CN111769906B - Data transmission method and device for adaptively reducing processing delay of coding layer and link layer - Google Patents
Data transmission method and device for adaptively reducing processing delay of coding layer and link layer Download PDFInfo
- Publication number
- CN111769906B CN111769906B CN202010604028.1A CN202010604028A CN111769906B CN 111769906 B CN111769906 B CN 111769906B CN 202010604028 A CN202010604028 A CN 202010604028A CN 111769906 B CN111769906 B CN 111769906B
- Authority
- CN
- China
- Prior art keywords
- link layer
- data
- message
- layer message
- llp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 111
- 238000012545 processing Methods 0.000 title claims abstract description 83
- 230000005540 biological transmission Effects 0.000 title claims abstract description 43
- 238000012937 correction Methods 0.000 claims abstract description 70
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 14
- 238000012795 verification Methods 0.000 claims description 11
- 230000001934 delay Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 238000012163 sequencing technique Methods 0.000 claims description 7
- 238000012217 deletion Methods 0.000 claims description 6
- 230000037430 deletion Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 description 35
- 238000007726 management method Methods 0.000 description 24
- 208000018721 fetal lung interstitial tumor Diseases 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 230000006978 adaptation Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0061—Error detection codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
- H04L1/0042—Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
Description
技术领域technical field
本发明涉及通讯芯片领域,具体涉及一种自适应降低编码层和链路层处理延迟的数据传输方法及装置。The invention relates to the field of communication chips, in particular to a data transmission method and device for adaptively reducing the processing delay of the coding layer and the link layer.
背景技术Background technique
在通讯芯片中,数据链路层(LLP)和物理编码层(PCS)位于事务层和物理介质之间。如图1所示,编码层(PCS)负责按照物理介质的特殊要求,将链路层(LLP)的数据进行编码和解码,而链路层(LLP)采用重传机制负责报文的可靠传输,事务层和物理介质之间的数据收发需要经过数据链路层和物理编码子层才能实现。目前,物理介质的传输速率已经达到25Gbps~50Gbps。在该速率范围下,为了保证数据传输的正确性,IEEE的802.3cd标准的编码层使用向前纠错编码(FEC)以纠正数据传输中的差错。对于超过FEC纠错能力范围的差错,链路层通过重传差错报文进一步保证数据的可靠传输。In a communication chip, the data link layer (LLP) and the physical coding layer (PCS) are located between the transaction layer and the physical medium. As shown in Figure 1, the coding layer (PCS) is responsible for encoding and decoding the data of the link layer (LLP) according to the special requirements of the physical medium, and the link layer (LLP) adopts the retransmission mechanism to be responsible for the reliable transmission of the message , the data transmission and reception between the transaction layer and the physical medium can only be realized through the data link layer and the physical coding sublayer. At present, the transmission rate of physical media has reached 25Gbps~50Gbps. In this rate range, in order to ensure the correctness of data transmission, the coding layer of the IEEE 802.3cd standard uses forward error correction coding (FEC) to correct errors in data transmission. For errors that exceed the error correction capability of FEC, the link layer further ensures reliable data transmission by retransmitting error packets.
如图2所示为现有技术的链路层和物理层数据传输的处理流程。事务层的数据传输以报文为单位,每个报文包含多个固定长度为256位的分片(FLIT),报文以分片为单位顺序进入链路层。数据发送端的处理流程为:产生CRC:链路层CRC产生逻辑计算报文数据的CRC校验和并将其填写在报文尾FLIT固定域。重传管理:链路层将报文序列号(SEQ)填写在报文首FLIT固定域并发送给编码层,同时将报文复制到重传管理逻辑以备可能发生的报文重传。64/66编码和速率匹配:编码层将256位的报文FLIT进行64/66编码产生264位数据块。264/257编码:编码层将264位数据块压缩编码为257位的数据块。加扰:编码层对数据进行加扰,加扰的多项式为X^X39^X58。其中X代表当前加扰的数据位,X39和X58分别代表当前数据的前39 和58 位,^为异或运算符。插入对齐标记:编码层周期性的向数据中插入特定符号串作为FEC块的对齐标记,插入周期为4096个FEC块,每个FEC块包含5140位用户数据。FEC编码:编码层对每个FEC块5140位用户数据产生300位的校验和,并将校验和插入FEC块尾部。符号分发:编码层将数据以10位符号为单位顺序轮转发送到4个物理介质的适配层接口。数据接收端的处理流程为:通道锁定对齐和重定序:编码层从4个物理介质的适配层接口接收数据,识别数据中各自包含的对齐标记,依据对齐标记重新排列4路数据,对齐数据并上送。FEC解码:编码层对每个5440位FEC块解码。如果配置使能了旁路纠错功能,则在校验和验算后直接取出FEC块的5140位用户数据并上送;否则,根据FEC块的300位校验和验算5140位用户数据的正确性,如果错误则进行纠错处理。删除对齐标记:编码层删除数据中周期性出现的FEC块对齐标记。解扰:编码层对数据进行解扰,解扰的多项式为X^X39^X58。257/264解码:编码层将257位的数据解压缩编码为264位的数据块。66/64解码和速率匹配:编码层将264位的数据块进行66/64解码产生256位数据块并交给链路层。CRC和序列号检查:链路层以报文为单位检查报文的CRC校验和和序列号SEQ,如果正确则上送到数据输出逻辑,否则丢弃报文。数据输出:向事务层输出数据报文。FIG. 2 shows the processing flow of link layer and physical layer data transmission in the prior art. The data transmission at the transaction layer is in units of packets, each packet contains multiple fragments (FLITs) with a fixed length of 256 bits, and the packets enter the link layer sequentially in units of fragments. The processing flow of the data sender is: Generate CRC: The link layer CRC generation logic calculates the CRC checksum of the message data and fills it in the FLIT fixed field at the end of the message. Retransmission management: The link layer fills in the packet sequence number (SEQ) in the FLIT fixed field of the packet header and sends it to the encoding layer, and at the same time copies the packet to the retransmission management logic for possible packet retransmission. 64/66 encoding and rate matching: The encoding layer performs 64/66 encoding on the 256-bit message FLIT to generate 264-bit data blocks. 264/257 encoding: The encoding layer compresses and encodes 264-bit data blocks into 257-bit data blocks. Scrambling: The coding layer scrambles the data, and the scrambling polynomial is X^X39^X58. Where X represents the current scrambled data bits, X39 and X58 represent the first 39 and 58 bits of the current data respectively, and ^ is the exclusive OR operator. Inserting an alignment mark: The coding layer periodically inserts a specific symbol string into the data as the alignment mark of the FEC block. The insertion period is 4096 FEC blocks, and each FEC block contains 5140 bits of user data. FEC encoding: The encoding layer generates a 300-bit checksum for each FEC block of 5140 bits of user data, and inserts the checksum at the end of the FEC block. Symbol distribution: The coding layer transmits data to the adaptation layer interface of the four physical media sequentially and in turn in units of 10-bit symbols. The processing flow of the data receiving end is: channel lock alignment and resequencing: the coding layer receives data from the adaptation layer interfaces of the four physical media, identifies the alignment marks contained in the data, rearranges the 4-way data according to the alignment marks, aligns the data and send. FEC decoding: The encoding layer decodes each 5440-bit FEC block. If the bypass error correction function is enabled in the configuration, the 5140-bit user data of the FEC block is directly taken out after the checksum is checked and sent; otherwise, the correctness of the 5140-bit user data is checked according to the 300-bit checksum of the FEC block. , if there is an error, error correction is performed. Remove alignment marks: The coding layer removes FEC block alignment marks that appear periodically in the data. Descramble: The encoding layer descrambles the data, and the descrambling polynomial is X^X39^X58. 257/264 decoding: The encoding layer decompresses and encodes 257-bit data into 264-bit data blocks. 66/64 decoding and rate matching: The encoding layer performs 66/64 decoding on the 264-bit data block to generate a 256-bit data block and sends it to the link layer. CRC and sequence number check: The link layer checks the CRC checksum and sequence number SEQ of the message in units of messages. If it is correct, it will be sent to the data output logic, otherwise the message will be discarded. Data output: output data packets to the transaction layer.
