明。The following is a detailed description with reference to the accompanying drawings.
在本实施例中,所述基底200包括衬底和位于所述衬底表面的鳍部,所述栅极结构210横跨所述鳍部,且所述栅极结构210位于部分所述鳍部的顶部表面和侧壁表面,所述源漏掺杂区220位于所述栅极结构210两侧的鳍部内。In this embodiment, the base 200 includes a substrate and a fin located on the surface of the substrate, the gate structure 210 spans the fin, and the gate structure 210 is located on the top surface and sidewall surface of a portion of the fin, and the source and drain doped regions 220 are located in the fins on both sides of the gate structure 210.
所述第一隔离层252沿垂直于开口250侧壁表面方向上的尺寸范围为3纳米至6纳米。The size of the first isolation layer 252 along the direction perpendicular to the sidewall surface of the opening 250 ranges from 3 nanometers to 6 nanometers.
所述第一隔离层252的材料为绝缘材料,所述绝缘材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the first isolation layer 252 is an insulating material, and the insulating material includes silicon oxide, silicon nitride, silicon carbonitride, silicon boronitride, silicon carbonitride oxide, or silicon nitride oxide.
所述开口250沿垂直于开口250侧壁表面方向上的尺寸范围为10纳米至30纳米。The size of the opening 250 along a direction perpendicular to the sidewall surface of the opening 250 ranges from 10 nanometers to 30 nanometers.
所述导电结构270包括:位于所述源漏掺杂区220表面和第一隔离层252上的粘附层(图中未示出)、位于所述粘附层表面的导电层(图中未示出),且所述导电层填充满所述开口。The conductive structure 270 includes: an adhesion layer (not shown in the figure) located on the surface of the source/drain doped region 220 and the first isolation layer 252, and a conductive layer (not shown in the figure) located on the surface of the adhesion layer, and the conductive layer fills the opening.
所述半导体结构还包括:位于所述第一隔离层252表面的第二隔离层262,且所述第二隔离层262位于所述导电结构270和第一隔离层252之间。The semiconductor structure further includes: a second isolation layer 262 located on a surface of the first isolation layer 252 , and the second isolation layer 262 is located between the conductive structure 270 and the first isolation layer 252 .
所述第一隔离层252表面形成第二隔离层262,所述第二隔离层262位于所述第一隔离层252和导电结构270之间。一方面,所述第二隔离层262具有一定的厚度,所述第二隔离层262占据开口250内一定的空间,能够弥补所述第一隔离层252形成之后,受到工艺的影响产生的材料损耗,从而保证第一隔离层252和第二隔离层262共同具有一定的厚度,使得相邻栅极结构210之间的距离较小的情况下,能够形成宽度足够大的开口250,从而有效降低形成所述开口250的刻蚀工艺的难度。另一方面,所述第二隔离层262材料的质量和表面缺陷较少,有利于提高后续形成的导电结构的形貌和性能。综上,所述第二隔离层有利于提高形成的半导体结构的性能。A second isolation layer 262 is formed on the surface of the first isolation layer 252, and the second isolation layer 262 is located between the first isolation layer 252 and the conductive structure 270. On the one hand, the second isolation layer 262 has a certain thickness, and the second isolation layer 262 occupies a certain space in the opening 250, which can make up for the material loss caused by the process after the first isolation layer 252 is formed, thereby ensuring that the first isolation layer 252 and the second isolation layer 262 have a certain thickness together, so that when the distance between adjacent gate structures 210 is small, an opening 250 with a sufficiently large width can be formed, thereby effectively reducing the difficulty of the etching process for forming the opening 250. On the other hand, the quality of the material of the second isolation layer 262 and the surface defects are relatively small, which is conducive to improving the morphology and performance of the conductive structure formed subsequently. In summary, the second isolation layer is conducive to improving the performance of the formed semiconductor structure.
所述第二隔离层262沿垂直于开口250侧壁表面方向上的尺寸范围为3纳米至6纳米。The size of the second isolation layer 262 along a direction perpendicular to the sidewall surface of the opening 250 ranges from 3 nanometers to 6 nanometers.
所述第二隔离层262的材料为绝缘材料,所述绝缘材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the second isolation layer 262 is an insulating material, and the insulating material includes silicon oxide, silicon nitride, silicon carbonitride, silicon boronitride, silicon carbonitride oxide, or silicon nitride oxide.
在本实施例中,所述导电结构270位于所述源漏掺杂区220表面和第二隔离层262表面,且填充满所述开口250。In this embodiment, the conductive structure 270 is located on the surface of the source/drain doped region 220 and the surface of the second isolation layer 262 , and completely fills the opening 250 .
所述介质层230的顶部表面高于栅极结构210的顶部表面。The top surface of the dielectric layer 230 is higher than the top surface of the gate structure 210 .
所述栅极结构210包括:位于基底200表面的栅介质层(图中未示出)、位于栅介质层表面的栅极层(图中未示出)、以及位于所述栅介质层顶部表面和栅极层顶部表面的阻挡层(图中未示出)。The gate structure 210 includes: a gate dielectric layer (not shown in the figure) located on the surface of the substrate 200, a gate layer (not shown in the figure) located on the surface of the gate dielectric layer, and a barrier layer (not shown in the figure) located on the top surface of the gate dielectric layer and the top surface of the gate layer.
所述相邻栅极结构210之间的距离范围为10纳米至55纳米。The distance between adjacent gate structures 210 ranges from 10 nanometers to 55 nanometers.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed as above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the claims.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010387029.5A CN113629145B (en) | 2020-05-09 | 2020-05-09 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010387029.5A CN113629145B (en) | 2020-05-09 | 2020-05-09 | Semiconductor structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113629145A CN113629145A (en) | 2021-11-09 |
CN113629145B true CN113629145B (en) | 2024-10-22 |
Family
ID=78377533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010387029.5A Active CN113629145B (en) | 2020-05-09 | 2020-05-09 | Semiconductor structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113629145B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114400205A (en) * | 2022-01-13 | 2022-04-26 | 长鑫存储技术有限公司 | Semiconductor structure and manufacturing method thereof |
CN117558677A (en) * | 2022-08-02 | 2024-02-13 | 长鑫存储技术有限公司 | Method for preparing semiconductor structure and semiconductor structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980048596A (en) * | 1996-12-18 | 1998-09-15 | 김영환 | Manufacturing Method of Semiconductor Device |
DE102017121297A1 (en) * | 2016-12-30 | 2018-07-05 | Taiwan Semiconductor Manufacturing Co. Ltd. | Semiconductor device and manufacturing method therefor |
CN109801969A (en) * | 2017-11-16 | 2019-05-24 | 台湾积体电路制造股份有限公司 | Fin field-effect transistor (FinFET) apparatus structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100731096B1 (en) * | 2005-12-28 | 2007-06-22 | 동부일렉트로닉스 주식회사 | Semiconductor device and manufacturing method thereof |
KR102310081B1 (en) * | 2015-06-08 | 2021-10-12 | 삼성전자주식회사 | Methods of manufacturing semiconductor devices |
KR102458923B1 (en) * | 2016-02-01 | 2022-10-25 | 삼성전자주식회사 | Integrated circuit device and method of manufacturing the same |
KR102575420B1 (en) * | 2016-10-05 | 2023-09-06 | 삼성전자주식회사 | Semiconductor devices and methods of manufacturing the same |
US10276719B1 (en) * | 2018-04-30 | 2019-04-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of manufacturing a semiconductor device and a semiconductor device |
-
2020
- 2020-05-09 CN CN202010387029.5A patent/CN113629145B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980048596A (en) * | 1996-12-18 | 1998-09-15 | 김영환 | Manufacturing Method of Semiconductor Device |
DE102017121297A1 (en) * | 2016-12-30 | 2018-07-05 | Taiwan Semiconductor Manufacturing Co. Ltd. | Semiconductor device and manufacturing method therefor |
CN109801969A (en) * | 2017-11-16 | 2019-05-24 | 台湾积体电路制造股份有限公司 | Fin field-effect transistor (FinFET) apparatus structure |
Also Published As
Publication number | Publication date |
---|---|
CN113629145A (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101376260B1 (en) | Semiconductor device and method for fabricating the same | |
CN102222668A (en) | Semiconductor device and method for forming the same | |
CN110534433B (en) | Semiconductor structure and forming method thereof | |
CN110517989A (en) | Semiconductor structure and forming method thereof | |
CN113629145B (en) | Semiconductor structure and forming method thereof | |
CN111200017B (en) | Semiconductor structures and methods of forming them | |
CN110047741A (en) | Semiconductor structure and forming method thereof | |
US11362033B2 (en) | Semiconductor structure and method for fabricating the same | |
CN113838933B (en) | Semiconductor structure and forming method thereof | |
US11810966B2 (en) | Semiconductor structure and method for fabricating the same | |
CN113555437B (en) | Semiconductor structure and forming method thereof | |
CN113555436B (en) | Semiconductor structure and forming method thereof | |
CN113658865B (en) | Method for forming semiconductor structure | |
CN100378956C (en) | Method for manufacturing gate dielectric layer | |
CN111755335A (en) | Semiconductor structure and method of forming the same | |
CN113838932B (en) | Semiconductor structure and forming method thereof | |
CN111696920B (en) | Semiconductor devices and methods of forming the same | |
CN113903665B (en) | Semiconductor structure and method for forming the same | |
CN113707719B (en) | Semiconductor structure and method for forming the same | |
CN110034010A (en) | Semiconductor structure and forming method thereof | |
KR20080071345A (en) | A semiconductor device having an etch stop film and a method of manufacturing the same. | |
TW202345285A (en) | Semiconductor device structure | |
CN114203814A (en) | Semiconductor structure and method of forming the same | |
KR20080000980A (en) | Method for manufacturing a semiconductor device having a bulb type recess channel | |
KR101024754B1 (en) | Semiconductor element and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |