CN111900207A - A SiC floating junction UMOSFET device integrated with a new etching process JBS and its preparation method - Google Patents
A SiC floating junction UMOSFET device integrated with a new etching process JBS and its preparation method Download PDFInfo
- Publication number
- CN111900207A CN111900207A CN202010614515.6A CN202010614515A CN111900207A CN 111900207 A CN111900207 A CN 111900207A CN 202010614515 A CN202010614515 A CN 202010614515A CN 111900207 A CN111900207 A CN 111900207A
- Authority
- CN
- China
- Prior art keywords
- region
- epitaxial layer
- metal
- injection region
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/668—Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/106—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
- H10D62/107—Buried supplementary regions, e.g. buried guard rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
- H10D62/156—Drain regions of DMOS transistors
- H10D62/157—Impurity concentrations or distributions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/64—Electrodes comprising a Schottky barrier to a semiconductor
- H10D64/647—Schottky drain or source electrodes for IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/101—Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
- H10D84/141—VDMOS having built-in components
- H10D84/146—VDMOS having built-in components the built-in components being Schottky barrier diodes
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明涉及一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件及其制备方法,该MOSFET器件包括:N+衬底层、第一N‑外延层、P+离子注入区、第二N‑外延层、第一P+注入区、第二P+注入区、栅电极、第一P‑阱区、第二P‑阱区、第一N+注入区、第二N+注入区、第一金属、第二金属和漏电极,第一P+注入区和第二P+注入区之间的第二N‑外延层形成间隔区,第一金属与第一P+注入区、第二P+注入区和第二N+注入区的接触界面形成欧姆接触,第二金属与间隔区的上表面形成肖特基接触。通过肖特基接触,提升了器件续流能力,降低器件制备成本。同时在反向阻断情况下提高了耐压能力,减小了反向漏电,提高器件的抗雪崩能力,可以有效防止槽栅拐角处强电场引发的可靠性问题。
The invention relates to a SiC floating junction UMOSFET device integrated with a novel etching process JBS and a preparation method thereof. The MOSFET device comprises: an N+ substrate layer, a first N- epitaxial layer, a P+ ion implantation region, a second N- epitaxial layer, first P+ implant, second P+ implant, gate electrode, first P-well, second P-well, first N+ implant, second N+ implant, first metal, second metal, and leakage pole, the second N-epitaxial layer between the first P+ implanted region and the second P+ implanted region forms a spacer, the contact interface of the first metal with the first P+ implanted region, the second P+ implanted region and the second N+ implanted region An ohmic contact is formed, and the second metal forms a Schottky contact with the upper surface of the spacer. Through the Schottky contact, the freewheeling capability of the device is improved and the fabrication cost of the device is reduced. At the same time, in the case of reverse blocking, the withstand voltage capability is improved, the reverse leakage is reduced, the avalanche resistance of the device is improved, and the reliability problem caused by the strong electric field at the corner of the trench gate can be effectively prevented.
Description
技术领域technical field
本发明属于微电子技术领域,具体涉及集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件及其制备方法。The invention belongs to the technical field of microelectronics, and in particular relates to a SiC floating junction UMOSFET device integrated with a novel etching process JBS and a preparation method thereof.
背景技术Background technique
近年来,随着电力电子系统的不断发展,对系统中的功率器件提出了更高的要求。硅(Si)基电力电子器件由于材料本身的限制已无法满足系统应用的要求,碳化硅(SiC)材料作为第三代半导体材料的代表,在诸多特性上均远好于硅材料。碳化硅MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)器件作为近些年商业化的器件,在导通电阻、开关时间、开关损耗和散热性能等方面,均有着替代现有IGBT((Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)的巨大潜力。In recent years, with the continuous development of power electronic systems, higher requirements have been placed on the power devices in the system. Silicon (Si)-based power electronic devices have been unable to meet the requirements of system applications due to the limitations of the material itself. Silicon carbide (SiC) materials, as the representative of the third-generation semiconductor materials, are far better than silicon materials in many characteristics. Silicon carbide MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, Metal-Oxide-Semiconductor Field-Effect Transistor) devices, as commercialized devices in recent years, have alternatives in terms of on-resistance, switching time, switching loss and heat dissipation performance. The huge potential of the existing IGBT (Insulated Gate Bipolar Transistor, Insulated Gate Bipolar Transistor).
现阶段通过集成了结势垒肖特基二极管的碳化硅MOSFET器件可解决由于碳化硅材料的禁带宽度较大引起的问题。由于碳化硅材料的禁带宽度较大,碳化硅MOSFET器件内部集成的寄生PiN二极管开启电压大多在3V左右,无法为碳化硅MOSFET器件本身提供续流作用。因此,在全桥等电力电子系统应用中,经常要反并联一个肖特基二极管作为续流二极管使用,增加了肖特基接触区面积;在阻断模式下,槽栅拐角处栅氧会引起强会场。At present, the problem caused by the large forbidden band width of the silicon carbide material can be solved by the silicon carbide MOSFET device integrating the junction barrier Schottky diode. Due to the large forbidden band width of SiC material, the turn-on voltage of the parasitic PiN diode integrated in the SiC MOSFET device is mostly around 3V, which cannot provide the freewheeling effect for the SiC MOSFET device itself. Therefore, in power electronic system applications such as full bridges, a Schottky diode is often used in anti-parallel as a freewheeling diode, which increases the area of the Schottky contact area; in blocking mode, the gate oxide at the corner of the trench gate will cause Strong venue.
但是,由于碳化硅材料的禁带宽度较大,集成传统结势垒肖特基二极管的碳化硅MOSFET器件仍然存在问题。碳化硅MOSFET器件内部本身的续流能力弱,在全桥等电力电子系统应用中,较大的肖特基接触区面积使碳化硅MOSFET器件正常工作时有较大的泄漏电流,增加了芯片制造成本;在阻断模式下,会导致栅极的电压应力过大、降低器件抗雪崩能力,同时槽栅拐角处栅氧的强会场会引发一系列可靠性的问题。However, due to the large forbidden band width of SiC materials, there are still problems in SiC MOSFET devices integrating conventional junction-barrier Schottky diodes. The freewheeling capability of the SiC MOSFET device itself is weak. In the application of power electronic systems such as full bridges, the larger Schottky contact area makes the SiC MOSFET device have a larger leakage current during normal operation, which increases chip manufacturing. Cost; in blocking mode, the voltage stress of the gate will be too large, reducing the avalanche resistance of the device, and the strong field of gate oxide at the corner of the trench gate will cause a series of reliability problems.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a SiC floating junction UMOSFET device integrated with a novel etching process JBS and a preparation method thereof. The technical problem to be solved by the present invention is realized by the following technical solutions:
本发明的一个实施例提供了一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件,包括:An embodiment of the present invention provides a SiC floating junction UMOSFET device integrated with a novel etching process JBS, including:
N+衬底层;N+ substrate layer;
第一N-外延层,设置于所述N+衬底层的上表面;a first N- epitaxial layer, disposed on the upper surface of the N+ substrate layer;
P+离子注入区,位于所述第一N-外延层内部;The P+ ion implantation region is located inside the first N- epitaxial layer;
设置有第一沟槽和第二沟槽的第二N-外延层,设置于所述第一N-外延层的上表面,所述第一沟槽和所述第二沟槽相邻间隔设置;A second N- epitaxial layer provided with a first trench and a second trench is disposed on the upper surface of the first N- epitaxial layer, and the first trench and the second trench are arranged adjacent to each other and spaced apart ;
第一P+注入区,围绕所述第一沟槽的侧面和地面设置;a first P+ implantation region, arranged around the side surface and the ground of the first trench;
第二P+注入区,围绕所述第二沟槽的侧面和地面设置;a second P+ implantation region, arranged around the side surface and the ground of the second trench;
栅电极,位于所述第二N-外延层的第三沟槽内;a gate electrode, located in the third trench of the second N- epitaxial layer;
栅介质层,围绕所述栅电极的侧面和底面设置,且与所述第一P+注入区、所述第二P+注入区间隔设置,所述栅介质层与所述第二P+注入区分别设置于所述第一P+注入区的两侧;a gate dielectric layer, arranged around the side and bottom surface of the gate electrode, and spaced from the first P+ injection region and the second P+ injection region, and the gate dielectric layer and the second P+ injection region are respectively arranged on both sides of the first P+ implantation region;
第一P-阱区,位于所述第二N-外延层内部,设置于所述栅介质层远离所述第一P+注入区的一侧;a first P-well region, located inside the second N- epitaxial layer, and disposed on a side of the gate dielectric layer away from the first P+ implantation region;
第二P-阱区,位于所述第二N-外延层内部,设置于所述栅介质层与所述第一P+注入区之间;a second P-well region, located inside the second N- epitaxial layer, and disposed between the gate dielectric layer and the first P+ implantation region;
第一N+注入区,位于所述第二N-外延层内部,且位于所述第一P-阱区上方;a first N+ implantation region located inside the second N- epitaxial layer and above the first P-well region;
第二N+注入区,位于所述第二N-外延层内部,且位于所述第二P-阱区上方;a second N+ implantation region located inside the second N- epitaxial layer and above the second P- well region;
第一金属,覆于所述第一P+注入区的上表面及所述第一沟槽表面、所述第二P+注入区的上表面及所述第二沟槽表面和所述第二N+注入区的部分上表面,所述第一金属与所述第一P+注入区、所述第二P+注入区和所述第二N+注入区的接触界面为欧姆接触;a first metal covering the upper surface of the first P+ implantation region and the first trench surface, the upper surface of the second P+ implantation region and the second trench surface and the second N+ implantation Part of the upper surface of the region, the contact interface between the first metal and the first P+ implantation region, the second P+ implantation region and the second N+ implantation region is an ohmic contact;
第二金属,覆于所述第一P+注入区和所述第二P+注入区之间的所述第二N-外延层的表面,所述第二金属与所述第二N-外延层的接触界面为肖特基接触;a second metal, covering the surface of the second N- epitaxial layer between the first P+ implantation region and the second P+ implantation region, the second metal and the second N- epitaxial layer The contact interface is Schottky contact;
漏电极,设置于所述N+衬底层的下表面。The drain electrode is arranged on the lower surface of the N+ substrate layer.
在本发明的一个实施例中,所述P+离子注入区包括第一浮动结、第二浮动结和第三浮动结,其中,In an embodiment of the present invention, the P+ ion implantation region includes a first floating junction, a second floating junction and a third floating junction, wherein,
所述第一浮动结位于所述第一P-阱区下方,所述第二浮动结位于所述第二P-阱区和部分所述第一P+注入区的下方,所述第三浮动结位于部分所述第二P+注入区下方。The first floating junction is located under the first P-well region, the second floating junction is located under the second P-well region and part of the first P+ implantation region, and the third floating junction under a portion of the second P+ implanted region.
在本发明的一个实施例中,所述第一P+注入区的深度大于所述栅介质层的深度。In an embodiment of the present invention, the depth of the first P+ implantation region is greater than the depth of the gate dielectric layer.
在本发明的一个实施例中,所述第二P+注入区的深度大于所述栅介质层的深度。In an embodiment of the present invention, the depth of the second P+ implantation region is greater than the depth of the gate dielectric layer.
在本发明的一个实施例中,所述栅电极的材料为多晶硅。In an embodiment of the present invention, the material of the gate electrode is polysilicon.
在本发明的一个实施例中,所述第一金属的材料为铝。In an embodiment of the present invention, the material of the first metal is aluminum.
在本发明的一个实施例中,所述第二金属的材料为钛、镍、钼或钨。In an embodiment of the present invention, the material of the second metal is titanium, nickel, molybdenum or tungsten.
本发明的一个实施例提供了一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件的制备方法,包括:An embodiment of the present invention provides a preparation method of a SiC floating junction UMOSFET device integrated with a novel etching process JBS, including:
在N+衬底层的上表面生长第一N-外延层;growing a first N- epitaxial layer on the upper surface of the N+ substrate layer;
在所述第一N-外延层的上表面进行选择性离子注入形成P+离子注入区;Perform selective ion implantation on the upper surface of the first N- epitaxial layer to form a P+ ion implantation region;
在所述第一N-外延层和所述P+离子注入区上生长第二N-外延层;growing a second N- epitaxial layer on the first N- epitaxial layer and the P+ ion implantation region;
在所述第二N-外延层上进行刻蚀形成第一沟槽和第二沟槽,所述第一沟槽和所述第二沟槽间隔分布;Etching is performed on the second N-epitaxial layer to form a first trench and a second trench, and the first trench and the second trench are spaced apart;
在所述第一沟槽的凹槽表面进行离子注入形成第一P+注入区,在所述第二沟槽的凹槽表面进行离子注入形成第二P+注入区,所述第一P+注入区和所述第二P+注入区之间的所述第二N-外延层形成间隔区;Ion implantation is performed on the groove surface of the first trench to form a first P+ implantation region, and ion implantation is performed on the groove surface of the second trench to form a second P+ implantation region. The first P+ implantation region and the second N- epitaxial layer between the second P+ implanted regions forms spacers;
在所述第二N-外延层上远离所述第二沟槽的一侧进行阱注入形成第三P-阱区,在所述第三P-阱区内进行N离子注入形成第三N+注入区,所述第三N+注入区位于所述第三P-阱区的上方;Well implantation is performed on the side of the second N- epitaxial layer away from the second trench to form a third P-well region, and N ion implantation is performed in the third P-well region to form a third N+ implantation region, the third N+ implantation region is located above the third P-well region;
对所述第三P-阱区下表面目标深度的所述第二N-外延层、所述第三P-阱区和所述第三N+注入区进行刻蚀形成第三沟槽,所述第三沟槽将所述第三P-阱区分为第一P-阱区和第二P-阱区,所述第三沟槽将所述第三N+注入区分为第一N+注入区和第二N+注入区;A third trench is formed by etching the second N- epitaxial layer, the third P-well region and the third N+ implantation region at a target depth on the lower surface of the third P-well region. A third trench divides the third P-well region into a first P-well region and a second P-well region, the third trench divides the third N+ implant region into a first N+ implant region and a second P-well region Two N+ injection regions;
在所述第三沟槽表面生长栅介质层,在所述栅介质层上进行沉积生成栅电极;A gate dielectric layer is grown on the surface of the third trench, and a gate electrode is formed by depositing on the gate dielectric layer;
在所述第一P+注入区的上表面及所述第一沟槽的表面、所述第二P+注入区的上表面及第二沟槽的表面和所述第二N+注入区的部分上表面沉积第一金属,所述第一金属与所述第一P+注入区、所述第二P+注入区和所述第二N+注入区的接触界面形成欧姆接触;On the upper surface of the first P+ implantation region and the surface of the first trench, the upper surface of the second P+ implantation region and the surface of the second trench and part of the upper surface of the second N+ implantation region depositing a first metal, and the first metal forms an ohmic contact with the contact interface of the first P+ implantation region, the second P+ implantation region and the second N+ implantation region;
在所述第一P+注入区和所述第二P+注入区之间的所述第二N-外延层的上表面沉积第二金属,所述第二金属与所述第二N-外延层的接触界面形成肖特基接触,所述第一金属和所述第二金属为源电极;A second metal is deposited on the upper surface of the second N- epitaxial layer between the first P+ implantation region and the second P+ implantation region, and the second metal and the second N- epitaxial layer are The contact interface forms a Schottky contact, and the first metal and the second metal are source electrodes;
在所述N+衬底层的下表面沉积金属生成漏电极。A drain electrode is formed by depositing metal on the lower surface of the N+ substrate layer.
在本发明的一个实施例中,所述第一金属与所述第一P+注入区、所述第二P+注入区和所述第二N+注入区的接触界面形成欧姆接触,包括:In an embodiment of the present invention, the first metal forms an ohmic contact with the contact interface of the first P+ implantation region, the second P+ implantation region and the second N+ implantation region, including:
所述第一金属与所述第一P+注入区、所述第二P+注入区和所述第二N+注入区的接触界面通过快速热退火工艺形成欧姆接触。The contact interface between the first metal and the first P+ implantation region, the second P+ implantation region and the second N+ implantation region forms an ohmic contact through a rapid thermal annealing process.
在本发明的一个实施例中,所述第二金属与所述第二N-外延层的接触界面形成肖特基接触,包括:In an embodiment of the present invention, the contact interface between the second metal and the second N-epitaxial layer forms a Schottky contact, including:
所述第二金属与所述第二N-外延层的接触界面通过低温快速热退火工艺形成肖特基接触。The contact interface between the second metal and the second N- epitaxial layer forms a Schottky contact through a low temperature rapid thermal annealing process.
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
1、本发明的SiC浮结UMOSFET器件,通过在第一N-外延层进行选择性离子注入形成P+离子注入区,即在第一N-外延层中加入浮动结,在阻断模式下可有效提升器件的反向耐压能力,进一步提高了器件的开关特性。1. The SiC floating junction UMOSFET device of the present invention forms a P+ ion implantation region by performing selective ion implantation in the first N- epitaxial layer, that is, adding a floating junction in the first N- epitaxial layer, which can be effective in blocking mode. The reverse voltage withstand capability of the device is improved, and the switching characteristics of the device are further improved.
2、本发明的SiC浮结UMOSFET器件,在器件内部形成了肖特基二极管,即通过第一P+注入区和第二P+注入区之间的间隔与第二金属的界面形成肖特基接触,避免了在电力电子系统应用过程中需要反并联额外的肖特基二极管作为续流二极管,提升了器件的续流能力和抗雪崩能力,同时改善了器件的开关特性,降低器件制备成本。2. The SiC floating junction UMOSFET device of the present invention forms a Schottky diode inside the device, that is, a Schottky contact is formed with the interface of the second metal through the interval between the first P+ implantation region and the second P+ implantation region, It avoids the need for an additional Schottky diode in anti-parallel as a freewheeling diode in the application process of the power electronic system, improves the freewheeling capability and anti-avalanche capability of the device, improves the switching characteristics of the device, and reduces the fabrication cost of the device.
3、本发明的SiC浮结UMOSFET器件,通过在肖特基接触区刻槽,使反向阻断情况下电场远离界面,提高了耐压能力,减小了反向漏电,提高器件的抗雪崩能力。同时刻槽有助于增加第一P+注入区和第二P+注入区的深度,可以有效防止器件槽栅拐角处强电场引发的可靠性问题。3. In the SiC floating junction UMOSFET device of the present invention, by carving grooves in the Schottky contact area, the electric field is kept away from the interface in the case of reverse blocking, the withstand voltage capability is improved, the reverse leakage is reduced, and the avalanche resistance of the device is improved. ability. Simultaneously etched grooves help to increase the depths of the first P+ injection region and the second P+ injection region, which can effectively prevent reliability problems caused by strong electric fields at the corners of the trench gate of the device.
附图说明Description of drawings
图1为本发明实施例提供的一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件的截面结构示意图;1 is a schematic cross-sectional structure diagram of a SiC floating junction UMOSFET device integrated with a novel etching process JBS provided by an embodiment of the present invention;
图2为本发明实施例提供的一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件的制备方法的流程图;2 is a flowchart of a method for preparing a SiC floating junction UMOSFET device integrating novel etching process JBS provided by an embodiment of the present invention;
图3a~图3i为本发明实施例提供的一种SiC浮结UMOSFET器件的制备过程示意图。3a to 3i are schematic diagrams of a fabrication process of a SiC floating junction UMOSFET device according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.
需要说明的是,本实施例中提到的“上”“下”“左”“右”为该SiC浮结UMOSFET器件结构处于图示状态时的位置关系,“长”为该SiC浮结UMOSFET器件结构处于图示状态时的横向尺寸,“深”为该SiC浮结UMOSFET器件结构处于图示状态时的纵向尺寸。It should be noted that the "up", "down", "left" and "right" mentioned in this embodiment are the positional relationship when the device structure of the SiC floating junction UMOSFET is in the state shown in the figure, and "long" refers to the SiC floating junction UMOSFET The lateral dimension of the device structure in the illustrated state, and "depth" is the vertical dimension of the SiC floating junction UMOSFET device structure in the illustrated state.
实施例一Example 1
请参见图1,图1为本发明实施例提供的一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件的截面结构示意图。一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件,包括:Please refer to FIG. 1. FIG. 1 is a schematic cross-sectional structure diagram of a SiC floating junction UMOSFET device integrated with a novel etching process JBS according to an embodiment of the present invention. A SiC floating junction UMOSFET device integrated with a new etching process JBS, including:
N+衬底层1;
第一N-外延层2,设置于N+衬底层1的上表面;The first N-
P+离子注入区3,位于第一N-外延层2内部;The P+
设置有第一沟槽16和第二沟槽17的第二N-外延层4,设置于第一N-外延层2的上表面,第一沟槽16和第二沟槽17相邻间隔设置;The second N-
第一P+注入区5,围绕第一沟槽16的侧面和地面设置;The first
第二P+注入区6,围绕第二沟槽17的侧面和地面设置;The second
栅电极8,位于第二N-外延层4的第三沟槽21内;The
栅介质层7,围绕栅电极8的侧面和底面设置,且与第一P+注入区5、第二P+注入区6间隔设置,栅介质层7与第二P+注入区6分别设置于第一P+注入区5的两侧;The
第一P-阱区9,位于第二N-外延层4内部,设置于栅介质层7远离第一P+注入区5的一侧;The first P-
第二P-阱区10,位于第二N-外延层4内部,设置于栅介质层7与第一P+注入区5之间;The second P-
第一N+注入区11,位于第二N-外延层4内部,且位于第一P-阱区9上方;The first
第二N+注入区12,位于第二N-外延层4内部,且位于第二P-阱区10上方;The second
第一金属13,覆于第一P+注入区5的上表面及第一沟槽16表面、第二P+注入区6的上表面及第二沟槽17表面和第二N+注入区12的部分上表面,第一金属13与第一P+注入区5、第二P+注入区6和第二N+注入区12的接触界面为欧姆接触;The
第二金属14,覆于第一P+注入区5和第二P+注入区6之间的第二N-外延层4的表面,第二金属14与第二N-外延层4的接触界面为肖特基接触;The
漏电极15,设置于N+衬底层1的下表面。The
进一步地,P+离子注入区3包括第一浮动结31、第二浮动结32和第三浮动结33,其中,Further, the P+
第一浮动结31位于第一P-阱区9下方,第二浮动结32位于第二P-阱区10和部分第一P+注入区5的下方,第三浮动结33位于部分第二P+注入区6下方。The first floating
在本实施例中,第一N-外延层2内部注入P+离子(浮动结)形成P+离子注入区3,可有效提升器件的反向耐压能力。P+离子注入区3包括三个水平分布的浮动结,第一浮动结31位于第一P-阱区9下方,第二浮动结32位于第二P-阱区10及部分第一P+注入区5下方,第三浮动结33位于部分第二P+注入区6下方。P+离子注入区3的深度范围为0.5μm~1μm、宽度范围为0.5μm~1.5μm,优选地,P+离子注入区3的深度为1μm、宽度为1.5μm、掺杂浓度均为6×1017cm-3。In this embodiment, P+ ions (floating junction) are implanted inside the first N-
第一金属13与第一P+注入区5、第二P+注入区6和第二N+注入区12的目标界面为欧姆接触;第二金属14与其覆盖的第一P+注入区5和第二P+注入区6的界面为肖特基接触。即在SiC浮结UMOSFET器件内集成了肖特基二极管结构,避免了在应用过程中需要反并联额外的肖特基二极管作为续流二极管,提升了器件续流能力,从而降低器件制备成本。同时,首先在第二N-外延层4上进行刻蚀形成第一沟槽16第二沟槽17,再进行离子注入形成第一P+注入区5第二P+注入区6,有助于增加第一P+注入区5和第二P+注入区6的深度,第一P+注入区5可保护栅介质层7和栅电极8,使其电压应力不致过大,同时可使肖特基二极管的漏电流变小,提高了器件的抗雪崩能力。The target interface between the
进一步地,欧姆接触与肖特基接触连接形成SiC浮结UMOSFET器件的源电极。Further, the ohmic contact is connected with the Schottky contact to form the source electrode of the SiC floating junction UMOSFET device.
在本实施例中,N+衬底层1的深度范围为200μm~500μm,优选地,N+衬底层1的深度为350μm、掺杂浓度为5×1018cm-3。In this embodiment, the depth of the
第一N-外延层2的深度范围为3μm~100μm,优选地,第一N-外延层2的深度为10μm、掺杂浓度为6×1015cm-3。The depth of the first N-
第二N-外延层4的深度范围为3μm~7μm,优选地,第二N-外延层4的深度为6μm、掺杂浓度为6×1015cm-3。The depth of the second N-
进一步地,第一P+注入区5的深度大于栅介质层7的深度。Further, the depth of the first
进一步地,第二P+注入区6的深度大于栅介质层7的深度。Further, the depth of the second
第一P+注入区5和第二P+注入区6的深度相同,深度范围均为2μm~6μm,宽度范围均为0.5μm~1μm,同时,第一P+注入区5和第二P+注入区6的间隔区的宽度范围为1.5μm~5μm,优选地,第一P+注入区5和第二P+注入区6的间隔区的宽度为2μm,第一P+注入区5和第二P+注入区6的掺杂浓度均为1×1019cm-3,若间隔区的宽度太小,将导致肖特基接触的区域无法很好的导通;若间隔区的宽度太大,将导致SiC浮结UMOSFET器件的漏电流过大、器件面积过大,不利于器件性能的提高。The depths of the first
第一P-阱区9和第二P-阱区10的掺杂浓度均为5×1016cm-3。The doping concentrations of the first P-
第一N+注入区11和第二N+注入区12的掺杂浓度均为1×1019cm-3。The doping concentrations of the first
进一步地,栅电极8的材料为多晶硅。Further, the material of the
进一步地,第一金属13的材料为铝。Further, the material of the
进一步地,第二金属14的材料为钛、镍、钼或钨。Further, the material of the
进一步地,漏电极15的材料为钛、镍或银。Further, the material of the
进一步地,栅介质层7为二氧化硅材料。Further, the
实施例二
请参见图2和图3a~图3i,图2为本发明实施例提供的一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件的制备方法的流程图;图3a~图3i为本发明实施例提供的一种SiC浮结UMOSFET器件的制备过程示意图。一种集成新型刻蚀工艺JBS的SiC浮结UMOSFET器件的制备方法,包括:Please refer to FIG. 2 and FIG. 3a to FIG. 3i. FIG. 2 is a flowchart of a method for preparing a SiC floating junction UMOSFET device integrating a novel etching process JBS provided by an embodiment of the present invention; The example provides a schematic diagram of the preparation process of a SiC floating junction UMOSFET device. A preparation method of a SiC floating junction UMOSFET device integrated with a new etching process JBS, comprising:
步骤1、在N+衬底层1的上表面生长第一N-外延层2。
请再参见图3a,先对碳化硅材料的N+衬底层1进行RCA标准清洗,其深度可以为350μm、掺杂浓度可以为5×1018cm-3,然后通过外延生长方法在N+衬底层1上生长厚度为10μm、掺杂浓度为6×1015cm-3的第一N-外延层2。Please refer to Fig. 3a again. First, the
步骤2、在第一N-外延层2的上表面进行选择性离子注入形成P+离子注入区3。
请再参见图3b,对部分第一N-外延层2的上表面进行AI离子注入形成P+离子注入区3。P+离子注入区3包括三个水平分布的浮动结,第一浮动结31位于第一P-阱区9下方,第二浮动结32位于第二P-阱区10及部分第一P+注入区5下方,第三浮动结33位于部分第二P+注入区6下方。P+离子注入区3的深度范围为0.5μm~1μm、宽度范围为0.5μm~1.5μm,优选地,P+离子注入区3的深度为1μm、宽度为1.5μm、掺杂浓度均为6×1017cm-3。Referring to FIG. 3 b again, AI ion implantation is performed on a part of the upper surface of the first N−
步骤3、在第一N-外延层2和P+离子注入区3上生长第二N-外延层4。
请再参见图3c,在第一N-外延层2和P+离子注入区3上采用外延生长的方法生成第二N-外延层4,第二N-外延层4的深度范围为3μm~7μm,优选地,第二N-外延层4的深度为6μm、掺杂浓度为6×1015cm-3。Referring to FIG. 3c again, a second N-
步骤4、在第二N-外延层4上进行刻蚀形成第一沟槽16和第二沟槽17,第一沟槽16和第二沟槽17间隔分布。
请再参见图3d,在第二N-外延层4上沉积厚度为2μm的光刻胶形成第一掩模层,通过光刻刻蚀工艺形成第一掩模图形,再通过ICP刻蚀方法形成第一沟槽16和第二沟槽17,第一沟槽16和第二沟槽17的深度范围均为0.5μm~2.5μm、宽度范围均为0.5μm~1.5μm,优选地,第一沟槽16和第二沟槽17的深度均为1.5μm、宽度均为1μm。沟槽深度太大,会增加制作难度;沟槽深度太小,会增加结深作用不明显。沟槽宽度太大,会浪费SiC浮结UMOSFET器件的面积;沟槽宽度太小,不利于相应结深的增加。Referring to FIG. 3d again, a photoresist with a thickness of 2 μm is deposited on the second N-
步骤5、在第二N-外延层4上远离第二沟槽17的一侧进行阱注入形成第三P-阱区19,在第三P-阱区19内进行N离子注入形成第三N+注入区20,第三N+注入区20位于第三P-阱区19的上方。
请再参见图3f,通过清洗方法去除第一掩模层,在已去除第一掩模层的第二N-外延层4的上表面沉积光刻胶形成第二掩模层,通过光刻刻蚀工艺形成第二掩模图形,在第二N-外延层4上远离第二沟槽17的一侧进行阱注入,注入AI离子形成第三P-阱区19,在第三P-阱区19内进行N离子注入形成第三N+注入区20。Referring to FIG. 3f again, the first mask layer is removed by a cleaning method, a photoresist is deposited on the upper surface of the second N-
步骤6、在第一沟槽16的凹槽表面进行离子注入形成第一P+注入区5,在第二沟槽17的凹槽表面进行离子注入形成第二P+注入区6,第一P+注入区5和第二P+注入区6之间的第二N-外延层4形成间隔区18。Step 6: Perform ion implantation on the groove surface of the
请再参见图3e,通过清洗方法去除第二掩模层,在已去除第二掩模层的第二N-外延层4的上表面沉积光刻胶形成第三掩模层,通过光刻刻蚀工艺形成第三掩模图形。通过AI离子注入方法在第一沟槽16的凹槽表面形成P+注入区的初步结构,然后进行激活形成第一P+注入区5,然后在第二沟槽17的凹槽表面形成P+注入区的初步结构,然后进行激活形成第二P+注入区6,第一P+注入区5和第二P+注入区6之间的第二N-外延层4为间隔区18。Referring to FIG. 3e again, the second mask layer is removed by a cleaning method, a photoresist is deposited on the upper surface of the second N-
激活的过程包括:通过碳膜溅射机在第二N-外延层4表面溅射形成碳膜,通过高温退火方法对注入的AI离子进行激活,退火的温度为1650℃,退火的时间为45min,然后通过氧化方法去除碳膜。碳膜溅射机的型号例如可以为JCPY500。The activation process includes: sputtering a carbon film on the surface of the second N-
第一P+注入区5的深度和第二P+注入区6的深度相同,其深度范围均为2μm~6μm,宽度范围均为0.5μm~1μm,并且均大于第三P-阱区19的深度。间隔区18的宽度范围为1.5μm~5μm,第一P+注入区5的宽度大于第一沟槽16的宽度,第二P+注入区6的宽度大于第二沟槽17的宽度。The depth of the first
优选地,间隔区18的宽度为2μm。间隔区18的宽度太小,其对应的肖特基接触区域无法良好的导通;间隔区18的宽度太大,器件的漏电流变大,器件面积变大,不利于器件性能的提高。Preferably, the width of the
步骤7、对第三P-阱区19下表面目标深度的第二N-外延层4、第三P-阱区19和第三N+注入区20进行刻蚀形成第三沟槽21,第三沟槽21将第三P-阱区19分为第一P-阱区9和第二P-阱区10,第三沟槽21将第三N+注入区20分为第一N+注入区11和第二N+注入区12。
请再参见图3g,通过清洗方法去除第三掩模层,在已去除第三掩模层的第二N-外延层4的上表面沉积光刻胶形成第四掩模层,通过光刻刻蚀工艺形成第四掩模图形,再通过ICP刻蚀方法形成第三沟槽21。Referring to FIG. 3g again, the third mask layer is removed by a cleaning method, photoresist is deposited on the upper surface of the second N-
第三沟槽21的深度范围为1μm~3μm、宽度范围为0.5μm~2μm。第三沟槽21的深度太大,会增加制作难度;第三沟槽21的深度太小,会增加结深作用不明显。第三沟槽21的宽度太大,会浪费SiC浮结UMOSFET器件的面积;第三沟槽21的宽度太小,不利于结深的增加。The depth of the
步骤8、在第三沟槽21表面生长栅介质层7,在栅介质层7上进行沉积生成栅电极8。
请再参见图3g,栅介质层7和栅电极8的形成过程包括:对第三沟槽21表面进行牺牲氧化,形成牺牲氧化层;去除牺牲氧化层后,在去除牺牲氧化层后的第三沟槽21表面沉积一层二氧化硅形成隔离介质层;通过热氧化方法生长一层二氧化硅形成栅介质层7,完成热氧化后在一氧化氮氛围内退火,退火温度为1200℃,退火时间为1h;通过化学气相沉积法沉积一层高掺的多晶硅,然后通过光刻和刻蚀等现有工艺形成栅电极8。Referring to FIG. 3g again, the formation process of the
步骤9、在第一P+注入区5的上表面及第一沟槽16的表面、第二P+注入区6的上表面及第二沟槽17的表面和第二N+注入区12的部分上表面沉积第一金属13,第一金属13与第一P+注入区5、第二P+注入区6和第二N+注入区12的接触界面形成欧姆接触。
进一步地,第一金属13与第一P+注入区5、第二P+注入区6的接触界面形成欧姆接触,包括:Further, the contact interface between the
第一金属13与第一P+注入区5、第二P+注入区6的接触界面通过快速热退火工艺形成欧姆接触。The contact interface between the
请再参见图3h,通过快速热退火工艺形成欧姆接触的具体过程包括:先采用光刻刻蚀等现有工艺,暴露第一沟槽16和第二沟槽17的表面;然后,将第一金属13沉积在第一P+注入区5的上表面及凹槽表面、第二P+注入区6的上表面及凹槽表面和第二N+注入区12的目标上表面,在氩气氛围下通过快速热退火工艺使第一金属13与第一P+注入区5和第二P+注入区6的接触面形成电极图形,即欧姆接触。退火温度为1000℃,退火时间为3min,第一金属13可以为铝材料。Referring to FIG. 3h again, the specific process of forming the ohmic contact by the rapid thermal annealing process includes: first, the surfaces of the
步骤10、在第一P+注入区5和第二P+注入区6之间的第二N-外延层4的上表面沉积第二金属14,第二金属14与第二N-外延层4的接触界面形成肖特基接触,第一金属13和第二金属14为源电极。
进一步地,第二金属14与第二N-外延层4的接触界面形成肖特基接触,包括:第二金属14与第二N-外延层4通过低温快速热退火工艺形成肖特基接触。Further, forming a Schottky contact at the contact interface between the
请再参见图3h,通过低温快速热退火工艺形成肖特基接触的具体过程包括:先对第一N-外延层2背面的金属进行保护,并在间隔区18的上表面进行光刻刻蚀形成肖特基接触窗口,同时将第二金属14沉积在间隔区18的上表面,通过低温快速热退火工艺使间隔区18的上表面与第二金属14的界面形成肖特基接触。退火温度为500℃,退火时间为2min,第二金属14可以为钛材料。Referring to FIG. 3h again, the specific process of forming the Schottky contact by the low-temperature rapid thermal annealing process includes: firstly protecting the metal on the backside of the first N-
第一金属13和第二金属14接触连接,为SiC浮结UMOSFET器件的源电极。The
步骤11、在N+衬底层1的下表面沉积金属生成漏电极15。
请再参见图3i,通过快速热退火工艺在N+衬底层1的下表面沉积一层厚金属生成漏电极15的一部分,厚金属可以为钛、镍或银材料。Referring to FIG. 3i again, a part of the
在本发明的描述中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。In the description of the present invention, the terms "first", "second" and "third" are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first", "second", "third" may expressly or implicitly include one or more of that feature.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010614515.6A CN111900207A (en) | 2020-06-30 | 2020-06-30 | A SiC floating junction UMOSFET device integrated with a new etching process JBS and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010614515.6A CN111900207A (en) | 2020-06-30 | 2020-06-30 | A SiC floating junction UMOSFET device integrated with a new etching process JBS and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111900207A true CN111900207A (en) | 2020-11-06 |
Family
ID=73207963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010614515.6A Pending CN111900207A (en) | 2020-06-30 | 2020-06-30 | A SiC floating junction UMOSFET device integrated with a new etching process JBS and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111900207A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114864388A (en) * | 2022-04-21 | 2022-08-05 | 西安电子科技大学 | Surrounding N + region floating junction power device based on epitaxial growth process and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013243207A (en) * | 2012-05-18 | 2013-12-05 | Toyota Central R&D Labs Inc | Semiconductor device including silicon carbide single crystal as main material |
CN103904117A (en) * | 2012-12-27 | 2014-07-02 | 现代自动车株式会社 | Semiconductor device and method for fabricating the same |
CN109065540A (en) * | 2018-08-06 | 2018-12-21 | 中国科学院半导体研究所 | A kind of structure and preparation method of the SiC UMOSFET of integrated SBD |
CN109742148A (en) * | 2019-01-16 | 2019-05-10 | 厦门芯光润泽科技有限公司 | Silicon carbide UMOSFET device and preparation method thereof |
CN109755322A (en) * | 2019-02-14 | 2019-05-14 | 厦门芯光润泽科技有限公司 | Silicon carbide MOSFET device and preparation method thereof |
-
2020
- 2020-06-30 CN CN202010614515.6A patent/CN111900207A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013243207A (en) * | 2012-05-18 | 2013-12-05 | Toyota Central R&D Labs Inc | Semiconductor device including silicon carbide single crystal as main material |
CN103904117A (en) * | 2012-12-27 | 2014-07-02 | 现代自动车株式会社 | Semiconductor device and method for fabricating the same |
CN109065540A (en) * | 2018-08-06 | 2018-12-21 | 中国科学院半导体研究所 | A kind of structure and preparation method of the SiC UMOSFET of integrated SBD |
CN109742148A (en) * | 2019-01-16 | 2019-05-10 | 厦门芯光润泽科技有限公司 | Silicon carbide UMOSFET device and preparation method thereof |
CN109755322A (en) * | 2019-02-14 | 2019-05-14 | 厦门芯光润泽科技有限公司 | Silicon carbide MOSFET device and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114864388A (en) * | 2022-04-21 | 2022-08-05 | 西安电子科技大学 | Surrounding N + region floating junction power device based on epitaxial growth process and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111403486B (en) | Groove type MOSFET structure and manufacturing method thereof | |
US8786011B2 (en) | Semiconductor device | |
CN106783851B (en) | SiCJFET device integrated with Schottky diode and manufacturing method thereof | |
CN114823911B (en) | Trench silicon carbide MOSFET with integrated high-speed freewheeling diode and preparation method thereof | |
WO2024216880A1 (en) | Heterojunction-based silicon carbide trench-gate mosfet and manufacturing method therefor | |
CN109755322B (en) | Silicon carbide MOSFET device and preparation method thereof | |
WO2012131768A1 (en) | Silicon carbide semiconductor device and method for producing same | |
CN116995099B (en) | A voltage-clamped silicon carbide trench gate MOSFET device and its manufacturing method | |
CN117276347B (en) | High reliability double trench silicon carbide MOSFET device and manufacturing method | |
CN116387362A (en) | HJD integrated SiC UMOSFET device and preparation method thereof | |
CN117525154B (en) | Dual trench silicon carbide MOSFET device and manufacturing method thereof | |
CN113972261A (en) | Silicon carbide semiconductor device and preparation method | |
TW201327819A (en) | Trench type MOS transistor crystal element and manufacturing method thereof | |
CN116895699A (en) | Cascade trench MOSFET with heterojunction and preparation method | |
CN111755521A (en) | A Silicon Carbide UMOSFET Device with Integrated TJBS | |
CN111900208A (en) | Silicon carbide UMOSFET device integrated with novel JBS (patterned junction barrier layer) etching process and preparation method thereof | |
CN118693160B (en) | Silicon carbide MOSFET device with gate oxide protection structure and preparation method | |
CN112838126B (en) | Asymmetric silicon carbide UMOSFET device with shielding area and preparation method | |
CN112820777B (en) | A silicon carbide UMOSFET device with integrated SBD and a preparation method thereof | |
CN111900207A (en) | A SiC floating junction UMOSFET device integrated with a new etching process JBS and its preparation method | |
CN109686792B (en) | Normally-off SiC-based DMOSFET device and preparation method thereof | |
CN111986991A (en) | Groove etching method, silicon carbide device preparation method and silicon carbide device | |
CN214378459U (en) | A Silicon Carbide UMOSFET Device with Integrated SBD | |
CN115295614B (en) | Silicon carbide JFET structure and preparation method thereof | |
CN214378460U (en) | An Asymmetric Silicon Carbide UMOSFET Device with Shielded Region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201106 |