在上述链路层和物理层的数据传输处理流程中,用户可以通过使能/去能配置管理模块的旁路纠错功能控制FEC解码器工作模式:如果配置使能旁路纠错,则FEC解码器对每个FEC数据块都不进行误码纠错处理;如果配置去能旁路纠错,则FEC解码器对每个FEC数据块都要进行误码纠错处理。FEC解码器在使能旁路纠错时比去能旁路纠错时的处理延迟高大约50个时钟周期,所以配置旁路纠错通常被认为是一种降低编码层处理延迟的方法。通常,配置使能/去能旁路纠错的基本原则是:如果底层物理介质不存在误码,则通过配置使能旁路纠错功能降低编码层处理延迟;否则,如果底层物理介质存在误码,则配置去能旁路纠错功能;在配置了去能旁路纠错后,如果FEC解码出现不可纠错,则数据链路层将会通过重传保证数据的可靠性,而如果FEC解码只有可纠错,则意味着达到了向前纠错的目的。但是,现有技术及其配置方法存在着以下的突出问题:(1)难以适应物理介质误码情况的变化性。在实际应用系统中,由于受到温度、湿度、电磁等多种环境因素的影响,网络底层物理介质的误码情况是动态变化的。现有技术通常依据物理介质在训练阶段的误码情况静态选择配置,因此难以适应其变化性,而如果采用依据物理介质的当前状态动态选择配置,则动态配置变化又会带来用户报文丢失严重错误问题。(2)难以适应事务层报文与FEC块的粒度差异性。事务层报文和FEC数据块定义于不同的网络层次中而且其粒度具有差异性(通常FEC大小固定,而事务层数据为变长报文),因此即使底层物理介质存在着误码,也并不意味着每个FEC块都需要纠错处理。即使单个FEC数据块需要经过纠错处理,也并不意味着FEC块内的每个事务层报文需要经过纠错处理。现有技术将底层物理介质存在误码的情况配置为去能旁路纠错功能,使得该情况下所有的事务层报文传输都具有较大的固定FEC解码延迟。现有技术的以上两种难以适应的情况会最终导致链路层和编码层处理流程存在重传率高或平均传输延迟大等缺点。In the data transmission process flow of the above link layer and physical layer, the user can control the working mode of the FEC decoder by enabling/disabling the bypass error correction function of the configuration management module: if the bypass error correction is enabled in the configuration, the FEC The decoder does not perform error correction processing on each FEC data block; if the disable bypass error correction is configured, the FEC decoder must perform error correction processing on each FEC data block. The processing delay of an FEC decoder with error correction bypass enabled is about 50 clock cycles higher than that with error correction bypass enabled, so configuring bypass error correction is generally considered as a way to reduce the processing delay of the coding layer. Generally, the basic principle of enabling/disabling bypass error correction is: if there is no bit error in the underlying physical medium, configure the enabling bypass error correction function to reduce the processing delay of the coding layer; otherwise, if there is an error in the underlying physical medium If the FEC decoding fails to correct the error, the data link layer will ensure the reliability of the data through retransmission, and if the FEC Decoding can only correct errors, which means that the purpose of forward error correction is achieved. However, the prior art and its configuration method have the following outstanding problems: (1) It is difficult to adapt to the variability of the bit error situation of the physical medium. In practical application systems, due to the influence of various environmental factors such as temperature, humidity, and electromagnetism, the bit error situation of the underlying physical medium of the network changes dynamically. In the prior art, the configuration is usually statically selected according to the bit error situation of the physical medium in the training phase, so it is difficult to adapt to its variability. If the configuration is dynamically selected according to the current state of the physical medium, the dynamic configuration change will bring about loss of user packets. Serious error problem. (2) It is difficult to adapt to the granularity difference between transaction layer packets and FEC blocks. Transaction layer packets and FEC data blocks are defined in different network layers and their granularity is different (usually, the FEC size is fixed, while the transaction layer data is a variable-length packet). It does not mean that error correction processing is required for each FEC block. Even if a single FEC data block needs to undergo error correction processing, it does not mean that each transaction layer packet in the FEC block needs to undergo error correction processing. In the prior art, when the underlying physical medium has bit errors, it is configured to disable and bypass the error correction function, so that in this case, all transaction layer message transmissions have a relatively large fixed FEC decoding delay. The above two situations that are difficult to adapt to in the prior art will eventually lead to disadvantages such as high retransmission rate or large average transmission delay in the processing flow of the link layer and the coding layer.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题:针对现有技术的上述问题,提供一种自适应降低编码层和链路层处理延迟的数据传输方法及装置,本发明以事务层报文为控制粒度,依据物理介质误码情况自动选择是否进行FEC解码器的纠错处理,从而自适应降低编码层和链路层处理延迟,从而达到以事务层报文为粒度自动适应物理介质误码情况的动态变化而降低编码层和链路层的处理延迟的目的。The technical problem to be solved by the present invention: in view of the above-mentioned problems of the prior art, a data transmission method and device for adaptively reducing the processing delay of the coding layer and the link layer are provided. The medium error condition automatically selects whether to perform error correction processing of the FEC decoder, thereby adaptively reducing the processing delay of the coding layer and the link layer, so as to automatically adapt to the dynamic change of the physical medium error condition with the transaction layer message as the granularity. The purpose of the processing delay of the coding layer and the link layer.
为了解决上述技术问题,本发明采用的技术方案为:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:
一种自适应降低编码层和链路层处理延迟的数据传输方法,该方法包括下述步骤:A data transmission method for adaptively reducing the processing delay of the coding layer and the link layer, the method comprises the following steps:
1)PCS层针对接收到的目标报文的待FEC解码数据分别生成经FEC解码的第一路数据、不经FEC解码的第二路数据,分别将第一路数据生成链路层报文A并输出到LLP层;将第二路数据生成链路层报文B输出到LLP层;1) The PCS layer generates the first channel of data decoded by FEC and the second channel of data not decoded by FEC for the received data of the target packet to be FEC decoded, respectively, and generates the link layer packet A from the first channel of data. And output it to the LLP layer; generate the link layer packet B of the second channel of data and output it to the LLP layer;
2)LLP层先收到链路层报文B并进行CRC和序列号检查,若链路层报文B检查通过则丢弃后续到达的链路层报文A、将链路层报文B作为正确的结果输出,结束;否则若链路层报文B检查发现错误,则执行下一步;2) The LLP layer first receives the link layer packet B and checks the CRC and serial number. If the link layer packet B passes the check, it discards the link layer packet A that arrives later, and uses the link layer packet B as the link layer packet. If the correct result is output, end; otherwise, if the link layer packet B checks and finds an error, go to the next step;
3)判断链路层报文B的检查结果中发现的错误是否为可纠错的误码,若为可纠错的误码,则对链路层报文B进行纠错后作为正确的结果输出,结束;否则,丢弃链路层报文B并等待后续到达的链路层报文A,跳转执行步骤4);3) Determine whether the error found in the inspection result of the link layer packet B is a correctable error code. If it is a correctable error code, correct the link layer packet B as the correct result. Output, end; otherwise, discard the link layer packet B and wait for the subsequent link layer packet A, and skip to step 4);
4)LLP层收到链路层报文A并进行CRC和序列号检查,若链路层报文A检查通过则将链路层报文A作为正确的结果输出,结束;否则若链路层报文A检查发现错误,则启动目标报文的报文重传。 4) The LLP layer receives the link layer message A and checks the CRC and serial number. If the link layer message A passes the check, it outputs the link layer message A as the correct result, and ends; otherwise, if the link layer If packet A checks and finds an error, it starts the packet retransmission of the target packet.
可选地,步骤1)之前还包括PCS层针对接收到的目标报文进行通道锁定对齐和重定序以得到待FEC解码数据的步骤。Optionally, before step 1), the PCS layer further includes the step of performing channel lock alignment and re-sequencing on the received target packet to obtain the data to be decoded by FEC.
可选地,步骤1)中生成经FEC解码的第一路数据、不经FEC解码的第二路数据的步骤包括:Optionally, the step of generating the first channel of data decoded by FEC and the second channel of data not decoded by FEC in step 1) includes:
S1)根据输入的每个FEC数据块的前5140位用户数据进行校验和验算,生成检错正误标记和校验和,同时前5140位用户数据写入1级缓存,在1级缓存进行固定数目时钟节拍缓存后作为第二路数据输出,并复制输入给2级缓存进行固定数目时钟节拍缓存;S1) Checksum verification is performed according to the first 5140 bits of user data of each input FEC data block, and the error detection mark and checksum are generated. At the same time, the first 5140 bits of user data are written into the
S2)针对校验和验算的校验和再经过误码量计算得到偏移量和误码量;S2) The offset and the bit error amount are obtained by calculating the bit error amount for the check sum of the checksum verification calculation;
S3)根据偏移量和误码量对2级缓存输出成的用户数据进行纠错,输出纠错成败标记,并将纠错后的数据作为第一路数据输出。S3) Perform error correction on the user data output by the level 2 cache according to the offset and the bit error amount, output the error correction success or failure mark, and output the error-corrected data as the first channel data.
可选地,步骤1)中将第二路数据生成链路层报文B的步骤包括:将第二路数据依次通过删除对齐标记、解扰、257/264编码、66/64解码和速率匹配得到链路层报文B。Optionally, in step 1), the step of generating the link layer message B from the second channel of data includes: sequentially removing the alignment mark, descrambling, 257/264 encoding, 66/64 decoding, and rate matching the second channel of data. Obtain link layer packet B.
可选地,步骤1)中将第一路数据生成链路层报文A的步骤包括:将第一路数据依次通过删除对齐标记、解扰、257/264编码、66/64解码和速率匹配得到链路层报文A。Optionally, the step of generating the link layer message A from the first path of data in step 1) includes: sequentially removing the alignment mark, descrambling, 257/264 encoding, 66/64 decoding, and rate matching the first path of data. Obtain link layer packet A.
此外,本发明还提供一种用于应用前述自适应降低编码层和链路层处理延迟的数据传输方法的自适应降低编码层和链路层处理延迟的数据传输装置,包括LLP发送模块、LLP接收模块、LLP管理模块、PCS发送模块、PCS接收模块,所述LLP管理模块分别与LLP发送模块、LLP接收模块相连,来自物理层的接收信号通过PCS接收模块、LLP接收模块发送给事务层;来自事务层的发送信号通过LLP发送模块、PCS发送模块发送给物理层;其特征在于,所述PCS接收模块包括:In addition, the present invention also provides a data transmission device for adaptively reducing the processing delay of the coding layer and the link layer for applying the aforementioned data transmission method for adaptively reducing the processing delay of the coding layer and the link layer, comprising an LLP sending module, an LLP A receiving module, an LLP management module, a PCS sending module, and a PCS receiving module, the LLP management modules are respectively connected with the LLP sending module and the LLP receiving module, and the received signal from the physical layer is sent to the transaction layer through the PCS receiving module and the LLP receiving module; The sending signal from the transaction layer is sent to the physical layer through the LLP sending module and the PCS sending module; it is characterized in that, the PCS receiving module includes:
通道锁定对齐和重定序模块,用于对PCS接收模块接收的数据进行通道锁定对齐和重定序生成FEC解码数据;The channel lock alignment and resequencing module is used to perform channel lock alignment and resequencing on the data received by the PCS receiving module to generate FEC decoded data;
单入两出FEC解码模块,用于对FEC解码数据分别生成经FEC解码的第一路数据、不经FEC解码的第二路数据;A single-input and two-output FEC decoding module, which is used to generate the FEC-decoded first-path data and the FEC-decoded second-path data respectively for the FEC-decoded data;
子流程A模块,用于将第一路数据生成链路层报文A并输出到LLP层;The sub-process A module is used to generate the link layer message A from the first data and output it to the LLP layer;
子流程B模块,用于将第二路数据生成链路层报文B输出到LLP层;The sub-process B module is used to generate the link layer message B of the second channel of data and output it to the LLP layer;
所述LLP接收模块包括:The LLP receiving module includes:
CRC和序列号检查A模块,用于对链路层报文A进行CRC和序列号检查;CRC and serial number check A module, which is used to check the CRC and serial number of the link layer message A;
CRC和序列号检查B模块,用于对链路层报文B进行CRC和序列号检查;CRC and serial number check B module, which is used to check the CRC and serial number of the link layer message B;
多路选择模块,用于先收到链路层报文B并进行CRC和序列号检查,若链路层报文B检查通过则丢弃后续到达的链路层报文A、将链路层报文B作为正确的结果输出,结束;否则若链路层报文B检查发现错误,则判断链路层报文B的检查结果中发现的错误是否为可纠错的误码,若为可纠错的误码,则将链路层报文B纠错后作为正确的结果输出,结束;否则丢弃链路层报文B并等待后续到达的链路层报文A,收到链路层报文A并进行CRC和序列号检查,若链路层报文A检查通过则将链路层报文A作为正确的结果输出,结束;否则若链路层报文A检查发现错误,则启动目标报文的报文重传。The multiplexing module is used to first receive the link layer packet B and check the CRC and serial number. If the link layer packet B passes the check, discard the link layer packet A that arrives later, and report the link layer packet to the link layer. The message B is output as the correct result and ends; otherwise, if an error is found in the link layer message B check, it is judged whether the error found in the check result of the link layer message B is a correctable error code, if it is a correctable error code If the error code is wrong, the link layer packet B will be corrected and output as the correct result, and the end; otherwise, the link layer packet B will be discarded and the link layer packet A will be waited for the subsequent arrival, and the link layer packet will be received. If the link layer packet A passes the check, the link layer packet A is output as the correct result, and the end is ended; otherwise, if the link layer packet A is checked and found to be wrong, the target is started. Packet retransmission of the packet.
可选地,所述单入两出FEC解码模块包括:Optionally, the single-input two-output FEC decoding module includes:
校验和验算子模块,用于将输入的每个FEC数据块的前5140位用户数据进行校验和验算,生成检错正误标记和校验和;The checksum verification sub-module is used to perform checksum verification on the first 5140 bits of user data of each input FEC data block, and generate error detection positive and error flags and checksums;
1级缓存,用于将输入的每个FEC数据块的前5140位用户数据缓存进行固定数目时钟节拍缓存后作为第二路数据输出,并复制输入给2级缓存;
2级缓存,用于将1级缓存的输出进行固定数目时钟节拍缓存;Level 2 cache, used to cache the output of
误码量计算模块,用于针对校验和验算的校验和再经过误码量计算得到偏移量和误码量;The bit error calculation module is used to calculate the offset and bit error for the checksum calculated by the checksum and then calculate the bit error;
查纠误码模块,用于根据偏移量和误码量对2级缓存输出成的用户数据进行纠错,输出纠错成败标记,并将纠错后的数据作为第一路数据输出。The error correction module is used to correct the user data output from the level 2 cache according to the offset and the error amount, output the error correction success or failure mark, and output the error corrected data as the first channel data.
此外,本发明还提供一种通讯芯片,该通讯芯片中包括前述自适应降低编码层和链路层处理延迟的数据传输装置。In addition, the present invention also provides a communication chip, which includes the aforementioned data transmission device for adaptively reducing the processing delay of the coding layer and the link layer.
此外,本发明还提供一种计算机设备,该计算机设备包含前述的通讯芯片。In addition, the present invention also provides a computer device including the aforementioned communication chip.
此外,本发明还提供一种网络交换设备,该网络交换设备包含前述的通讯芯片。In addition, the present invention also provides a network switching device including the aforementioned communication chip.
和现有技术相比,本发明具有下述优点:本发明以事务层报文为控制粒度,依据物理介质误码情况自动选择是否旁路FEC解码器纠错功能,从而自适应降低编码层和链路层处理延迟,从而达到以事务层报文为粒度自动适应物理介质误码情况的动态变化而降低编码层和链路层的处理延迟的目的。在底层物理介质不存在误码情况下,本发明可自动获得与现有技术方法配置使能旁路纠错功能相同低延迟效果。在底层物理介质存在误码情况下,对于无差错报文,本发明可以获得比现有技术较低的编码层和链路层处理延迟。对于可纠错的差错报文,本发明可以获得与现有技术相等的编码层和链路层处理延迟。对于不可纠错但一次重传后可纠错的差错报文,本发明也可以获得比现有技术较低的编码层和链路层处理延迟。Compared with the prior art, the present invention has the following advantages: the present invention takes the transaction layer message as the control granularity, and automatically selects whether to bypass the error correction function of the FEC decoder according to the bit error situation of the physical medium, thereby adaptively reducing the coding layer and the error correction function. Link layer processing delay, so as to achieve the purpose of automatically adapting to the dynamic change of the physical medium bit error situation with the transaction layer message as the granularity and reducing the processing delay of the coding layer and the link layer. Under the condition that there is no bit error in the underlying physical medium, the present invention can automatically obtain the same low-delay effect as the prior art method of configuring the bypass error correction function. Under the condition that the underlying physical medium has bit errors, for the error-free message, the present invention can obtain a lower processing delay of the coding layer and the link layer than the prior art. For error-correctable error messages, the present invention can obtain coding layer and link layer processing delays equal to those of the prior art. For the error message that is not error-correctable but can be corrected after one retransmission, the present invention can also obtain lower coding layer and link layer processing delay than the prior art.
附图说明Description of drawings
图1为现有技术通讯芯片的框架结构示意图。FIG. 1 is a schematic diagram of a frame structure of a prior art communication chip.
图2为现有技术的标准编码层和链路层处理流程示意图。FIG. 2 is a schematic diagram of the processing flow of the standard coding layer and the link layer in the prior art.
图3为本发明实施例方法的基本流程示意图。FIG. 3 is a schematic diagram of a basic flow of a method according to an embodiment of the present invention.
图4为本发明实施例装置的结构示意图。FIG. 4 is a schematic structural diagram of an apparatus according to an embodiment of the present invention.
图5为本发明实施例方法及装置的单入两出FEC解码处理流程示意图。FIG. 5 is a schematic diagram of a single-input and two-output FEC decoding process flow diagram of the method and apparatus according to an embodiment of the present invention.
图6为现有技术的编码层和链路层处理延迟对比示意图。FIG. 6 is a schematic diagram showing the comparison of processing delays of the coding layer and the link layer in the prior art.
图7为本发明实施例的编码层和链路层处理延迟对比示意图。FIG. 7 is a schematic diagram showing the comparison of processing delays of the coding layer and the link layer according to an embodiment of the present invention.
具体实施方式Detailed ways
如图3,本实施例自适应降低编码层和链路层处理延迟的数据传输方法包括下述步骤:As shown in Figure 3, the data transmission method for adaptively reducing the processing delay of the coding layer and the link layer in this embodiment includes the following steps:
1)PCS层针对接收到的目标报文的待FEC解码数据分别生成经FEC解码的第一路数据、不经FEC解码的第二路数据,分别将第一路数据生成链路层报文A并输出到LLP层;将第二路数据生成链路层报文B输出到LLP层;1) The PCS layer generates the first channel of data decoded by FEC and the second channel of data not decoded by FEC for the received data of the target packet to be FEC decoded, respectively, and generates the link layer packet A from the first channel of data. And output it to the LLP layer; generate the link layer packet B of the second channel of data and output it to the LLP layer;
2)LLP层先收到链路层报文B并进行CRC和序列号检查,若链路层报文B检查通过则丢弃后续到达的链路层报文A、将链路层报文B作为正确的结果输出,结束;否则若链路层报文B检查发现错误,则执行下一步;2) The LLP layer first receives the link layer packet B and checks the CRC and serial number. If the link layer packet B passes the check, it discards the link layer packet A that arrives later, and uses the link layer packet B as the link layer packet. If the correct result is output, end; otherwise, if the link layer packet B checks and finds an error, go to the next step;
3)判断链路层报文B的检查结果中发现的错误是否为可纠错的误码,若为可纠错的误码,则对链路层报文B进行纠错后作为正确的结果输出,结束;否则,丢弃链路层报文B并等待后续到达的链路层报文A,跳转执行步骤4);3) Determine whether the error found in the inspection result of the link layer packet B is a correctable error code. If it is a correctable error code, correct the link layer packet B as the correct result. Output, end; otherwise, discard the link layer packet B and wait for the subsequent link layer packet A, and skip to step 4);
4)LLP层收到链路层报文A并进行CRC和序列号检查,若链路层报文A检查通过则将链路层报文A作为正确的结果输出,结束;否则若链路层报文A检查发现错误,则启动目标报文的报文重传。 4) The LLP layer receives the link layer message A and checks the CRC and serial number. If the link layer message A passes the check, it outputs the link layer message A as the correct result, and ends; otherwise, if the link layer If packet A checks and finds an error, it starts the packet retransmission of the target packet.
参见图3可知,本实施例方法中构造了新的FEC解码处理流程,其特点是单入两出,即输入一路数据,但输出两路数据,该部件简称为单入两出FEC解码器,这区别于现有技术的单入单出FEC解码处理流程,即输入和输出都是一路数据。生成经FEC解码的第一路数据、不经FEC解码的第二路数据后,分别将第一路数据生成链路层报文A并输出到LLP层(称为子流程A);将第二路数据生成链路层报文B输出到LLP层(称为子流程B)。第一路数据的输出处理流程等效于配置去能旁路纠错功能的现有技术FEC解码流程,第二路数据的输出处理流程等效于配置使能旁路纠错功能的现有技术FEC解码流程。与现有功能相比,本实施例方法中精简了配置管理模块及其相关使能/去能的旁路纠错功能配置信号,因为本实施例方法单入两出FEC解码不再需要该配置信号作为其输入控制信号。Referring to Fig. 3, it can be seen that a new FEC decoding processing flow is constructed in the method of this embodiment, which is characterized by a single input and two outputs, that is, one channel of data is input, but two channels of data are output. This is different from the single-input single-output FEC decoding processing flow in the prior art, that is, both input and output are one channel of data. After generating the first channel of data decoded by FEC and the second channel of data not decoded by FEC, respectively generate link layer packet A from the first channel of data and output it to the LLP layer (referred to as sub-process A); Road data generates link layer packet B and outputs it to the LLP layer (referred to as sub-process B). The output processing flow of the first channel of data is equivalent to the prior art FEC decoding process configured to disable the bypass error correction function, and the output processing flow of the second channel of data is equivalent to the prior art configured to enable the bypass error correction function FEC decoding process. Compared with the existing functions, the configuration management module and its related enabling/disabling bypass error correction function configuration signals are simplified in the method of this embodiment, because the method of this embodiment no longer needs the configuration for single-input and two-output FEC decoding. signal as its input control signal.
本实施例中,步骤1)之前还包括PCS层针对接收到的目标报文进行通道锁定对齐和重定序以得到待FEC解码数据的步骤。In this embodiment, before step 1), the PCS layer further includes the step of performing channel lock alignment and re-sequencing on the received target message to obtain the data to be decoded by FEC.
本实施例中,步骤1)中生成经FEC解码的第一路数据、不经FEC解码的第二路数据的步骤包括:In this embodiment, the step of generating the first channel of data decoded by FEC and the second channel of data not decoded by FEC in step 1) includes:
S1)根据输入的每个FEC数据块的前5140位用户数据进行校验和验算,生成检错正误标记和校验和,同时前5140位用户数据写入1级缓存,在1级缓存进行固定数目时钟节拍缓存后作为第二路数据输出,并复制输入给2级缓存进行固定数目时钟节拍缓存;S1) Checksum verification is performed according to the first 5140 bits of user data of each input FEC data block, and the error detection mark and checksum are generated. At the same time, the first 5140 bits of user data are written into the
S2)针对校验和验算的校验和再经过误码量计算得到偏移量和误码量;S2) The offset and the bit error amount are obtained by calculating the bit error amount for the check sum of the checksum verification calculation;
S3)根据偏移量和误码量对2级缓存输出成的用户数据进行纠错,输出纠错成败标记,并将纠错后的数据作为第一路数据输出。S3) Perform error correction on the user data output by the level 2 cache according to the offset and the bit error amount, output the error correction success or failure mark, and output the error-corrected data as the first channel data.
本实施例中,步骤1)中将第二路数据生成链路层报文B的步骤包括:将第二路数据依次通过删除对齐标记、解扰、257/264编码、66/64解码和速率匹配得到链路层报文B。In this embodiment, the step of generating the link layer packet B from the second channel of data in step 1) includes: sequentially removing the alignment mark, descrambling, 257/264 encoding, 66/64 decoding and rate The link layer packet B is obtained by matching.
本实施例中,步骤1)中将第一路数据生成链路层报文A的步骤包括:将第一路数据依次通过删除对齐标记、解扰、257/264编码、66/64解码和速率匹配得到链路层报文A。In this embodiment, the step of generating the link layer message A from the first channel of data in step 1) includes: sequentially removing the alignment mark, descrambling, 257/264 encoding, 66/64 decoding and rate The link layer packet A is obtained by matching.
本实施例中,步骤2)中LLP层先收到链路层报文B并进行CRC和序列号检查,进行CRC和序列号检查时会丢弃CRC校验和检查未通过的报文,也会丢弃序列号SEQ检查未通过的报文。CRC采用CRC-32国际标准,其多项式为:In this embodiment, in step 2), the LLP layer first receives the link layer packet B and checks the CRC and serial number. When checking the CRC and serial number, it discards the packets that fail the CRC checksum check, and also checks the CRC and the serial number. Packets that fail the SEQ check are discarded. CRC adopts the CRC-32 international standard, and its polynomial is:
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 +x 8 +x 7 +x 5 +x 4 +x 2 +x+1
CRC检查重新计算报文数据的CRC校验和,并将其与填写在报文尾FLIT固定域的CRC校验和对比,如果相等则检查通过,否则检查未通过。序列号检查是根据上一个有效报文序列号加1作为下一个报文的期望序列号,将期望序列号与填写在报文首FLIT固定域的序列号SEQ对比,如果相等则检查通过,否则检查未通过。本实施例中,子流程A和子流程B的CRC和序列号检查的输出信号分别接入多路选择器的两路输入信号,多路选择器的输出信号直接接入数据输出逻辑的输入信号。The CRC check recalculates the CRC checksum of the message data, and compares it with the CRC checksum filled in the FLIT fixed field at the end of the message. If they are equal, the check passes, otherwise the check fails. The sequence number check is based on the sequence number of the last valid message plus 1 as the expected sequence number of the next message. The expected sequence number is compared with the sequence number SEQ filled in the FLIT fixed field at the beginning of the message. If they are equal, the check is passed, otherwise Check failed. In this embodiment, the output signals of the CRC and serial number checking of sub-process A and sub-process B are respectively connected to the two input signals of the multiplexer, and the output signal of the multiplexer is directly connected to the input signal of the data output logic.
如图4所示,本实施例自适应降低编码层和链路层处理延迟的数据传输装置包括LLP发送模块、LLP接收模块、LLP管理模块、PCS发送模块、PCS接收模块,所述LLP管理模块分别与LLP发送模块、LLP接收模块相连,来自物理层的接收信号通过PCS接收模块、LLP接收模块发送给事务层;来自事务层的发送信号通过LLP发送模块、PCS发送模块发送给物理层;其特征在于,所述PCS接收模块包括:As shown in FIG. 4 , the data transmission apparatus for adaptively reducing the processing delay of the coding layer and the link layer in this embodiment includes an LLP sending module, an LLP receiving module, an LLP management module, a PCS sending module, and a PCS receiving module. The LLP management module It is respectively connected with the LLP sending module and the LLP receiving module, the received signal from the physical layer is sent to the transaction layer through the PCS receiving module and the LLP receiving module; the sending signal from the transaction layer is sent to the physical layer through the LLP sending module and the PCS sending module; It is characterized in that, the PCS receiving module includes:
通道锁定对齐和重定序模块,用于对PCS接收模块接收的数据进行通道锁定对齐和重定序生成FEC解码数据;The channel lock alignment and resequencing module is used to perform channel lock alignment and resequencing on the data received by the PCS receiving module to generate FEC decoded data;
单入两出FEC解码模块,用于对FEC解码数据分别生成经FEC解码的第一路数据、不经FEC解码的第二路数据;A single-input and two-output FEC decoding module, which is used to generate the FEC-decoded first-path data and the FEC-decoded second-path data respectively for the FEC-decoded data;
子流程A模块,用于将第一路数据生成链路层报文A并输出到LLP层;The sub-process A module is used to generate the link layer message A from the first data and output it to the LLP layer;
子流程B模块,用于将第二路数据生成链路层报文B输出到LLP层;The sub-process B module is used to generate the link layer message B of the second channel of data and output it to the LLP layer;
所述LLP接收模块包括:The LLP receiving module includes:
CRC和序列号检查A模块,用于对链路层报文A进行CRC和序列号检查;CRC and serial number check A module, which is used to check the CRC and serial number of the link layer message A;
CRC和序列号检查B模块,用于对链路层报文B进行CRC和序列号检查;CRC and serial number check B module, which is used to check the CRC and serial number of the link layer message B;
多路选择模块,用于先收到链路层报文B并进行CRC和序列号检查,若链路层报文B检查通过则丢弃后续到达的链路层报文A、将链路层报文B作为正确的结果输出,结束;否则若链路层报文B检查发现错误,则判断链路层报文B的检查结果中发现的错误是否为可纠错的误码,若为可纠错的误码,则将链路层报文B纠错后作为正确的结果输出,结束;否则丢弃链路层报文B并等待后续到达的链路层报文A,收到链路层报文A并进行CRC和序列号检查,若链路层报文A检查通过则将链路层报文A作为正确的结果输出,结束;否则若链路层报文A检查发现错误,则启动目标报文的报文重传。The multiplexing module is used to first receive the link layer packet B and check the CRC and serial number. If the link layer packet B passes the check, discard the link layer packet A that arrives later, and report the link layer packet to the link layer. The message B is output as the correct result and ends; otherwise, if an error is found in the link layer message B check, it is judged whether the error found in the check result of the link layer message B is a correctable error code, if it is a correctable error code If the error code is wrong, the link layer packet B will be corrected and output as the correct result, and the end; otherwise, the link layer packet B will be discarded and the link layer packet A will be waited for the subsequent arrival, and the link layer packet will be received. If the link layer packet A passes the check, the link layer packet A is output as the correct result, and the end is ended; otherwise, if the link layer packet A is checked and found to be wrong, the target is started. Packet retransmission of the packet.
如图5所示,单入两出FEC解码模块包括:As shown in Figure 5, the single-input two-output FEC decoding module includes:
校验和验算子模块,用于将输入的每个FEC数据块的前5140位用户数据进行校验和验算,生成检错正误标记和校验和;The checksum verification sub-module is used to perform checksum verification on the first 5140 bits of user data of each input FEC data block, and generate error detection positive and error flags and checksums;
1级缓存,用于将输入的每个FEC数据块的前5140位用户数据缓存进行固定数目时钟节拍缓存后作为第二路数据输出,并复制输入给2级缓存;
2级缓存,用于将1级缓存的输出进行固定数目时钟节拍缓存;Level 2 cache, used to cache the output of
误码量计算模块,用于针对校验和验算的校验和再经过误码量计算得到偏移量和误码量;The bit error calculation module is used to calculate the offset and bit error for the checksum calculated by the checksum and then calculate the bit error;
查纠误码模块,用于根据偏移量和误码量对2级缓存输出成的用户数据进行纠错,输出纠错成败标记,并将纠错后的数据作为第一路数据输出。The error correction module is used to correct the user data output from the level 2 cache according to the offset and the error amount, output the error correction success or failure mark, and output the error corrected data as the first channel data.
LLP发送模块以FLIT为并行接口单位接收事务层发送的报文FLIT,在报文首FLIT的固定域填写序列号SEQ,在报文尾FLIT固定域填写校验和CRC,然后以FLIT为并行接口单位发送给PCS发送模块。报文的序列号SEQ由LLP管理模块产生,启动发送数据的初始序列号SEQ设置为0,每发送一个数据报文其序列号SEQ增加1。报文的校验和CRC采用CRC32国际标准,其多项式为x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1。The LLP sending module uses FLIT as the parallel interface unit to receive the message FLIT sent by the transaction layer, fills in the sequence number SEQ in the fixed field of FLIT at the beginning of the message, and fills in the checksum CRC in the fixed field of FLIT at the end of the message, and then uses FLIT as the parallel interface The unit is sent to the PCS sending module. The sequence number SEQ of the message is generated by the LLP management module, the initial sequence number SEQ of starting data to be sent is set to 0, and the sequence number SEQ of the data message is increased by 1 each time a data message is sent. The checksum CRC of the message adopts the CRC32 international standard, and its polynomial is x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 +x 8 +x 7 +x 5 +x 4 + x2 +x+1.
本实施例中依据序列号SEQ和CRC校验结果对报文进行重传管理,以保证数据传输的可靠性。进行重传管理的具体方法如下:当报文直接向PCS发送时,复制该报文进入重传缓冲区,并由LLP管理模块启动该报文的定时器。如果在定时器超时之前,LLP接收模块接收到以该报文SEQ为标记的响应报文,则从重传缓冲区删除该报文。否则,LLP发送模块顺序重传该报文及其后续报文。In this embodiment, the packet is retransmitted according to the sequence number SEQ and the CRC check result, so as to ensure the reliability of data transmission. The specific method for retransmission management is as follows: when a message is directly sent to the PCS, the message is copied into the retransmission buffer, and the LLP management module starts the timer of the message. If the LLP receiving module receives a response message marked with the message SEQ before the timer expires, it will delete the message from the retransmission buffer. Otherwise, the LLP sending module retransmits the message and its subsequent messages in sequence.
LLP接收模块以FLIT为并行接口单位分别接收PCS接收模块发送的两路报文FLIT,以报文为单位独立并行检查报文的CRC校验和和序列号SEQ,如果检查通过则该报文作为有效报文经过多路选择并以FLIT为并行接口单位输出到事务层,否则丢弃报文。CRC和序列号SEQ检查具体方法如下:CRC检查是重新计算报文数据的CRC校验和,并将其与填写在报文尾FLIT固定域的CRC校验和对比,如果相等则检查通过,否则检查未通过。SEQ序列号检查是根据上一个有效报文序列号增加1作为下一个报文的期望序列号,将期望序列号与填写在报文首FLIT固定域的SEQ对比,如果相等则检查通过,否则检查未通过。报文校验和计算采用CRC32国际标准,期望序列号的计算由LLP管理模块实施。The LLP receiving module uses the FLIT as the parallel interface unit to receive the two-channel message FLIT sent by the PCS receiving module, and independently and parallelly checks the CRC checksum and serial number SEQ of the message in the unit of the message. If the check passes, the message is used as the Valid packets are multiplexed and output to the transaction layer with FLIT as the parallel interface unit, otherwise the packets are discarded. The specific method of CRC and serial number SEQ check is as follows: CRC check is to recalculate the CRC checksum of the message data, and compare it with the CRC checksum filled in the FLIT fixed field at the end of the message. If they are equal, the check is passed, otherwise Check failed. The SEQ sequence number check is based on adding 1 to the sequence number of the previous valid message as the expected sequence number of the next message, and compares the expected sequence number with the SEQ filled in the FLIT fixed field at the beginning of the message. If they are equal, the check passes, otherwise the check Did not pass. The calculation of the checksum of the message adopts the CRC32 international standard, and the calculation of the expected serial number is implemented by the LLP management module.
参见图4,LLP管理模块包括链路状态管理、定时器管理、序列号管理。链路状态管理监控链路状态,基本链路状态包括LINK_UP和LINK_DOWN状态。如果LLP处于LINK_UP状态,则LLP发送模块和LLP接收模块都向事务层开放;而如果LLP处于LINK_DOWN状态,则LLP发送模块和LLP接收模块都向事务层关闭。定时器管理为LLP发送模块实现报文重传管理提供定时和超时功能。序列号管理包括为LLP发送模块提供的发送序列号管理和为LLP接收模块提供的接收序列号管理。Referring to Figure 4, the LLP management module includes link state management, timer management, and sequence number management. Link status management monitors the link status, and the basic link status includes LINK_UP and LINK_DOWN status. If the LLP is in the LINK_UP state, both the LLP sending module and the LLP receiving module are open to the transaction layer; and if the LLP is in the LINK_DOWN state, both the LLP sending module and the LLP receiving module are closed to the transaction layer. Timer management provides timing and timeout functions for the LLP sending module to implement packet retransmission management. The serial number management includes the sending serial number management provided for the LLP sending module and the receiving serial number management provided for the LLP receiving module.
为了对报文进行重传管理,LLP管理模块的序列号管理逻辑从LLP接收模块获得当前有效报文的序列号SEQ,需要启动LLP发送模块向对端LLP接收模块发送以该报文SEQ为标记的响应报文。响应报文产生于链路层,终止于链路层,不会传递到事务层。In order to manage the retransmission of the message, the serial number management logic of the LLP management module obtains the serial number SEQ of the current valid message from the LLP receiving module, and needs to start the LLP sending module to send the message SEQ as the mark to the peer LLP receiving module response message. The response message is generated at the link layer, terminated at the link layer, and will not be passed to the transaction layer.
PCS发送模块以FLIT为并行接口单位接收LLP发送模块发送的报文FLIT,先后经过64/66编码和速率匹配、264/257编码、加扰、插入对齐标记、FEC编码、符号分发处理后,以64位并行数据为单位分别发送给4个物理介质的适配层接口。The PCS sending module uses FLIT as the parallel interface unit to receive the message FLIT sent by the LLP sending module. The 64-bit parallel data is sent to the adaptation layer interface of the four physical media respectively.
本实施例中,64/66编码和速率匹配处理将256位的报文FLIT进行64/66编码产生264位数据块;264/257编码处理将264位数据块压缩编码为257位的数据块;加扰处理对数据进行加扰,加扰的标准多项式为X^X39^X58;插入对齐标记处理周期性的向数据中插入特定符号串作为FEC块的对齐标记,插入周期为4096个FEC块,每个FEC块包含5140位用户数据;FEC编码处理对每个FEC块5140位用户数据产生300位的校验和,并将校验和插入FEC块尾部;符号分发处理将数据以10位符号为单位顺序轮转发送到4个物理介质的适配层接口。In this embodiment, the 64/66 encoding and the rate matching process perform 64/66 encoding on a 256-bit message FLIT to generate a 264-bit data block; the 264/257 encoding process compresses and encodes the 264-bit data block into a 257-bit data block; The scrambling process scrambles the data, and the standard polynomial for scrambling is X^X39^X58; the insertion alignment mark processing periodically inserts a specific symbol string into the data as the alignment mark of the FEC block, and the insertion period is 4096 FEC blocks, Each FEC block contains 5140 bits of user data; the FEC encoding process generates a 300-bit checksum for each FEC block of 5140 bits of user data, and inserts the checksum at the end of the FEC block; the symbol distribution process converts the data into 10-bit symbols as The units are sequentially transmitted to the adaptation layer interfaces of the 4 physical media in turn.
PCS接收模块从4个物理介质分别接收64位并行数据,经过通道锁定对齐和重定序、FEC解码、删除对齐标记、解扰、257/264解码、66/64解码和速率匹配处理后,以两路FLIT并行接口为单位发送到LLP接收模块。其中,FEC解码、删除对齐标记、解扰、257/264解码、66/64解码和速率匹配、以及LLP接收模块的CRC和序列号检查处理构成子流程,本发明技术装置共包含两个子流程,即子流程A和子流程B。The PCS receiving module receives 64-bit parallel data from 4 physical media respectively. After channel locking alignment and re-sequencing, FEC decoding, removing alignment marks, descrambling, 257/264 decoding, 66/64 decoding and rate matching, the data is processed in two The channel FLIT parallel interface is sent to the LLP receiving module in units. Among them, FEC decoding, deletion of alignment marks, descrambling, 257/264 decoding, 66/64 decoding and rate matching, as well as CRC and serial number checking processing of the LLP receiving module constitute a sub-process, and the technical device of the present invention includes two sub-processes in total, That is, sub-process A and sub-process B.
本实施例中,通道锁定对齐和重定序处理从4个物理介质的适配层接口接收数据,识别数据中各自包含的对齐标记,依据对齐标记重新排列4路数据并对齐;FEC解码处理对各个FEC数据块进行解码处理;删除对齐标记处理删除数据中周期性出现的FEC块对齐标记;解扰处理对数据进行解扰,解扰的多项式为X^X39^X58;257/264解码处理将257位的数据解压缩编码为264位的数据块;66/64解码和速率匹配处理将264位的数据块进行66/64解码产生256位数据块并交给链路层。In this embodiment, the channel lock alignment and resequencing process receives data from the adaptation layer interfaces of the four physical media, identifies the alignment marks contained in the data, and rearranges and aligns the four channels of data according to the alignment marks; The FEC data block is decoded; the FEC block alignment mark that periodically appears in the deletion data is deleted; the descrambling process descrambles the data, and the polynomial of the descrambling is X^X 39 ^X 58 ; 257/264 decoding process Decompress and encode 257-bit data into 264-bit data blocks; 66/64 decoding and rate matching process 66/64 decoding of 264-bit data blocks to generate 256-bit data blocks and hand them over to the link layer.
本实施例中,通道锁定对齐和重定序处理逻辑输出信号接入单入两出FEC解码器的输入。通道锁定对齐和重定序处理后的数据直接进入单入两出FEC解码器。单入两出FEC解码器逻辑输出的第1路和第2路数据信号分别接入子流程A的和子流程B的删除对齐标记处理的输入。In this embodiment, the output signal of the channel lock alignment and resequencing processing logic is connected to the input of the single-input two-output FEC decoder. The data after channel lock alignment and re-sequencing goes directly to the 1-in 2-out FEC decoder. The first and second data signals of the logic output of the single-input two-output FEC decoder are respectively connected to the input of the deletion and alignment mark processing of the sub-process A and the sub-process B.
本实施例中,单入两出FEC解码器接收通道锁定对齐和重定序处理流程输出的数据,根据每个FEC数据块前面5140位用户数据和后面300位校验和进行校验和验算,校验和验算会输出正确与否的控制标记,用于控制通道锁定对齐流程的重启。无论FEC数据验算结果如何,单入两出FEC解码器都将FEC块的5140位用户数据写入1级缓冲区,数据在1级缓冲区进行固定数目时钟节拍缓存后作为第2路数据输出给子流程B的删除对齐标记处理流程。同时,校验和验算产生的用户数据实际校验和再经过误码量计算处理,误码量计算处理产生的偏移量和误码量输入给查纠误码处理流程。1级缓冲区除了直接输出第2路数据外,还将数据复制输入给2级缓冲区,数据在2级缓冲区进行固定数目时钟节拍缓存后作为查纠误码处理流程的输入。查纠误码处理根据误码量计算处理产生的偏移量和误码量对2级缓冲区输出的用户数据进行纠错。查纠误码处理会输出纠错成败标记,并将纠错后的数据作为第2路数据输出给子流程A的删除对齐标记处理流程。就功能和实际处理流程而言,单入两出FEC解码器第1路输出处理流程等效于配置去能旁路纠错功能的现有技术FEC解码流程,单入两出FEC解码器第2路输出处理流程等效于配置使能旁路纠错功能的现有技术FEC解码流程。In this embodiment, the single-input two-output FEC decoder receives the data output from the channel lock alignment and re-sequencing processing flow, and performs checksum verification according to the first 5140 bits of user data and the last 300 bits of checksum of each FEC data block. The checksum calculation will output a correct or false control flag, which is used to control the restart of the channel lock alignment process. Regardless of the FEC data verification result, the single-input two-output FEC decoder writes the 5140-bit user data of the FEC block into the
本实施例中,子流程A和子流程B的CRC和校验和检查输出输出信号分别接入多路选择器的两路输入信号,多路选择器的输出信号直接接入LLP接收模块数据输出逻辑的输入信号。In this embodiment, the CRC and checksum check output signals of sub-process A and sub-process B are respectively connected to the two input signals of the multiplexer, and the output signal of the multiplexer is directly connected to the data output logic of the LLP receiving module input signal.
本实施例自适应降低编码层和链路层处理延迟的数据传输方法具有下述优点:分情况讨论如下:The data transmission method for adaptively reducing the processing delay of the coding layer and the link layer in this embodiment has the following advantages: The case-by-case discussion is as follows:
情况1:在底层物理介质不存在误码情况下:现有技术通过静态配置使能旁路纠错功能可以降低编码层处理延迟,而本发明技术方法:由于单入两出FEC解码器两路数据都会输出正确数据,从而子流程A和子流程B都会输出正确的报文,但是由于子流程B等效于配置使能旁路纠错功能,而子流程A等效于配置去能旁路纠错功能,所以子流程B的报文数据会先于子流程A的报文数据达到LLP接收模块(相差约50个时钟周期)。由于LLP模块是根据期望序列号和CRC决定是否接收报文,所以LLP接收模块会从其子流程B中获得报文并丢弃子流程A输出的报文,从而可与现有技术方法获得相同的低延迟效果。Case 1: In the case where there is no bit error in the underlying physical medium: the prior art can reduce the processing delay of the coding layer by enabling the bypass error correction function through static configuration, while the technical method of the present invention: due to the single input and two output FEC decoder two channels The data will output correct data, so both sub-process A and sub-process B will output correct packets, but since sub-process B is equivalent to configuring and enabling the bypass error correction function, and sub-process A is equivalent to configuring enabling bypass correction. Therefore, the packet data of sub-process B will reach the LLP receiving module before the packet data of sub-process A (a difference of about 50 clock cycles). Since the LLP module decides whether to receive the message according to the expected sequence number and CRC, the LLP receiving module will obtain the message from its sub-process B and discard the message output by the sub-process A, so that the same as that of the prior art method can be obtained. Low latency effect.
情况2:在底层物理介质存在误码情况下:现有技术方法如果配置使能旁路纠错功能,则编码层不会纠正误码,数据可靠传输完全依赖于LLP的重传保障,LLP会出现重传率较高的问题;现有技术方法如果配置去能旁路纠错功能,则编码层处理延迟固定的比配置使能旁路纠错时延迟高大约50个时钟周期。实际上,由于物理介质误码的随机性,即使在底层介质存在误码情况下,并不是每个链路层报文都存在误码。为讨论方便,这种情况下的报文可以分类为不存在误码、存在可纠错的误码、存在不可纠错的误码三种。Scenario 2: In the case of bit errors in the underlying physical medium: if the bypass error correction function is enabled in the prior art method, the coding layer will not correct the bit errors, and the reliable data transmission depends entirely on the retransmission guarantee of the LLP. The problem of high retransmission rate occurs; if the prior art method is configured to disable the bypass error correction function, the processing delay of the coding layer is fixed by about 50 clock cycles higher than that when the bypass error correction is configured to be enabled. In fact, due to the randomness of bit errors in the physical medium, not every link layer packet has bit errors even in the case of bit errors in the underlying medium. For the convenience of discussion, the message in this case can be classified into three types: no error code, error correctable error code, and uncorrectable error code.
如果报文不存在误码,这种情况和(情况1)类似,单入两出FEC解码器两路数据都会输出正确数据,从而子流程A和子流程B都会输出正确的报文,但是子流程B的报文数据会先于子流程A的报文数据达到LLP接收模块。由于LLP模块是根据期望序列号和CRC决定是否接收报文,所以LLP接收模块会从其子流程B中获得报文并丢弃子流程A输出的报文,从而获得了与现有技术方法配置为去能旁路纠错功能更低的处理延迟(相差约50个时钟周期);If there is no bit error in the message, this situation is similar to (case 1), the single-input and two-output FEC decoder will output correct data for both channels, so both sub-process A and sub-process B will output correct packets, but the sub-process will output correct data. The packet data of B will reach the LLP receiving module before the packet data of sub-process A. Since the LLP module decides whether to receive the message according to the expected sequence number and CRC, the LLP receiving module will obtain the message from its sub-process B and discard the message output by the sub-process A, thus obtaining the same configuration as the prior art method. De-enable bypass error correction function for lower processing latency (~50 clock cycles difference);
如果报文存在可纠错的误码,单入两出FEC解码器第1路数据处理会输出经过成功纠错后的正确数据,而其第2路数据处理会输出未经纠错处理的错误数据。从而子流程A会输出正确报文而子流程B会输出错误的报文,且子流程B的报文数据会先于子流程A的报文数据达到LLP接收模块。由于LLP模块是根据期望序列号和CRC决定是否接收报文,子流程B先到达的报文会由于CRC校验错而被丢弃,所以随后子流程A后到达的报文会被正确接收。通常LLP的重传超时是大于50个时钟周期的,所以子流程B先到达的错误报文并未触发LLP的重传就接收到子流程B先到达的错误报文。可见,这种情况下本发明技术方法获得了与现有技术方法配置为去能旁路纠错功能相同的延迟效果。If there are error-correctable errors in the message, the first data processing of the single-input two-output FEC decoder will output the correct data after successful error correction, and the second data processing of the FEC decoder will output the errors without error correction processing. data. Therefore, the sub-process A will output the correct message and the sub-process B will output the wrong message, and the message data of the sub-process B will reach the LLP receiving module before the message data of the sub-process A. Since the LLP module decides whether to receive the message according to the expected sequence number and CRC, the message that arrives first in sub-process B will be discarded due to the CRC check error, so the message that arrives after sub-process A will be correctly received. Usually, the retransmission timeout of the LLP is greater than 50 clock cycles, so the error packet that arrives first in the sub-process B does not trigger the retransmission of the LLP, and the error packet that arrives first in the sub-process B is received. It can be seen that in this case, the technical method of the present invention obtains the same delay effect as the prior art method configured to disable the bypass error correction function.
如果报文存在不可纠错的误码,单入两出FEC解码器两路数据都会输出错误数据,从而子流程A和子流程B都会输出错误的报文,并先后到达LLP接收模块。由于LLP模块是根据期望序列号和CRC决定是否接收报文,子流程B和子流程A先后到达的报文都会由于CRC校验错而被丢弃。这种情况下,对端LLP模块由于未在固定时间内接收到本端LLP模块发送的本报文接收确认信息而启动重传该报文,重传报文又可分为多种情况:不存在误码、存在可纠错的误码、存在不可纠错的误码,其处理方式如前所述。可见,这种情况下本发明技术方法获得了与现有技术方法配置为去能旁路纠错功能相同的延迟效果。If there is an uncorrectable error in the message, the single-input and double-output FEC decoder will output the wrong data, so both sub-process A and sub-process B will output the wrong message, which will reach the LLP receiving module successively. Since the LLP module decides whether to receive the message according to the expected sequence number and CRC, the messages arriving successively from the sub-process B and the sub-process A will be discarded due to the CRC check error. In this case, the peer LLP module starts to retransmit the message because it has not received the confirmation message sent by the local LLP module within a fixed period of time. The retransmitted message can be divided into several situations: There are errors, there are correctable errors, and there are uncorrectable errors, and the processing methods are as described above. It can be seen that in this case, the technical method of the present invention obtains the same delay effect as the prior art method configured to disable the bypass error correction function.
情况3:在底层物理介质误码情况动态变化情况下:本发明技术不需要配置使能/去能旁路纠错功能,其处理流程与上述(情况2)的处理流程一致,在各种报文误码情况下自适应选择处理流程,其效果相当于自适应的选择是否旁路纠错功能。现有发明技术要么依据物理介质在训练阶段的误码情况静态选择配置,要么依据物理介质的当前状态动态选择配置。静态选择配置难以适应其变化性:如果在当前无误码时配置了去能旁路功能,则会增加报文传输延迟;如果在当前有误码时配置了使能旁路功能,则会导致LLP产生大量重传,从而会降低传输效率。动态配置会由于丢报文而导致产生通信中断。Case 3: In the case of dynamic change of the underlying physical medium error conditions: the technology of the present invention does not need to configure the enabling/disabling bypass error correction function, and the processing flow is consistent with the processing flow of the above (case 2). The self-adaptive selection processing flow in the case of text errors is equivalent to the self-adaptive selection of whether to bypass the error correction function. The prior art either selects the configuration statically according to the bit error condition of the physical medium in the training phase, or dynamically selects the configuration according to the current state of the physical medium. The static selection configuration is difficult to adapt to its variability: if the disable bypass function is configured when there are currently no errors, the packet transmission delay will increase; if the enable bypass function is configured when there are current errors, it will cause LLP A large number of retransmissions are generated, thereby reducing the transmission efficiency. Dynamic configuration may cause communication interruption due to packet loss.
综合以上三种情况可见,本实施例方法具有依据物理介质误码情况自适应降低编码层和链路层处理延迟的优点。与现有技术方法相比,本实施例方法不需要配置使能/去能旁路纠错功能,而能达到较优的总体技术效果。 本实施例方法以事务层报文为控制粒度,依据物理介质误码情况自动选择是否旁路FEC解码器纠错功能,从而自适应降低编码层和链路层处理延迟的数据传输方法及装置。在底层物理介质不存在误码情况下,本实施例可自动获得与现有技术方法配置使能旁路纠错功能相同低延迟效果。在底层物理介质存在误码情况下,现有技术通常配置去能旁路纠错功能已降低链路层重传率。图6和图7为本实施例与现有技术(配置去能旁路纠错功能)的编码层和链路层处理延迟在底层物理介质存在误码情况下的对比示意。参见图6和图7可知,对于无差错报文,本实施例可以获得比现有技术较低的编码层和链路层处理延迟。对于可纠错的差错报文,本实施例可以获得与现有技术相等的编码层和链路层处理延迟。对于不可纠错但一次重传后可纠错的差错报文,本实施例也可以获得比现有技术较低的编码层和链路层处理延迟。From the above three situations, it can be seen that the method of this embodiment has the advantage of adaptively reducing the processing delay of the coding layer and the link layer according to the bit error conditions of the physical medium. Compared with the method in the prior art, the method in this embodiment does not need to configure the enabling/disabling bypass error correction function, and can achieve a better overall technical effect. The method of this embodiment uses the transaction layer message as the control granularity, and automatically selects whether to bypass the error correction function of the FEC decoder according to the bit error condition of the physical medium, thereby adaptively reducing the processing delay of the coding layer and the link layer. In the case where there is no bit error in the underlying physical medium, this embodiment can automatically obtain the same low delay effect as the prior art method of configuring the bypass error correction function. In the case where there is a bit error in the underlying physical medium, the prior art usually configures a disable bypass error correction function to reduce the link layer retransmission rate. FIG. 6 and FIG. 7 are schematic diagrams for comparison between the coding layer and link layer processing delays of the present embodiment and the prior art (configured with the de-enable bypass error correction function) when there is a bit error in the underlying physical medium. Referring to FIG. 6 and FIG. 7 , it can be seen that, for error-free packets, this embodiment can obtain lower processing delays at the coding layer and the link layer than in the prior art. For error-correctable error packets, the present embodiment can obtain the processing delay of the coding layer and the link layer equal to that of the prior art. For an error message that is not error-correctable but can be corrected after one retransmission, this embodiment can also obtain lower processing delays at the coding layer and the link layer than in the prior art.
本发明一种自适应降低编码层和链路层处理延迟的数据传输装置为本发明一种自适应降低编码层和链路层处理延迟的数据传输方法对应的装置,也具有本发明一种自适应降低编码层和链路层处理延迟的数据传输方法相同的技术效果,在此不再赘述。The data transmission device for adaptively reducing the processing delay of the coding layer and the link layer according to the present invention is a device corresponding to the data transmission method for adaptively reducing the processing delay of the coding layer and the link layer according to the present invention, and also has an automatic data transmission method according to the present invention. The technical effect of the data transmission method for reducing the processing delay of the coding layer and the link layer is the same, and will not be repeated here.
此外,本实施例还提供一种通讯芯片,该通讯芯片中包括前述自适应降低编码层和链路层处理延迟的数据传输装置。In addition, this embodiment also provides a communication chip, which includes the aforementioned data transmission device for adaptively reducing the processing delay of the coding layer and the link layer.
此外,本实施例还提供一种计算机设备,该计算机设备包含前述的通讯芯片。In addition, this embodiment also provides a computer device, where the computer device includes the aforementioned communication chip.
此外,本实施例还提供一种网络交换设备,该网络交换设备包含前述的通讯芯片。In addition, this embodiment also provides a network switching device, where the network switching device includes the aforementioned communication chip.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-readable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. The present application refers to flowcharts of methods, apparatus (systems), and computer program products according to embodiments of the present application and/or processor-executed instructions generated for implementing a process or processes and/or block diagrams in a flowchart. A means for the function specified in a block or blocks. These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions An apparatus implements the functions specified in a flow or flows of the flowcharts and/or a block or blocks of the block diagrams. These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in one or more of the flowcharts and/or one or more blocks of the block diagrams.
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010604028.1A CN111769906B (en) | 2020-06-29 | 2020-06-29 | Data transmission method and device for adaptively reducing processing delay of coding layer and link layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010604028.1A CN111769906B (en) | 2020-06-29 | 2020-06-29 | Data transmission method and device for adaptively reducing processing delay of coding layer and link layer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111769906A CN111769906A (en) | 2020-10-13 |
CN111769906B true CN111769906B (en) | 2022-07-05 |
Family
ID=72722901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010604028.1A Active CN111769906B (en) | 2020-06-29 | 2020-06-29 | Data transmission method and device for adaptively reducing processing delay of coding layer and link layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111769906B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113726479B (en) * | 2021-08-27 | 2024-04-30 | 上海橙科微电子科技有限公司 | FEC encoding module, FEC decoding module, FEC encoding method, FEC decoding method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1968036A (en) * | 2006-05-31 | 2007-05-23 | 华为技术有限公司 | A forward correcting decoding device and control method |
CN101091347A (en) * | 2004-12-29 | 2007-12-19 | 英特尔公司 | Forward error correction and automatic repeat request joint operation for a data link layer |
CN101686104A (en) * | 2008-09-22 | 2010-03-31 | 华为技术有限公司 | Coding and decoding method for forward error correction, device and system thereof |
CN102984232A (en) * | 2012-10-30 | 2013-03-20 | 西安电子科技大学 | Real-time streaming media transmission protocol stack in multi-hop network |
CN107592185A (en) * | 2017-07-19 | 2018-01-16 | 西南交通大学 | A kind of forward direction repeating method suitable for network code transmission control protocol |
CN107786305A (en) * | 2016-08-29 | 2018-03-09 | 海思光电子有限公司 | Error code compensation method and encoding and decoding processing unit after a kind of forward error correction |
CN109756293A (en) * | 2017-11-01 | 2019-05-14 | 中兴通讯股份有限公司 | The method and physical chip of data are handled in a kind of Ethernet |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9543981B2 (en) * | 2014-03-25 | 2017-01-10 | Texas Instruments Incorporated | CRC-based forward error correction circuitry and method |
US10002038B2 (en) * | 2016-04-29 | 2018-06-19 | Hewlett Packard Enterprise Development Lp | Network re-timer with forward error correction handling |
-
2020
- 2020-06-29 CN CN202010604028.1A patent/CN111769906B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101091347A (en) * | 2004-12-29 | 2007-12-19 | 英特尔公司 | Forward error correction and automatic repeat request joint operation for a data link layer |
CN1968036A (en) * | 2006-05-31 | 2007-05-23 | 华为技术有限公司 | A forward correcting decoding device and control method |
CN101686104A (en) * | 2008-09-22 | 2010-03-31 | 华为技术有限公司 | Coding and decoding method for forward error correction, device and system thereof |
CN102984232A (en) * | 2012-10-30 | 2013-03-20 | 西安电子科技大学 | Real-time streaming media transmission protocol stack in multi-hop network |
CN107786305A (en) * | 2016-08-29 | 2018-03-09 | 海思光电子有限公司 | Error code compensation method and encoding and decoding processing unit after a kind of forward error correction |
CN107592185A (en) * | 2017-07-19 | 2018-01-16 | 西南交通大学 | A kind of forward direction repeating method suitable for network code transmission control protocol |
CN109756293A (en) * | 2017-11-01 | 2019-05-14 | 中兴通讯股份有限公司 | The method and physical chip of data are handled in a kind of Ethernet |
Non-Patent Citations (2)
Title |
---|
Efficient Management and Intelligent Fault Tolerance for HPC Interconnect Networks;赖明澈等;《IEEE》;20191206;全文 * |
Lempel-Ziv-Welch压缩数据的误码纠正;王刚等;《电子与信息学报》;20200615(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111769906A (en) | 2020-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100312729B1 (en) | Error detection scheme for arq systems | |
KR100598662B1 (en) | How to Repair Corrupted Packets for the Packet Transfer Protocol | |
Wicker | Adaptive rate error control through the use of diversity combining and majority-logic decoding in a hybrid-ARQ protocol | |
JP3634800B2 (en) | System and method for implementing hybrid automatic repeat request using parity check combination | |
US8386901B2 (en) | Method, device and software application for transmitting data packets in a communication system | |
US9673934B2 (en) | Error correction on demand | |
CN110943800A (en) | Method, device and system for sending data packet, storage medium and electronic device | |
JPH11136220A (en) | Code transmission method, transmitter, receiver and communication system | |
US10469200B2 (en) | Minimum latency link layer metaframing and error correction | |
JP2010141413A (en) | Communication apparatus, communication method and program | |
WO2010124651A1 (en) | Method, apparatus and system for forward error correction | |
US9654255B2 (en) | Data transmission method and device | |
US7360142B1 (en) | Methods, architectures, circuits, software and systems for CRC determination | |
CN111769906B (en) | Data transmission method and device for adaptively reducing processing delay of coding layer and link layer | |
CN101764677B (en) | Frame grade encoding and decoding method based on forward error correction | |
WO2002093820A1 (en) | Communicating method, transmitting apparatus, receiving apparatus, and communicating system including them | |
CN107248904A (en) | A kind of LDPC code error control method based on combined coding | |
WO2022105753A1 (en) | Network data encoding transmission method and apparatus | |
CN114696963B (en) | High-reliability communication system for network-on-chip of multi-core processor system | |
CN107682118A (en) | A kind of NoC error correction and detections based on duplication redundancy retransmit fault-tolerance approach | |
TW202415021A (en) | Electronic device and method of operating electronic device | |
JP2016052074A (en) | Communication device | |
CN101741516A (en) | A frame-level encoding and decoding method based on rateless mode | |
JPH10308932A (en) | Data transmitting method/device | |
Singh et al. | Data Link Layer Designing Issues: Error Control-A Roadmap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |