CN113451781B - Microminiaturized 2.5-dimensional absorption and penetration integrated frequency selection wave absorber - Google Patents
Microminiaturized 2.5-dimensional absorption and penetration integrated frequency selection wave absorber Download PDFInfo
- Publication number
- CN113451781B CN113451781B CN202110593002.6A CN202110593002A CN113451781B CN 113451781 B CN113451781 B CN 113451781B CN 202110593002 A CN202110593002 A CN 202110593002A CN 113451781 B CN113451781 B CN 113451781B
- Authority
- CN
- China
- Prior art keywords
- metal patch
- strip
- value range
- strip portion
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 49
- 238000010521 absorption reaction Methods 0.000 title description 9
- 230000035515 penetration Effects 0.000 title 1
- 239000002184 metal Substances 0.000 claims abstract description 201
- 229910052751 metal Inorganic materials 0.000 claims abstract description 201
- 239000010409 thin film Substances 0.000 claims abstract description 31
- 239000010408 film Substances 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 5
- 238000001465 metallisation Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 abstract description 11
- 230000010354 integration Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 238000004088 simulation Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/006—Thin film resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
本发明涉及一种超小型化的2.5维吸透一体化频选吸波器,包括若干连续周期性排列的超材料单元,超材料单元包括自上而下依次层叠设置的顶层谐振层、第一介质层、第二介质层、第三介质层和底层谐振层,顶层谐振层包括第一金属贴片单元、薄膜电阻和4个第二金属贴片单元;第一介质层的底部设置有4个第三金属贴片单元,每一个第三金属贴片单元通过金属化通孔与第二金属贴片单元对应连接,底层谐振层上设置有镂空结构。本发明的2.5维吸透一体化频选吸波器,采用石墨烯薄膜代替集总电阻,便于平面集成化和批量化生产,利用折叠形金属条带与通孔结合的设计,做到结构超小型化,抑制了栅瓣的出现,降低斜入射下的双站RCS,提高了斜入射隐身性能。
The invention relates to an ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber, comprising a plurality of continuous and periodically arranged metamaterial units. The metamaterial unit includes a top resonant layer, a first A dielectric layer, a second dielectric layer, a third dielectric layer and a bottom resonant layer, the top resonant layer includes a first metal patch unit, a thin film resistor and four second metal patch units; the bottom of the first dielectric layer is provided with four Third metal patch units, each third metal patch unit is correspondingly connected to the second metal patch unit through a metallized through hole, and a hollow structure is arranged on the bottom resonant layer. The 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber of the present invention adopts graphene film to replace lumped resistance, which is convenient for plane integration and mass production, and utilizes the design of combining folded metal strips and through holes to achieve superstructure. Miniaturization suppresses the appearance of grating lobes, reduces dual-station RCS under oblique incidence, and improves oblique incidence stealth performance.
Description
技术领域technical field
本发明属于天线隐身技术领域,具体涉及一种超小型化的2.5维吸透一体化频选吸波器。The invention belongs to the technical field of antenna stealth, and in particular relates to an ultra-miniaturized 2.5-dimensional absorption-penetration integrated frequency-selective wave absorber.
背景技术Background technique
天线罩是安装在各种武器、飞行器上的雷达天线等电磁设备外部,保护内部系统不受外部电磁干扰的保护罩,与此同时天线罩也提供了透波窗口以保证天线罩内部的各式雷达天线可以正常发射和接收电磁信号。The radome is a protective cover installed on the outside of electromagnetic equipment such as radar antennas on various weapons and aircraft to protect the internal system from external electromagnetic interference. The radar antenna can transmit and receive electromagnetic signals normally.
随着天线隐身技术的飞速发展,天线罩的功能要求也越来越高,加载FSS型的天线罩成为了研究热点,FSS是由大量周期性排列、具有相同形状的金属贴片单元或缝隙所组成的二维结构。当入射电磁波频率在单元的谐振频率上时,FSS呈现出全反射(贴片型)或全透射(孔径型)的特性,而其他频率的电磁波可透过FSS(贴片型)或被全反射(孔径型)。基于带通FSS的天线罩可以实现带内透波、带外全反射,但是,这种隐身手段不能实现双基站或多基站探测的隐身,要实现全方位的天线隐身,关键在于不能反射带外电磁波,而要损耗带外电磁波,因此吸透一体化吸波器被提出了。With the rapid development of antenna stealth technology, the functional requirements of radomes are getting higher and higher, and FSS-type radomes have become a research hotspot. FSS is composed of a large number of periodically arranged metal patch units or slots with the same shape. composed of two-dimensional structures. When the frequency of the incident electromagnetic wave is at the resonant frequency of the unit, the FSS exhibits the characteristics of total reflection (patch type) or total transmission (aperture type), while electromagnetic waves of other frequencies can pass through the FSS (patch type) or be totally reflected (Aperture type). The radome based on the band-pass FSS can achieve in-band wave transmission and out-of-band total reflection. However, this kind of stealth method cannot realize the stealth of dual base station or multi-base station detection. To achieve omnidirectional antenna stealth, the key is not to reflect outside the band. Therefore, the integrated wave absorber is proposed.
近年来,众多研究学者提出了大量的宽带、低剖面、柔性、多功能的吸透一体化吸波器,为国内天线隐身技术的发展提供了坚实的理论基础和设计实例,但都有各自存在的问题,例如:Jianjun Jiang团队提出两种双损耗层的吸透一体化吸波器,这种设计可以提升吸波带宽,但是代价是结构周期的提升,两种设计的周期分别是20毫米和40毫米,这种周期大的结构的后果是会在斜入射下出现栅瓣,栅瓣会导致双站RCS的上升。而且周期为40毫米的吸透一体吸波器在正入射下就会产生栅瓣,严重影响隐身性能。Shaobin Liu团队提出一种宽透波带的吸透一体化吸波器,但该结构引入了集总电阻,提高了工艺复杂度,非常不利于平面集成化和批量化生产,同时,集总电阻型在高频引用受限,不利于该结构的思路在高频处的应用。In recent years, many researchers have proposed a large number of broadband, low-profile, flexible, and multi-functional integrated absorbers, which provide a solid theoretical basis and design examples for the development of domestic antenna stealth technology. For example: Jianjun Jiang's team proposed two integrated absorbers with double loss layers. This design can improve the absorption bandwidth, but the cost is the improvement of the structural period. The periods of the two designs are 20 mm and 20 mm, respectively. 40 mm, the consequence of such a large period structure is the appearance of grating lobes under oblique incidence, which will lead to the rise of the double-station RCS. Moreover, the absorber with a period of 40 mm will generate grating lobes under normal incidence, which seriously affects the stealth performance. Shaobin Liu's team proposed an integrated absorber with a wide transmission band, but this structure introduces a lumped resistance, which increases the complexity of the process, which is very unfavorable for planar integration and mass production. At the same time, the lumped resistance The reference of this type is limited at high frequencies, which is not conducive to the application of the idea of this structure at high frequencies.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种超小型化的2.5维吸透一体化频选吸波器。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides an ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber. The technical problem to be solved by the present invention is realized by the following technical solutions:
本发明提供了一种超小型化的2.5维吸透一体化频选吸波器,包括若干连续周期性排列的超材料单元,所述超材料单元包括自上而下依次层叠设置的顶层谐振层、第一介质层、第二介质层、第三介质层和底层谐振层,所述顶层谐振层包括第一金属贴片单元、薄膜电阻和4个第二金属贴片单元,其中,The invention provides an ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber, which includes a plurality of continuous and periodically arranged metamaterial units, and the metamaterial units include top resonant layers stacked sequentially from top to bottom. , a first dielectric layer, a second dielectric layer, a third dielectric layer and a bottom resonant layer, the top resonant layer includes a first metal patch unit, a thin film resistor and four second metal patch units, wherein,
所述第一金属贴片单元为正方形,所述薄膜电阻为十字形结构,所述薄膜电阻将所述第一金属贴片单元分隔成4个大小相等的三角形金属贴片,所述薄膜电阻与4个所述三角形金属贴片形成正方形结构;The first metal patch unit is a square, the thin film resistor is a cross-shaped structure, and the thin film resistor divides the first metal patch unit into 4 triangular metal patches of equal size. 4 of the triangular metal patches form a square structure;
所述第二金属贴片单元与所述三角形金属贴片一一对应连接,4个所述第二金属贴片单元形成中心对称图形,其对称中心为所述薄膜电阻的中心;The second metal patch unit is connected with the triangular metal patch in one-to-one correspondence, and the four second metal patch units form a center-symmetrical pattern, the center of which is the center of the thin film resistor;
所述第二金属贴片单元包括依次连接的第一折叠形金属条带、第一圆形金属贴片、第二折叠形金属条带和第二圆形金属贴片,所述第一折叠形金属条带的一端连接所述三角形金属贴片的底边中点,所述第一圆形金属贴片和所述第二圆形金属贴片的圆心均位于所述三角形金属贴片的对称轴的延长线上;The second metal patch unit includes a first folded-shaped metal strip, a first circular metal patch, a second folded-shaped metal strip and a second circular metal patch connected in sequence, the first folded-shaped metal strip One end of the metal strip is connected to the midpoint of the bottom edge of the triangular metal patch, and the centers of the first circular metal patch and the second circular metal patch are both located on the symmetry axis of the triangular metal patch extension line;
所述第一介质层的底部设置有4个第三金属贴片单元,4个所述第三金属贴片单元分别与所述第一介质层底面的四边对应平行设置,每一个所述第三金属贴片单元通过贯穿所述第一介质层的金属化通孔与对应的-所述第二金属贴片单元连接;The bottom of the first dielectric layer is provided with four third metal patch units, and the four third metal patch units are respectively arranged in parallel with the four sides of the bottom surface of the first dielectric layer. The metal patch unit is connected to the corresponding second metal patch unit through a metallized through hole passing through the first dielectric layer;
所述底层谐振层上设置有镂空结构,所述镂空结构为正方形,且正方形四条边的中部向正方形中心凹陷的形成U型凹陷槽。The bottom resonant layer is provided with a hollow structure, the hollow structure is square, and the middle of the four sides of the square is recessed toward the center of the square to form a U-shaped recessed groove.
在本发明的一个实施例中,所述第一折叠形金属条带包括第一条带部、第二条带部、第三条带部、第四条带部和第五条带部,其中,In one embodiment of the present invention, the first folded metal strip includes a first strip portion, a second strip portion, a third strip portion, a fourth strip portion and a fifth strip portion, wherein ,
所述第一条带部的第一端连接所述三角形金属贴片的底边中点,第二端与所述第二条带部的第一端垂直连接;The first end of the first strip portion is connected to the midpoint of the bottom edge of the triangular metal patch, and the second end is vertically connected to the first end of the second strip portion;
所述第二条带部的第二端与所述第三条带部的第一端垂直连接,所述第三条带部的第二端靠近所述三角形金属贴片;The second end of the second strip portion is vertically connected to the first end of the third strip portion, and the second end of the third strip portion is close to the triangular metal patch;
所述第四条带部的第一端与所述第三条带部的第二端垂直连接,所述第四条带部的第二端靠近所述三角形金属贴片;The first end of the fourth strip portion is vertically connected with the second end of the third strip portion, and the second end of the fourth strip portion is close to the triangular metal patch;
所述第五条带部的第一端与所述第四条带部的第二端垂直连接,所述第五条带部的第二端远离所述三角形金属贴片,所述第五条带部的第二端与所述第一圆形金属贴片连接。The first end of the fifth strip part is vertically connected with the second end of the fourth strip part, the second end of the fifth strip part is away from the triangular metal patch, and the fifth strip part is The second end of the belt portion is connected to the first circular metal patch.
在本发明的一个实施例中,所述第二折叠形金属条带包括第六条带部、第七条带部和第八条带部,其中,In one embodiment of the present invention, the second folded metal strip includes a sixth strip portion, a seventh strip portion and an eighth strip portion, wherein,
所述第六条带部的第一端连接所述第一圆形金属贴片,所述第六条带部的第一端与所述第五条带部的第二端相对设置,所述第六条带部的第二端与所述第七条带部的第一端垂直连接;The first end of the sixth strip portion is connected to the first circular metal patch, the first end of the sixth strip portion is disposed opposite to the second end of the fifth strip portion, and the The second end of the sixth strap portion is vertically connected to the first end of the seventh strap portion;
所述第七条带部的第二端远离所述三角形金属贴片,所述第七条带部的第二端与所述第八条带部的第一端垂直连接;The second end of the seventh strip portion is away from the triangular metal patch, and the second end of the seventh strip portion is vertically connected to the first end of the eighth strip portion;
所述第八条带部的第二端靠近所述三角形金属贴片,所述第八条带部的第二端连接所述第二圆形金属贴片。The second end of the eighth strip portion is close to the triangular metal patch, and the second end of the eighth strip portion is connected to the second circular metal patch.
在本发明的一个实施例中,所述第三金属贴片单元包括平行设置的第一矩形金属贴片和第二矩形金属贴片,其中,In an embodiment of the present invention, the third metal patch unit includes a first rectangular metal patch and a second rectangular metal patch arranged in parallel, wherein,
所述第一矩形金属贴片的长度小于所述第二矩形金属贴片的长度;The length of the first rectangular metal patch is less than the length of the second rectangular metal patch;
所述第一矩形金属贴片通过第一金属化通孔与所述第一圆形金属贴片连接;the first rectangular metal patch is connected to the first circular metal patch through a first metallized through hole;
所述第二矩形金属贴片通过第二金属化通孔与所述第二圆形金属贴片连接;the second rectangular metal patch is connected to the second circular metal patch through a second metallized through hole;
所述第一矩形金属贴片与所述第一金属化通孔的连接点位于所述第一矩形金属贴片的中心处;The connection point between the first rectangular metal patch and the first metallized through hole is located at the center of the first rectangular metal patch;
所述第二矩形金属贴片与所述第二金属化通孔的连接点位于所述第二矩形金属贴片的中心处。The connection point between the second rectangular metal patch and the second metallized through hole is located at the center of the second rectangular metal patch.
在本发明的一个实施例中,所述U型凹陷槽的侧边与底边的夹角为90°。In an embodiment of the present invention, the included angle between the side edge and the bottom edge of the U-shaped concave groove is 90°.
在本发明的一个实施例中,所述薄膜电阻为石墨烯电阻膜,方阻取值范围为340Ohm/sq-400Ohm/sq;In an embodiment of the present invention, the thin film resistor is a graphene resistance film, and the square resistance value ranges from 340 Ohm/sq to 400 Ohm/sq;
所述薄膜电阻与4个所述三角形金属贴片形成正方形结构的边长D1的取值范围为0.052λt<D1<0.054λt,所述十字形结构的四个臂长相等,臂长D2的取值范围为0.022λt<D2<0.023λt,所述十字形结构的臂宽D3的取值范围为0.0143λt<D3<0.0146λt,其中,λt是透波频率对应的波长。The value range of the side length D 1 of the square structure formed by the thin-film resistor and the four triangular metal patches is 0.052λ t <D 1 <0.054λ t , the four arms of the cross-shaped structure are equal in length, and the arms The value range of the length D 2 is 0.022λ t <D 2 <0.023λ t , and the value range of the arm width D 3 of the cross-shaped structure is 0.0143λ t <D 3 <0.0146λ t , where λ t is The wavelength corresponding to the transmission frequency.
在本发明的一个实施例中,所述第一折叠形金属条带的带宽W1的取值范围为0.0038λt<D1<0.004λt,所述第一条带部的长度l1的取值范围为0.0103λt<l1<0.0106λt,所述第二条带部的长度l2的取值范围为0.068λt<l2<0.070λt,所述第三条带部的长度l3的取值范围为0.0195λt<l3<0.0199λt,所述第四条带部的长度l4的取值范围为0.0142λt<l4<0.0147λt,所述第五条带部的长度l5的取值范围为0.0205λt<l5<0.0215λt;In an embodiment of the present invention, the value range of the bandwidth W 1 of the first folded metal strip is 0.0038λ t <D 1 <0.004λ t , and the length l 1 of the first strip portion The value range is 0.0103λ t <l 1 <0.0106λ t , the value range of the length l 2 of the second strip portion is 0.068λ t <l 2 <0.070λ t , the length of the third strip portion The value range of the length l 3 is 0.0195λ t <l 3 <0.0199λ t , the value range of the length l 4 of the fourth strip portion is 0.0142λ t <l 4 <0.0147λ t , the fifth The value range of the length l 5 of the strip portion is 0.0205λ t <l 5 <0.0215λ t ;
所述第二折叠形金属条带的带宽W2的取值范围为0.0052λt<W2<0.0054λt,所述第六条带部的长度l6的取值范围为0.042λt<l6<0.046λt,所述第七条带部的长度l7的取值范围为0.0202λt<l7<0.0211λt,所述第八条带部的长度l8的取值范围为0.042λt<l6<0.046λt;The value range of the bandwidth W 2 of the second folded metal strip is 0.0052λ t <W 2 <0.0054λ t , and the value range of the length l 6 of the sixth strip portion is 0.042λ t <1 6 <0.046λ t , the value range of the length l 7 of the seventh strip portion is 0.0202λ t <l 7 <0.0211λ t , the value range of the length l 8 of the eighth strip portion is 0.042 λ t <l 6 <0.046λ t ;
所述第一圆形金属贴片与所述第二圆形金属贴片的尺寸相等,其半径R1的取值范围为0.0071λt<R1<0.00715λt,其中,λt是透波频率对应的波长。The size of the first circular metal patch and the second circular metal patch are equal, and the value range of the radius R 1 is 0.0071λ t <R 1 <0.00715λ t , where λ t is the transmission wave The wavelength corresponding to the frequency.
在本发明的一个实施例中,所述第一矩形金属贴片和所述第二矩形金属贴片的宽度相等,其宽度W3的取值范围为0.014λt<W3<0.015λt,所述第一矩形金属贴片的长度m1的取值范围为0.052λt<m1<0.053λt,所述第二矩形金属贴片的长度m2的取值范围为0.1037λt<m2<0.1046λt,所述金属化通孔的半径R2的取值范围为0.0039λt<R2<0.0040λt,其中,λt是透波频率对应的波长。In an embodiment of the present invention, the widths of the first rectangular metal patch and the second rectangular metal patch are equal, and the value range of the width W 3 is 0.014λ t <W 3 <0.015λ t , The value range of the length m 1 of the first rectangular metal patch is 0.052λ t <m 1 <0.053λ t , and the value range of the length m 2 of the second rectangular metal patch is 0.1037λ t <m 2 <0.1046λ t , the value range of the radius R 2 of the metallized through hole is 0.0039λ t <R 2 <0.0040λ t , where λ t is the wavelength corresponding to the transmission frequency.
在本发明的一个实施例中,所述第一介质层和所述第三介质层的材料均为F4B,所述第二介质层为空气层;In an embodiment of the present invention, the materials of the first dielectric layer and the third dielectric layer are both F4B, and the second dielectric layer is an air layer;
所述第一介质层的厚度h1的取值范围为0.0523λt<h1<0.0529λt;The value range of the thickness h 1 of the first dielectric layer is 0.0523λ t <h 1 <0.0529λ t ;
所述第二介质层的厚度h2的取值范围为0.155λt<h2<0.159λt;The value range of the thickness h 2 of the second dielectric layer is 0.155λ t <h 2 <0.159λ t ;
所述第三介质层的厚度h3的取值范围为0.026λt<h3<0.0264λt,其中,λt是透波频率对应的波长。The value range of the thickness h 3 of the third dielectric layer is 0.026λ t <h 3 <0.0264λ t , where λ t is the wavelength corresponding to the transmission frequency.
在本发明的一个实施例中,两个相对所述U型凹陷槽之间的间距b1的取值范围为0.034λt<b1<0.035λt,所述U型凹陷槽的凹槽宽度b2的取值范围为0.0155λt<b2<0.016λt,所述U型凹陷槽的凹槽深度b3的取值范围为0.044λt<b3<0.045λt,所述U型凹陷槽的侧壁与正方形的所述镂空结构的顶点之间的距离b4的取值范围为0.064λt<b4<0.0648λt;In an embodiment of the present invention, the value range of the distance b 1 between the two opposing U-shaped recessed grooves is 0.034λ t <b 1 <0.035λ t , and the groove width of the U-shaped recessed grooves The value range of b 2 is 0.0155λ t <b 2 <0.016λ t , the value range of the groove depth b 3 of the U-shaped recessed groove is 0.044λ t <b 3 <0.045λ t , the U-shaped recessed groove has a value range of 0.044λ t <b 3 <0.045λ t . The value range of the distance b 4 between the side wall of the recessed groove and the vertex of the square hollow structure is 0.064λ t <b 4 <0.0648λ t ;
所述镂空结构的镂空宽度W4的取值范围为0.0052λt<W4<0.0054λt,其中,λt是透波频率对应的波长。The value range of the hollow width W 4 of the hollow structure is 0.0052λ t <W 4 <0.0054λ t , where λ t is the wavelength corresponding to the transmission frequency.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1.本发明的超小型化的2.5维吸透一体化频选吸波器,在每个超材料单元中,采用薄膜电阻替代集总电阻,该薄膜电阻为石墨烯电阻膜,只通过一片石墨烯电阻膜即可实现全向电阻的效果,无需焊接多个集总电阻,便于平面集成化和批量化生产。1. The ultra-miniaturized 2.5-dimensional absorption-penetration integrated frequency-selective wave absorber of the present invention, in each metamaterial unit, adopts a thin-film resistance to replace the lumped resistance, and this thin-film resistance is a graphene resistance film, which only passes through a piece of graphite. The ene resistance film can achieve the effect of omnidirectional resistance without welding multiple lumped resistances, which is convenient for plane integration and mass production.
2.本发明的超小型化的2.5维吸透一体化频选吸波器,利用折叠形金属条带与通孔结合的设计,做到超小型化,从而抑制栅瓣的出现,降低斜入射下的双站RCS,大大提高斜入射隐身性能。2. The ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency selective absorber of the present invention utilizes the design of the combination of folded metal strips and through holes to achieve ultra-miniaturization, thereby suppressing the appearance of grating lobes and reducing oblique incidence Under the dual-station RCS, the oblique incidence stealth performance is greatly improved.
3.本发明的超小型化的2.5维吸透一体化频选吸波器,在超材料单元的每一层结构中均采用了中心对称的图案设计,使得该频选吸波器对入射电磁波极化方向不敏感。3. The ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber of the present invention adopts a center-symmetric pattern design in each layer structure of the metamaterial unit, so that the frequency-selective wave absorber can absorb the incident electromagnetic waves. Polarization direction is not sensitive.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。The above description is only an overview of the technical solution of the present invention, in order to be able to understand the technical means of the present invention more clearly, it can be implemented according to the content of the description, and in order to make the above and other objects, features and advantages of the present invention more obvious and easy to understand , the following specific preferred embodiments, and in conjunction with the accompanying drawings, are described in detail as follows.
附图说明Description of drawings
图1是本发明实施例提供的一种超小型化的2.5维吸透一体化频选吸波器的立体结构示意图;1 is a schematic three-dimensional structure diagram of an ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber provided by an embodiment of the present invention;
图2是本发明实施例提供的超材料单元的立体结构示意图;2 is a schematic three-dimensional structure diagram of a metamaterial unit provided in an embodiment of the present invention;
图3是本发明实施例提供的顶层谐振层的结构示意图;3 is a schematic structural diagram of a top resonant layer provided by an embodiment of the present invention;
图4是本发明实施例提供的薄膜电阻的结构示意图;4 is a schematic structural diagram of a thin film resistor provided by an embodiment of the present invention;
图5是本发明实施例提供的去除薄膜电阻的顶层谐振层的结构示意图;5 is a schematic structural diagram of a top resonant layer with thin film resistors removed according to an embodiment of the present invention;
图6是本发明实施例提供的第三金属贴片单元的结构示意图;6 is a schematic structural diagram of a third metal patch unit provided by an embodiment of the present invention;
图7是本发明实施例提供的底层谐振层的结构示意图;7 is a schematic structural diagram of a bottom resonance layer provided by an embodiment of the present invention;
图8是本发明实施例提供的超小型化的2.5维吸透一体化频选吸波器在不同极化下的反射系数仿真曲线图;8 is a simulation curve diagram of the reflection coefficient of the ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber under different polarizations provided by an embodiment of the present invention;
图9是本发明实施例提供的超小型化的2.5维吸透一体化频选吸波器在不同极化下入射角度从0度增加至60度对应的反射系数仿真曲线图。9 is a simulation graph of the reflection coefficient corresponding to an ultra-miniaturized 2.5-dimensional absorption-transmission integrated frequency selective wave absorber provided by an embodiment of the present invention when the incident angle increases from 0 degrees to 60 degrees under different polarizations.
图标:1-超材料单元;10-顶层谐振层;20-第一介质层;30-第二介质层;40-第三介质层;50-底层谐振层;101-薄膜电阻;102-第二金属贴片单元;103-三角形金属贴片;201-第三金属贴片单元;202-金属化通孔;1021-折叠形金属条带;1022-第一圆形金属贴片;1023-第二折叠形金属条带;1024-第二圆形金属贴;2011-第一矩形金属贴片;2012-第二矩形金属贴片;2021-第一金属化通孔;2022-第二金属化通孔;10211-第一条带部;10212-第二条带部;10213-第三条带部;10214-第四条带部;10215-第五条带部;10216-第六条带部;10217-第七条带部;10218-第八条带部。Icons: 1 - metamaterial unit; 10 - top resonant layer; 20 - first dielectric layer; 30 - second dielectric layer; 40 - third dielectric layer; 50 - bottom resonant layer; 101 - thin film resistor; 102 - second metal patch unit; 103-triangular metal patch; 201-third metal patch unit; 202-metallized through hole; 1021-folded metal strip; 1022-first circular metal patch; 1023-second Folded metal strip; 1024-second circular metal patch; 2011-first rectangular metal patch; 2012-second rectangular metal patch; 2021-first metallized through hole; 2022-second metallized through hole ; 10211 - first strip part; 10212 - second strip part; 10213 - third strip part; 10214 - fourth strip part; 10215 - fifth strip part; 10216 - sixth strip part; 10217 - Seventh strip section; 10218 - Eighth strip section.
具体实施方式Detailed ways
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的一种超小型化的2.5维吸透一体化频选吸波器进行详细说明。In order to further illustrate the technical means and effects adopted by the present invention to achieve the predetermined purpose of the invention, the following describes an ultra-miniaturized 2.5-dimensional integrated frequency selective absorber according to the present invention with reference to the accompanying drawings and specific embodiments. Explain in detail.
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。The foregoing and other technical contents, features and effects of the present invention can be clearly presented in the following detailed description of the specific implementation with the accompanying drawings. Through the description of the specific embodiments, the technical means and effects adopted by the present invention to achieve the predetermined purpose can be more deeply and specifically understood. However, the accompanying drawings are only for reference and description, and are not used for the technical description of the present invention. program is restricted.
实施例一Example 1
本实施例提供了一种超小型化的2.5维吸透一体化频选吸波器,该吸波器在吸波带的高频处有一透波窗口,在透波频段内,该结构对入射波而言相当于透明,电磁波可以透过该结构而不发生反射,使得该吸波器内的天线系统可以正常工作的同时,在工作频带外又具有良好的吸波隐身性能。请结合参见图1-图5,图1是本发明实施例提供的一种超小型化的2.5维吸透一体化频选吸波器的立体结构示意图;图2是本发明实施例提供的超材料单元的立体结构示意图;图3是本发明实施例提供的顶层谐振层的结构示意图,图4是本发明实施例提供的薄膜电阻的结构示意图,图5是本发明实施例提供的去除薄膜电阻的顶层谐振层的结构示意图。如图所示,本实施例的超小型化的2.5维吸透一体化频选吸波器,包括若干连续周期性排列的超材料单元1,可选地,超材料单元1呈m*n的连续矩阵排列,其中,m≥2,n≥2,如图1所示,在本实施例中,超材料单元1呈3*3的连续矩阵排列。需要说明的是,在本实施例中,超材料单元1的单元周期P=6mm。This embodiment provides an ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber. The wave absorber has a wave-transmitting window at the high frequency of the wave-absorbing band. Waves are equivalent to transparency, and electromagnetic waves can pass through the structure without reflection, so that the antenna system in the absorber can work normally and has good wave absorption and stealth performance outside the working frequency band. Please refer to FIG. 1-FIG. 5. FIG. 1 is a schematic three-dimensional structure diagram of an ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency selective absorber provided by an embodiment of the present invention; Schematic diagram of the three-dimensional structure of the material unit; FIG. 3 is a schematic structural diagram of the top resonant layer provided by an embodiment of the present invention, FIG. 4 is a schematic structural diagram of a thin film resistor provided by an embodiment of the present invention, and FIG. 5 is an embodiment of the present invention. Schematic diagram of the structure of the top resonant layer. As shown in the figure, the ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber in this embodiment includes a number of
如图2所示,超材料单元1包括自上而下依次层叠设置的顶层谐振层10、第一介质层20、第二介质层30、第三介质层40和底层谐振层50。As shown in FIG. 2 , the
具体地,如图3所示,顶层谐振层10包括第一金属贴片单元、薄膜电阻101和4个第二金属贴片单元102。第一金属贴片单元为正方形,薄膜电阻101为十字形结构,薄膜电阻101将第一金属贴片单元分隔成4个大小相等的三角形金属贴片103,薄膜电阻101与4个三角形金属贴片103形成正方形结构。第二金属贴片单元102与三角形金属贴片103一一对应连接,4个第二金属贴片单元102形成中心对称图形,其对称中心为薄膜电阻101的中心。Specifically, as shown in FIG. 3 , the top
可选地,第一金属贴片单元和第二金属贴片单元102的材料为铜,其电导率为5.8×109S/m。薄膜电阻101为石墨烯电阻膜,方阻取值范围为340Ohm/sq-400Ohm/sq。如图4所示,薄膜电阻101与4个三角形金属贴片103形成正方形结构的边长D1的取值范围为0.052λt<D1<0.054λt,十字形结构的四个臂长相等,臂长D2的取值范围为0.022λt<D2<0.023λt,十字形结构的臂宽D3的取值范围为0.0143λt<D3<0.0146λt,其中,λt是透波频率对应的波长。Optionally, the material of the first metal patch unit and the second
在本实施例中,薄膜电阻101的方阻为360Ohm/sq,薄膜电阻101与4个三角形金属贴片103形成正方形结构的边长D1=2mm,十字形结构的臂长(也就是三角形金属贴片103的腰长)D2=0.86mm,臂宽D3=0.55mm,三角形金属贴片103的顶角为90°,腰长为0.86mm。In this embodiment, the square resistance of the
进一步地,第二金属贴片单元102包括依次连接的第一折叠形金属条带1021、第一圆形金属贴片1022、第二折叠形金属条带1023和第二圆形金属贴片1024,第一折叠形金属条带1021的一端连接三角形金属贴片103的底边中点,第一圆形金属贴片1022和第二圆形金属贴片1024的圆心均位于三角形金属贴片103的对称轴的延长线上。Further, the second
需要说明的是,第一圆形金属贴片1022和第二圆形金属贴片1024的圆心位于与其对应连接的三角形金属贴片103的相邻的三角形金属贴片103的对称轴的延长线上。It should be noted that the centers of the first
本实施例的超小型化的2.5维吸透一体化频选吸波器的每个超材料单元中,采用薄膜电阻替代集总电阻,该薄膜电阻为石墨烯电阻膜,集总电阻是二端口器件,而石墨烯电阻膜是一片具有阻抗特性的电阻膜,只要与其接触,可以视为有无数个端口,从每个方向看进去都是一个电阻,本实施了中只通过一片石墨烯电阻膜即可实现全向电阻的效果,无需焊接多个集总电阻,不论是电阻本身的价格还是加工电阻的复杂度,都远高于集总电阻,更便于平面集成化和批量化生产。In each metamaterial unit of the ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency selective absorber of this embodiment, a thin-film resistor is used to replace the lumped resistance, the thin-film resistance is a graphene resistance film, and the lumped resistance is a two-port The graphene resistive film is a resistive film with impedance characteristics. As long as it is in contact with it, it can be regarded as having an infinite number of ports, and it is a resistor when viewed from every direction. In this implementation, only one graphene resistive film is passed through. The effect of omnidirectional resistance can be realized without welding multiple lumped resistances. Both the price of the resistance itself and the complexity of the processing resistance are much higher than that of the lumped resistance, which is more convenient for plane integration and mass production.
在本实施例中,第一折叠形金属条带1021包括第一条带部10211、第二条带部10212、第三条带部10213、第四条带部10214和第五条带部10215。其中,第一条带部10211的第一端连接三角形金属贴片103的底边中点,第二端与第二条带部10212的第一端垂直连接;第二条带部10212的第二端与第三条带部10213的第一端垂直连接,第三条带部10213的第二端靠近三角形金属贴片103;第四条带部10214的第一端与第三条带部10213的第二端垂直连接,第四条带部10214的第二端靠近三角形金属贴片103;第五条带部10215的第一端与第四条带部10214的第二端垂直连接,第五条带部10215的第二端远离三角形金属贴片103,第五条带部10215的第二端与第一圆形金属贴片1022连接。In this embodiment, the first folded
进一步地,第二折叠形金属条带1023包括第六条带部10216、第七条带部10217和第八条带部10218。其中,第六条带部10216的第一端连接第一圆形金属贴片1022,第六条带部10216的第一端与第五条带部10215的第二端相对设置,第六条带部10216的第二端与第七条带部10217的第一端垂直连接;第七条带部10217的第二端远离三角形金属贴片103,第七条带部10217的第二端与第八条带部10218的第一端垂直连接;第八条带部10218的第二端靠近三角形金属贴片103,第八条带部10218的第二端连接第二圆形金属贴片1024。Further, the second folded
可选地,第一折叠形金属条带1021的带宽W1的取值范围为0.0038λt<D1<0.004λt,第一条带部10211的长度l1的取值范围为0.0103λt<l1<0.0106λt,第二条带部10212的长度l2的取值范围为0.068λt<l2<0.070λt,第三条带部10213的长度l3的取值范围为0.0195λt<l3<0.0199λt,第四条带部10214的长度l4的取值范围为0.0142λt<l4<0.0147λt,第五条带部10215的长度l5的取值范围为0.0205λt<l5<0.0215λt,其中,λt是透波频率对应的波长。Optionally, the value range of the bandwidth W 1 of the first folded
在本实施例中,第一折叠形金属条带1021的带宽W1=0.15mm,第一条带部10211的长度l1=0.4mm,第二条带部10212的长度l2=2.65mm,第三条带部10213的长度l3=0.75mm,第四条带部10214的长度l4=0.55mm,第五条带部10215的长度l5=0.75mm。In this embodiment, the width of the first folded
可选地,第二折叠形金属条带1023的带宽W2的取值范围为0.0052λt<W2<0.0054λt,第六条带部10216的长度l6的取值范围为0.042λt<l6<0.046λt,第七条带部10217的长度l7的取值范围为0.0202λt<l7<0.0211λt,第八条带部10218的长度l8的取值范围为0.042λt<l6<0.046λt,其中,λt是透波频率对应的波长。Optionally, the value range of the bandwidth W 2 of the second folded
在本实施例中,第六条带部10216的长度l6=1.7mm,第七条带部10217的长度l7=0.7mm,第八条带部10218的长度l8=1.7mm。In this embodiment, the length l 6 of the
可选地,第一圆形金属贴片1022与第二圆形金属贴片1024的尺寸相等,其半径R1的取值范围为0.0071λt<R1<0.00715λt,在本实施例中,第一圆形金属贴片1022与第二圆形金属贴片1024的半径R1=0.27mm。Optionally, the sizes of the first
进一步地,第一介质层20的底部设置有4个第三金属贴片单元201,4个第三金属贴片单元201分别与第一介质层20底面的四边对应平行设置,每一个第三金属贴片单元201通过贯穿第一介质层20的金属化通孔202与对应的第二金属贴片单元102连接。Further, four third
具体地,请参见图6,图6是本发明实施例提供的第三金属贴片单元的结构示意图,如图所示,第三金属贴片单元201包括平行设置的第一矩形金属贴片2011和第二矩形金属贴片2012,其中,第一矩形金属贴片2011的长度小于第二矩形金属贴片2012的长度;第一矩形金属贴片2011通过第一金属化通孔2021与第一圆形金属贴片1022连接;第二矩形金属贴片2012通过第二金属化通孔2022与第二圆形金属贴片1024连接;第一矩形金属贴片2011与第一金属化通孔2021的连接点位于第一矩形金属贴片2011的中心处;第二矩形金属贴片2012与第二金属化通孔2022的连接点位于第二矩形金属贴片2012的中心处。Specifically, please refer to FIG. 6, which is a schematic structural diagram of a third metal patch unit provided by an embodiment of the present invention. As shown in the figure, the third
可选地,第一矩形金属贴片2011和第二矩形金属贴片2012的宽度相等,其宽度W3的取值范围为0.014λt<W3<0.015λt,第一矩形金属贴片2011的长度m1的取值范围为0.052λt<m1<0.053λt,第二矩形金属贴片2012的长度m2的取值范围为0.1037λt<m2<0.1046λt,金属化通孔202的半径R2的取值范围为0.0039λt<R2<0.0040λt,其中,λt是透波频率对应的波长。Optionally, the widths of the first
在本实施例中,第一矩形金属贴片2011和第二矩形金属贴片2012的宽度W3=0.54mm,第一矩形金属贴片2011的长度m1=2mm,第二矩形金属贴片2012的长度m2=4mm,第一金属化通孔2021和第二金属化通孔2022的半径R2=0.15mm。In this embodiment, the width W 3 of the first
进一步地,请参见图7,图7是本发明实施例提供的底层谐振层的结构示意图,如图所示,底层谐振层50上设置有镂空结构,镂空结构为正方形,且正方形四条边的中部向正方形中心凹陷的形成U型凹陷槽。在本实施例中,U型凹陷槽的侧边与底边的夹角为90°。Further, please refer to FIG. 7 , which is a schematic structural diagram of the bottom resonant layer provided by the embodiment of the present invention. As shown in the figure, the bottom
可选地,两个相对U型凹陷槽之间的间距b1的取值范围为0.034λt<b1<0.035λt,U型凹陷槽的凹槽宽度b2的取值范围为0.0155λt<b2<0.016λt,U型凹陷槽的凹槽深度b3的取值范围为0.044λt<b3<0.045λt,U型凹陷槽的侧壁与正方形的镂空结构的顶点之间的距离b4的取值范围为0.064λt<b4<0.0648λt,镂空结构的镂空宽度W4的取值范围为0.0052λt<W4<0.0054λt,其中,λt是透波频率对应的波长。Optionally, the value range of the distance b 1 between the two opposite U-shaped recessed grooves is 0.034λ t <b 1 <0.035λ t , and the value range of the groove width b 2 of the U-shaped recessed grooves is 0.0155λ t <b 2 <0.016λ t , the value range of the groove depth b 3 of the U-shaped concave groove is 0.044λ t <b 3 <0.045λ t , the distance between the side wall of the U-shaped concave groove and the vertex of the square hollow structure is The value range of the distance b 4 is 0.064λ t <b 4 <0.0648λ t , the value range of the hollow width W 4 of the hollow structure is 0.0052λ t <W 4 <0.0054λ t , where λ t is the transparent The wavelength corresponding to the wave frequency.
在本实施例中,两个相对U型凹陷槽之间的间距b1=1.3mm,U型凹陷槽的凹槽宽度b2=0.6mm,U型凹陷槽的凹槽深度b3=1.7mm,U型凹陷槽的侧壁与正方形的镂空结构的顶点之间的距离b4=2.45mm,镂空结构的镂空宽度W4=0.2mm。In this embodiment, the distance between two opposite U-shaped recessed grooves is b 1 =1.3mm, the groove width of the U-shaped recessed groove is b 2 =0.6 mm, and the groove depth of the U-shaped recessed groove is b 3 =1.7 mm , the distance between the side wall of the U-shaped recessed groove and the vertex of the square hollow structure is b 4 =2.45mm, and the hollow width of the hollow structure is W 4 =0.2mm.
进一步地,在本实施例中,第一介质层20和第三介质层40的材料均为F4B,其相对介电常数为2.2,第二介质层30为空气层,其相对介电常数为1。可选地,第一介质层20的厚度h1的取值范围为0.0523λt<h1<0.0529λt;第二介质层30的厚度h2的取值范围为0.155λt<h2<0.159λt;第三介质层40的厚度h3的取值范围为0.026λt<h3<0.0264λt,其中,λt是透波频率对应的波长。Further, in this embodiment, the materials of the
在本实施例中,第一介质层20的厚度h1=2mm;第二介质层30的厚度h2=6mm;第三介质层40的厚度h3=1mm。In this embodiment, the thickness of the
对于周期性结构,当周期过大时,斜入射下的阵列因子除主瓣方向外在其他也会出现峰值,这些峰值称之为栅瓣,这些栅瓣会导致双站RCS的上升,增加被雷达探测到的概率。栅瓣出现的频率与结构的周期p的大小成反比,也就是说,结构周期p越小,栅瓣出现的频点越高,在本实施例中,利用折叠形金属条带与通孔结合的设计,做到超小型化,通过小型化的单元结构来推迟栅瓣,使得在工作频带内,没有栅瓣出现,从而降低斜入射下的双站RCS,大大提高斜入射隐身性能。同时,本实施例的超小型化的2.5维吸透一体化频选吸波器,在吸波带的高频处有一透波窗口,在透波频段内,该结构对入射波而言相当于透明,电磁波可以透过该结构而不发生反射,使得该吸波器内的天线系统可以正常工作的同时,在工作频带外又具有良好的吸波隐身性能。For periodic structures, when the period is too large, the array factor under oblique incidence will also have peaks in addition to the main lobe direction. These peaks are called grating lobes. These grating lobes will lead to the rise of the double-station RCS and increase the Probability of radar detection. The frequency of the grating lobes is inversely proportional to the period p of the structure, that is to say, the smaller the period p of the structure, the higher the frequency of the grating lobes. In this embodiment, a folded metal strip is used to combine with the through hole The design achieves ultra-miniaturization and delays the grating lobes through the miniaturized unit structure, so that no grating lobes appear in the operating frequency band, thereby reducing the dual-station RCS under oblique incidence and greatly improving oblique incidence stealth performance. At the same time, the ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber of this embodiment has a wave-transmitting window at the high frequency of the wave-absorbing band. In the wave-transmitting frequency band, this structure is equivalent to the incident wave. Transparent, electromagnetic waves can pass through the structure without reflection, so that the antenna system in the wave absorber can work normally and has good wave absorption and stealth performance outside the working frequency band.
另外,本发实施例的超小型化的2.5维吸透一体化频选吸波器,在超材料单元的每一层结构中均采用了中心对称的图案设计,使得该频选吸波器对入射电磁波极化方向不敏感。In addition, the ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber in the embodiment of the present invention adopts a center-symmetric pattern design in each layer structure of the metamaterial unit, so that the frequency-selective wave absorber is suitable for The polarization direction of the incident electromagnetic wave is not sensitive.
实施例二
本实施例通过仿真实验对实施例一的超小型化的2.5维吸透一体化频选吸波器的性能进行验证说明。This embodiment verifies and illustrates the performance of the ultra-miniaturized 2.5-dimensional absorption-permeability integrated frequency-selective wave absorber of the first embodiment through a simulation experiment.
1.仿真条件:1. Simulation conditions:
本实施例的超小型化的2.5维吸透一体化频选吸波器中,超材料单元1呈m*n的连续矩阵排列,m和n均为无限大,利用商业仿真软件HFSS_19.2对该频选吸波器的传输系数和反射系数进行仿真。In the ultra-miniaturized 2.5-dimensional absorption-penetration integrated frequency selective absorber of this embodiment, the
2.仿真内容与结果:2. Simulation content and results:
仿真1,在垂直入射条件下分别以TE极化,TM极化对吸透一体化吸波器进行电磁仿真,得到其反射系数曲线,如图8所示,图8是本发明实施例提供的超小型化的2.5维吸透一体化频选吸波器在不同极化下的反射系数仿真曲线图。由图8可知:吸透一体化吸波器的吸波带为2.47-8.81GHz,该频带内反射系数均小于-10dB,相对带宽为112.4%,透波带为7.52-8.40GHz,该频带内透射系数均小于-1dB,在8GHz频点处插入损耗仅为-0.3dB,表明该频段内的电磁波能够以较低的插入损耗透过该结构,天线罩内的天线系统可以在该频段进行正常的收发工作。
仿真2,分别在TE极化和TM极化下,对入射角从0°增加至60°时,对该吸透一体吸波器进行仿真,得到反射系数曲线,如图9所示,图9是本发明实施例提供的超小型化的2.5维吸透一体化频选吸波器在不同极化下入射角度从0度增加至60度对应的反射系数仿真曲线图。其中,图6中的(a)图为在TE极化下得到的反射系数曲线,(b)图为在TM极化下得到的反射系数曲线。从(a)图可以看出:在TE极化下,入射角度范围为0°<θ<30°时,吸波器吸波效果良好,在45°入射下依然有吸波效果,从(b)图可以看出:在TM极化下,入射角度范围为0°<θ<60°时,吸波器的吸波效果基本保持良好,到60°入射时,仍有一频带能较好吸波,仅带宽变窄,说明该吸透一体吸波器具有良好的极化稳定性。
以上仿真结果说明,本实例的超小型化的2.5维吸透一体化频选吸波器,在宽频带内有效吸波,相对带宽达到112.4%,由于结构的超小型化设计,抑制了栅瓣的出现,减少了斜入射下被双站RCS探测的概率;基于结构的中心对称设计,该结构具有极化稳定性;吸波器的2.5维结构设计,也保证了斜入射下的吸波稳定性。The above simulation results show that the ultra-miniature 2.5-dimensional absorption-permeability integrated frequency selective absorber of this example can effectively absorb waves in a wide frequency band, and the relative bandwidth reaches 112.4%. Due to the ultra-miniature design of the structure, the grating lobe is suppressed. The appearance of , reduces the probability of being detected by dual-station RCS under oblique incidence; based on the center-symmetric design of the structure, the structure has polarization stability; the 2.5-dimensional structure design of the absorber also ensures the absorption stability under oblique incidence. sex.
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。It should be noted that, herein, relational terms such as first and second are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation are intended to encompass a non-exclusive inclusion such that an article or device comprising a list of elements includes not only those elements, but also other elements not expressly listed. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the article or device that includes the element. Words like "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. The orientation or positional relationship indicated by "up", "bottom", "left", "right", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying The device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the invention.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110593002.6A CN113451781B (en) | 2021-05-28 | 2021-05-28 | Microminiaturized 2.5-dimensional absorption and penetration integrated frequency selection wave absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110593002.6A CN113451781B (en) | 2021-05-28 | 2021-05-28 | Microminiaturized 2.5-dimensional absorption and penetration integrated frequency selection wave absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113451781A CN113451781A (en) | 2021-09-28 |
CN113451781B true CN113451781B (en) | 2022-07-08 |
Family
ID=77810385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110593002.6A Active CN113451781B (en) | 2021-05-28 | 2021-05-28 | Microminiaturized 2.5-dimensional absorption and penetration integrated frequency selection wave absorber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113451781B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114361806B (en) * | 2022-01-11 | 2023-05-02 | 西安电子科技大学 | Miniaturized integrated frequency selective surface that absorbs thoroughly |
CN114498052B (en) * | 2022-02-09 | 2023-04-18 | 西安电子科技大学 | Low-profile broadband super-surface structure with wave-absorbing and wave-transmitting amplitude regulation and control characteristics |
CN114725688A (en) * | 2022-04-18 | 2022-07-08 | 金陵科技学院 | Wave-absorbing wave-transmitting integrated wave absorber |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007034352A2 (en) * | 2005-09-19 | 2007-03-29 | Philips Intellectual Property & Standards Gmbh | Grid for selective absorption of electromagnetic radiation and method for its manufacture |
KR100753830B1 (en) * | 2006-04-04 | 2007-08-31 | 한국전자통신연구원 | High impedance surface structure using artificial magnetic conductor, antenna device and electromagnetic device using the structure |
CA2832795A1 (en) * | 2010-04-12 | 2011-10-20 | Tufts University | Silk electronic components and the method for fabricating the same |
WO2013047827A1 (en) * | 2011-09-30 | 2013-04-04 | ダイキン工業株式会社 | Light-condensing film, solar cell module, and transfer mold |
CN106572622A (en) * | 2016-11-02 | 2017-04-19 | 国家纳米科学中心 | Broadband wave absorber and preparation method |
CN207250729U (en) * | 2017-09-27 | 2018-04-17 | 中国人民解放军国防科技大学 | Double-side-frequency broadband wave absorber with controllable pass band |
WO2018118467A2 (en) * | 2016-12-20 | 2018-06-28 | Corning Incorporated | Glass-based articles having crack mitigating single- and multi-layer films for retained article strength and scratch resistance |
CN111769368A (en) * | 2020-07-26 | 2020-10-13 | 中国人民解放军国防科技大学 | Integrated frequency selective surface of wave absorption and wave transmission based on slot resonator |
CN112332109A (en) * | 2020-10-22 | 2021-02-05 | 西安电子科技大学 | Broadband wave-transmitting type frequency selective wave absorber based on 2.5D structure |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6917343B2 (en) * | 2001-09-19 | 2005-07-12 | Titan Aerospace Electronics Division | Broadband antennas over electronically reconfigurable artificial magnetic conductor surfaces |
US9677856B2 (en) * | 2006-07-25 | 2017-06-13 | Imperial Innovations Limited | Electromagnetic cloaking method |
US8674891B2 (en) * | 2008-11-19 | 2014-03-18 | Tyco Electronics Services Gmbh | Tunable metamaterial antenna structures |
US10624566B2 (en) * | 2017-06-02 | 2020-04-21 | Regents Of The University Of Minnesota | 3D isotropic microscale metamaterials and methods of manufacture |
CN108832303B (en) * | 2018-06-07 | 2019-11-15 | 西安电子科技大学 | A highly angularly stable frequency selective surface |
CN110416735A (en) * | 2018-07-16 | 2019-11-05 | 西安电子科技大学 | Flexible multilayer frequency selective surface with transmission nulls |
CN111817016B (en) * | 2020-08-13 | 2022-03-25 | 金陵科技学院 | Miniaturized low-profile frequency selective surface |
CN112838374A (en) * | 2020-12-31 | 2021-05-25 | 南京航空航天大学 | A flexible active frequency selective surface and its control method |
-
2021
- 2021-05-28 CN CN202110593002.6A patent/CN113451781B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007034352A2 (en) * | 2005-09-19 | 2007-03-29 | Philips Intellectual Property & Standards Gmbh | Grid for selective absorption of electromagnetic radiation and method for its manufacture |
KR100753830B1 (en) * | 2006-04-04 | 2007-08-31 | 한국전자통신연구원 | High impedance surface structure using artificial magnetic conductor, antenna device and electromagnetic device using the structure |
CA2832795A1 (en) * | 2010-04-12 | 2011-10-20 | Tufts University | Silk electronic components and the method for fabricating the same |
WO2013047827A1 (en) * | 2011-09-30 | 2013-04-04 | ダイキン工業株式会社 | Light-condensing film, solar cell module, and transfer mold |
CN106572622A (en) * | 2016-11-02 | 2017-04-19 | 国家纳米科学中心 | Broadband wave absorber and preparation method |
WO2018118467A2 (en) * | 2016-12-20 | 2018-06-28 | Corning Incorporated | Glass-based articles having crack mitigating single- and multi-layer films for retained article strength and scratch resistance |
CN207250729U (en) * | 2017-09-27 | 2018-04-17 | 中国人民解放军国防科技大学 | Double-side-frequency broadband wave absorber with controllable pass band |
CN111769368A (en) * | 2020-07-26 | 2020-10-13 | 中国人民解放军国防科技大学 | Integrated frequency selective surface of wave absorption and wave transmission based on slot resonator |
CN112332109A (en) * | 2020-10-22 | 2021-02-05 | 西安电子科技大学 | Broadband wave-transmitting type frequency selective wave absorber based on 2.5D structure |
Non-Patent Citations (1)
Title |
---|
An Effective Via-Based Frequency Adjustment and;Yi-Min Yu;《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》;20150403;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113451781A (en) | 2021-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113451781B (en) | Microminiaturized 2.5-dimensional absorption and penetration integrated frequency selection wave absorber | |
CN108270085B (en) | Suction-through integrated frequency selective surface structure | |
Chen et al. | Design of frequency-selective surfaces radome for a planar slotted waveguide antenna | |
CN110265787B (en) | Back cavity slot circularly polarized millimeter wave antenna based on substrate integrated waveguide SIW | |
CN201515017U (en) | lens antenna | |
CN110247196A (en) | The frequency that a kind of intermediate frequency broadband wave transparent, high and low frequency inhale wave selects wave-absorber | |
CN110265780A (en) | A Stealth Radome with Mid-Frequency Broadband Wave-Permeability and High-Frequency and Low-Frequency Polarization Conversion | |
CN108832303B (en) | A highly angularly stable frequency selective surface | |
CN102723541B (en) | Method for optimizing cross-shaped annular slot frequency selection surface unit structural body and conformal antenna housing with low radar cross-section (RCS) | |
CN112821081A (en) | Absorption and transmission integrated frequency selective surface with high-frequency broadband wave absorption and low-frequency wave transmission | |
CN107317108B (en) | Radar radome absorber based on helical structure | |
CN110504549A (en) | Graphene-based integrated frequency selective surface for absorbing and penetrating | |
CN109193167B (en) | Miniaturized Frequency Selective Surface with Low Ratio of High Resonance Point to Low Resonance Point | |
CN114361806B (en) | Miniaturized integrated frequency selective surface that absorbs thoroughly | |
CN208093763U (en) | Inhale integrated frequency-selective surfaces structure thoroughly | |
CN113437531B (en) | Super-miniature angle-insensitive metamaterial wave absorber | |
CN113437525B (en) | Subminiaturized 2.5D broadband wave absorber | |
CN114552205A (en) | Asymmetric transmission double-sided image metamaterial dual-passband stealth antenna housing and design method thereof | |
CN108539429B (en) | Broadband omnidirectional oblique polarization antenna for metal carrier | |
CN110429380A (en) | It is applied towards 5G and two unit micro-strip mimo antennas is shared based on irradiation structure | |
CN218648144U (en) | Single-layer omnidirectional circularly polarized transmission array antenna based on polarization conversion super surface | |
CN111342240A (en) | Three-dimensional microwave absorber based on coupling gap structure and application thereof | |
CN111224242A (en) | Integrated frequency selective surface with anisotropic wave-transmitting band | |
CN206727193U (en) | A kind of dual-band and dual-polarization low pass high resistance type frequency-selective surfaces | |
CN112952367A (en) | Novel ultra-wideband circularly polarized back cavity crossed dipole antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |