CN112834786B - Three-dimensional manipulation of nanoparticles based on scanning probes - Google Patents
Three-dimensional manipulation of nanoparticles based on scanning probes Download PDFInfo
- Publication number
- CN112834786B CN112834786B CN202110026544.5A CN202110026544A CN112834786B CN 112834786 B CN112834786 B CN 112834786B CN 202110026544 A CN202110026544 A CN 202110026544A CN 112834786 B CN112834786 B CN 112834786B
- Authority
- CN
- China
- Prior art keywords
- probe
- scanning
- particles
- scanning probe
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q20/00—Monitoring the movement or position of the probe
- G01Q20/02—Monitoring the movement or position of the probe by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/10—STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于扫描探针的纳米颗粒三维操控装置及方法。该装置包括一个导电且表面镀有低表面能涂层的扫描探针,以及扫描模块和观测模块。利用观测模块观测扫描探针及纳米颗粒的位置;扫描模块根据观测模块收集的位置图像,将扫描探针移动到纳米颗粒的附近,并通过在探针表面施加电压信号来调控探针与纳米颗粒之间的相互作用,最终可以实现三维空间上单个纳米颗粒的拾取、转移和放置。本发明通过对扫描探针的电压信号进行调控,进而引入介电泳力实现对其表面能的调节,能够高效可控地重复实现对纳米颗粒的操控。
The invention discloses a nanoparticle three-dimensional manipulation device and method based on a scanning probe. The device includes a scanning probe that is conductive and coated with a low surface energy coating, as well as a scanning module and an observation module. The observation module is used to observe the position of the scanning probe and the nanoparticle; the scanning module moves the scanning probe to the vicinity of the nanoparticle according to the position image collected by the observation module, and regulates the probe and the nanoparticle by applying a voltage signal on the surface of the probe The interaction between them can finally realize the pick-up, transfer and placement of single nanoparticles in three-dimensional space. In the invention, the voltage signal of the scanning probe is regulated, and the dielectrophoretic force is introduced to realize the regulation of the surface energy thereof, so that the nano-particle can be controlled efficiently and repeatedly.
Description
技术领域technical field
本发明涉及纳米尺度器件的技术领域,具体涉及一种基于扫描探针的纳米颗粒三维操控方法。The invention relates to the technical field of nanoscale devices, in particular to a three-dimensional manipulation method of nanoparticles based on a scanning probe.
背景技术Background technique
随着量子和纳米光学的发展,纳米器件和结构集成的研究引起了很多人的关注。经证实,使用扫描探针对纳米物体的操控是一个能够应用在诸多领域且具有广阔前景的方法。其无论是在生物化学的研究还是纳米结构的制备等广泛领域都发挥着重要的作用。With the development of quantum and nano-optics, the research of nano-device and structural integration has attracted a lot of attention. The manipulation of nano-objects using scanning probes has proven to be a promising method that can be applied in many fields. It plays an important role in a wide range of fields such as biochemical research and nanostructure preparation.
现有一些用于操控纳米颗粒的方法,是使用扫描探针通过“推”和“拉”的方式操控纳米颗粒在一个平整表面上二维移动。由于二维移动的局限性,导致这些方法不能实现纳米颗粒在不同高度的平面或不同平台上的转移,因此也就限制了其在实际纳米器件制备中的应用。为了解决这个问题,就需要使用扫描探针实现在垂直方向上的纳米操控,即通过“拾取”和“放置”的方法,实现对纳米颗粒的三维操控。Some existing methods for manipulating nanoparticles use scanning probes to "push" and "pull" the nanoparticles to move two-dimensionally on a flat surface. Due to the limitation of 2D mobility, these methods cannot realize the transfer of nanoparticles on planes with different heights or on different platforms, thus limiting their application in practical nanodevice fabrication. In order to solve this problem, it is necessary to use scanning probes to realize nano-manipulation in the vertical direction, that is, to achieve three-dimensional manipulation of nanoparticles by means of "pick-up" and "place".
目前,有研究提出使用近场光力对液体环境中的颗粒进行俘获的方法,但由于这种方法只能限定在液体环境中,因此无法应用在纳米器件的制备上。究其原因,由于在“拾取”和“放置”过程中,要求探针-颗粒之间的作用力分别大于和小于样品-颗粒之间的作用力,导致目前没有有效的方法能够实现大气环境中固-气界面上可控且可重复的纳米颗粒的拾取与放置的方法。At present, some studies have proposed a method of using near-field optical force to capture particles in a liquid environment, but since this method can only be limited in a liquid environment, it cannot be applied to the preparation of nanodevices. The reason is that in the process of "pickup" and "placement", the force between the probe and the particle is required to be larger and smaller than the force between the sample and the particle, respectively, resulting in no effective method to achieve the atmospheric environment. Method for controllable and repeatable pick-and-place of nanoparticles at solid-air interfaces.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明提供一种基于扫描探针的纳米颗粒三维操控方法,能够有效且可控地实现在大气环境中,对单个纳米颗粒在三维空间上的可重复转移和操控。In view of the above problems, the present invention provides a three-dimensional manipulation method of nanoparticles based on a scanning probe, which can effectively and controllably realize the repeatable transfer and manipulation of single nanoparticles in three-dimensional space in an atmospheric environment.
本发明的装置采用的技术方案如下:The technical scheme adopted by the device of the present invention is as follows:
基于扫描探针的纳米颗粒三维操控装置,包括扫描探针、扫描模块和观测模块,所述扫描探针导电且表面镀有低表面能涂层;所述观测模块用于实时观测扫描探针和纳米颗粒的位置;所述扫描模块根据观测模块收集的位置图像,用于控制扫描探针在三维空间上的位移和扫描,并调控扫描探针表面的电压信号。A three-dimensional manipulation device for nanoparticles based on a scanning probe, comprising a scanning probe, a scanning module and an observation module, the scanning probe is conductive and coated with a low surface energy coating; the observation module is used for real-time observation of the scanning probe and The position of the nanoparticle; the scanning module is used to control the displacement and scanning of the scanning probe in the three-dimensional space according to the position image collected by the observation module, and regulate the voltage signal on the surface of the scanning probe.
进一步地,所述纳米颗粒放置在衬底上,衬底的表面镀有导电层。Further, the nanoparticles are placed on a substrate, and the surface of the substrate is coated with a conductive layer.
进一步地,所述观测模块为光学显微镜的成像系统或者电子显微镜的成像系统。Further, the observation module is an imaging system of an optical microscope or an imaging system of an electron microscope.
本发明利用上述装置进行操控的方法,具体步骤包括:利用观测模块观测扫描探针及纳米颗粒的位置;扫描模块根据观测模块收集的位置图像,将扫描探针移动到纳米颗粒的附近,然后在扫描探针表面施加电压,使得探针与颗粒之间的作用能大于颗粒与衬底之间的作用能,从而将纳米颗粒拾取;随后控制扫描探针移动到指定位置,通过施加调制电压的方式降低在扫描探针表面施加的电压强度,使得探针与颗粒之间的作用能小于颗粒与衬底之间的作用能,最终实现纳米颗粒从探针表面脱附,放置在指定位置。The present invention uses the above-mentioned device to control the method, and the specific steps include: using the observation module to observe the position of the scanning probe and the nanoparticle; the scanning module moves the scanning probe to the vicinity of the nanoparticle according to the position image collected by the observation module, and then the A voltage is applied to the surface of the scanning probe, so that the interaction energy between the probe and the particle is greater than the interaction energy between the particle and the substrate, so as to pick up the nanoparticle; then the scanning probe is controlled to move to a designated position by applying a modulated voltage. The voltage intensity applied on the surface of the scanning probe is reduced, so that the interaction energy between the probe and the particle is smaller than the interaction energy between the particle and the substrate, and finally the nanoparticles are desorbed from the surface of the probe and placed at the designated position.
本发明通过对扫描探针的电压信号进行调控,进而引入介电泳力实现对其表面能的调节,能够高效可控地实现对纳米颗粒的操控,具有以下有益效果:The present invention regulates the voltage signal of the scanning probe, and then introduces dielectrophoretic force to realize the regulation of its surface energy, which can efficiently and controllably realize the manipulation of nanoparticles, and has the following beneficial effects:
(1)本发明采用扫描探针直接对纳米颗粒进行操控,能够在纳米精度的定位下,简单有效且可重复地实现对单个纳米颗粒在三维空间上的拾取、转移和放置。(1) The present invention uses a scanning probe to directly manipulate nanoparticles, and can simply, effectively and repeatably realize the picking, transferring and placing of single nanoparticles in three-dimensional space under the positioning of nanometer precision.
(2)本发明不需要特殊的使用环境,可直接在大气环境下应用。(2) The present invention does not require a special use environment, and can be directly applied in the atmospheric environment.
(3)本发明对操控的纳米颗粒的材料没有要求,能够应用于多种材料的纳米颗粒。(3) The present invention does not require the material of the nanoparticles to be manipulated, and can be applied to nanoparticles of various materials.
附图说明Description of drawings
图1是本发明基于扫描探针的纳米颗粒三维操控装置的结构示意图。其中,1-观测模块、2-样品衬底、3-纳米颗粒、4-扫描探针、5-扫描模块。FIG. 1 is a schematic structural diagram of a nanoparticle three-dimensional manipulation device based on a scanning probe according to the present invention. Among them, 1-observation module, 2-sample substrate, 3-nanoparticles, 4-scanning probe, 5-scanning module.
图2是观测模块中光学显微镜成像系统的结构示意图。其中,6-光源、7-物镜、8-半透半反镜、9-滤色片、10-光学相机。FIG. 2 is a schematic structural diagram of the optical microscope imaging system in the observation module. Among them, 6-light source, 7-objective lens, 8-transflective mirror, 9-color filter, 10-optical camera.
具体实施方式Detailed ways
下面结合附图对本发明进行详细的介绍。应理解下述具体实施方式仅用于说明本发明并不用于限制本发明的范围。The present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the following specific embodiments are only used to illustrate the present invention and not to limit the scope of the present invention.
参见图1,本实施例一种基于扫描探针的纳米颗粒三维操控装置,包括扫描探针4、样品衬底2、纳米颗粒3、扫描模块5、观测模块1。Referring to FIG. 1 , a scanning probe-based three-dimensional manipulation device for nanoparticles in this embodiment includes a
其中,观测模块1可以是光学显微镜的成像系统,也可以是电子显微镜的成像系统。如图2举例的光学显微镜的成像系统,其包括光源6、物镜7、半透半反镜8、滤色片9和光学相机10。光源6发出的光经半透半反镜8和物镜7后聚焦于样品上,进而由样品发出的光学信号被物镜7收集后,再经过滤色片9后成像于光学相机10。光源6包括白光源和多种波长的激光光源,经光源6照射后,纳米颗粒3发出的光包括反射光、散射光和荧光,经过滤色片9滤出所需的光信号后,将所需光信号成像于光学相机10,进而可以通过光学相机10的图像对纳米颗粒的位置进行定位。The
样品衬底2为透明衬底,通过在衬底表面镀上导电层来增加探针在施加电压信号时针尖表面的电场局域性。纳米颗粒3可以是多种材料的纳米尺度的颗粒,可以使用溶液旋涂的方式制备一种单分散且粒径分布均匀的纳米颗粒样品。The
扫描探针4是一种通过等离子沉积的方法,在表面镀有碳氟化合物的导电探针,通过扫描模块5在纳米精度下控制探针的位移。当扫描探针4的针尖降低到样品衬底2的表面时,选择合适的光源和照明角度来确定探针针尖在光学相机视场中的位置,再结合之前确定的纳米颗粒3的位置,在扫描模块5的控制下,将扫描探针4移动到纳米颗粒3的附近(小于10μm),随后进行小范围扫描。首先,在探针表面施加电压(-10V)。此时,由于“避雷针效应”,探针针尖附近的电场强度极强,因此纳米颗粒3受到探针针尖的介电泳力的作用,纳米颗粒3与探针针尖的表面结合能其中和Edie分别为探针与颗粒之间的范德华力和介电泳力的作用能。在探针扫描过程中,虽然探针在各个位置停留时间短(小于0.1s),但是由于探针的高频率振动(>140kHz),探针与颗粒多次接触(大于10000次),因此颗粒与探针或衬底吸附的概率服从玻尔兹曼分布函数,P~exp(-U/kbT),其中U=-Etip,U=-Esub分别对应探针与样品衬底的表面能。通过调节扫描探针4上的电压信号,引入介电泳力的作用,进而改变探针与颗粒之间作用能的大小Etip>Esub,使颗粒从衬底表面吸附到探针针尖。The
纳米颗粒3被扫描探针4成功吸附后,结合观测模块1的定位,利用扫描模块5控制探针的位移,将纳米颗粒3移动到指定位置。最后调控探针表面的电压信号(三角脉冲电压,±10V,100Hz),进而调节探针与纳米颗粒之间的作用能Etip<Esub,使颗粒从探针表面脱附并放置其在指定位置上。After the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110026544.5A CN112834786B (en) | 2021-01-08 | 2021-01-08 | Three-dimensional manipulation of nanoparticles based on scanning probes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110026544.5A CN112834786B (en) | 2021-01-08 | 2021-01-08 | Three-dimensional manipulation of nanoparticles based on scanning probes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112834786A CN112834786A (en) | 2021-05-25 |
CN112834786B true CN112834786B (en) | 2022-05-17 |
Family
ID=75929183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110026544.5A Active CN112834786B (en) | 2021-01-08 | 2021-01-08 | Three-dimensional manipulation of nanoparticles based on scanning probes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112834786B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ309695B6 (en) * | 2021-10-01 | 2023-08-02 | Ústav Přístrojové Techniky Av Čr, V.V.I. | Optomechanical system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100484867C (en) * | 2004-10-22 | 2009-05-06 | 中国科学院上海应用物理研究所 | Methods for Isolating and Replacing Nanoparticles |
US8287653B2 (en) * | 2007-09-17 | 2012-10-16 | Rave, Llc | Debris removal in high aspect structures |
JP2015227800A (en) * | 2014-05-30 | 2015-12-17 | 大日本印刷株式会社 | Foreign matter removal method using scan type probe microscope and probe for fine foreign matter removal used in the method |
-
2021
- 2021-01-08 CN CN202110026544.5A patent/CN112834786B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112834786A (en) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101964291B (en) | Transmission electron microscope microgrid and its preparation method | |
CN100335968C (en) | Nanostructures | |
KR101247619B1 (en) | Apparatus and Method for nanoscale laser sintering of metal nanoparticles | |
JP5680552B2 (en) | Method of forming nanowires and related optical component manufacturing method | |
CN112834786B (en) | Three-dimensional manipulation of nanoparticles based on scanning probes | |
US7018944B1 (en) | Apparatus and method for nanoscale pattern generation | |
TW201038946A (en) | Probe and method for attaching a conductive particle to the apex of a tip | |
WO2018196319A1 (en) | Carbon nano-dot photoresist with fluorescent effect, and imaging method thereof | |
CN113649584A (en) | Growth method of laser-induced morphology-controllable gold or gold composite nanostructure and application thereof | |
WO2017028341A1 (en) | Method for generating single-cell three-dimensional image based on optical flow analysis | |
JP2008521623A (en) | How to make functionalized nanorods | |
JP4714877B2 (en) | Minute substance fixing device and minute substance fixing method | |
CN109841549B (en) | Method for lossless transfer of self-supporting low-dimensional material | |
CN105137586B (en) | Tunable Trapping and Screening of Particles Over Graphene Substrates by Linearly Polarized Plane Lightwaves | |
CN109502543B (en) | A nanomanipulator | |
Balmes et al. | Cryo-TEM observation of 3-dimensionally ordered aggregates of 5-nm gold particles in organic solvents | |
Cheng et al. | Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup | |
CN115728520A (en) | A Nanoscale Correlative Imaging System Based on Integrated Tip Microlenses | |
CN105116534B (en) | Method for capturing and screening particle above topological insulator substrate in tunable manner through linearly-polarized planar optical wave | |
CN109734048B (en) | A kind of processing method of near-infrared photoelectric device | |
CN112897458A (en) | Assembling and fixing method of medium nano particles based on optical tweezers system | |
JP5447759B2 (en) | Fine particle fixing device and fine particle fixing method | |
CN117471674B (en) | High-precision and low-cost transfer manipulation platform based on one-dimensional nanowire visualization | |
JP2004344854A (en) | Method of forming fine particles accumulated body | |
CN209635895U (en) | A nanomanipulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |