CN111223916B - Semiconductor device and its manufacturing method and three-dimensional memory - Google Patents
Semiconductor device and its manufacturing method and three-dimensional memory Download PDFInfo
- Publication number
- CN111223916B CN111223916B CN202010032358.8A CN202010032358A CN111223916B CN 111223916 B CN111223916 B CN 111223916B CN 202010032358 A CN202010032358 A CN 202010032358A CN 111223916 B CN111223916 B CN 111223916B
- Authority
- CN
- China
- Prior art keywords
- gate
- region
- insulating layer
- semiconductor device
- gate insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76834—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体设计及制造领域,特别是涉及半导体器件及其制备方法和三维存储器。The invention belongs to the field of semiconductor design and manufacture, and in particular relates to a semiconductor device, a preparation method thereof and a three-dimensional memory.
背景技术Background technique
目前TAS SPACER ETCH采用两步法以保证获得预期的绝缘膜间隔(insulatingfilm spacers)和高压区的栅极绝缘层GOX厚度,但是,在进行高压区的栅极绝缘层GOX蚀刻时,形成于栅极侧壁的偏移间隔(一般包括由内向外的氧化层和氮化层)的氧化层的顶部也会被蚀刻掉,从而在所述偏移间隔的氧化层以及间隔侧壁的氧化层的顶部形成凹槽的缺陷,这会对后续制备的器件的稳定性存在隐患。At present, TAS SPACER ETCH adopts a two-step method to ensure that the expected insulating film spaces (insulating film spaces) and the thickness of the gate insulating layer GOX in the high-voltage area are obtained. However, when the gate insulating layer GOX in the high-voltage area is etched, the The top of the oxide layer of the sidewall offset spacer (generally including the inside-out oxide layer and the nitride layer) is also etched away, so that the oxide layer of the offset spacer and the top of the oxide layer of the spacer sidewall Defects of grooves are formed, which will pose hidden dangers to the stability of subsequent fabricated devices.
因此,如何提供一种半导体器件及其制备方法和三维存储器以解决现有技术上述问题实属必要。Therefore, it is necessary to provide a semiconductor device, its manufacturing method and three-dimensional memory to solve the above-mentioned problems in the prior art.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种半导体器件及其制备方法和三维存储器,用于解决现有技术中TAS SPACER ETCH过程中,偏移间隔和间隔侧壁(一般包括由内向外的氧化层和氮化层)的氧化层的顶部会被蚀刻,从而会在所述偏移间隔和间隔侧壁的氧化层的顶部形成凹槽的缺陷、对后续制备的器件的稳定性存在隐患的技术问题。In view of the shortcomings of the prior art described above, the object of the present invention is to provide a semiconductor device and its preparation method and three-dimensional memory, which are used to solve the problem of offset spacers and spacer sidewalls (generally The top of the oxide layer including the inside-out oxide layer and the nitride layer) will be etched, thereby forming a groove defect on the top of the oxide layer of the offset spacer and the spacer sidewall, which is harmful to the subsequent fabrication of the device There are technical problems with hidden dangers in stability.
为实现上述目的及其他相关目的,本发明提供一种半导体器件制备方法,所述半导体器件制备方法包括:In order to achieve the above purpose and other related purposes, the present invention provides a semiconductor device preparation method, the semiconductor device preparation method comprising:
提供半导体结构,所述半导体结构包括具有第一区域和第二区域的衬底、分别形成于所述第一区域和所述第二区域上的第一栅极绝缘层和第二栅极绝缘层、以及分别形成于所述第一栅极绝缘层和所述第二栅极绝缘层上的若干分立的栅极结构;Provided is a semiconductor structure including a substrate having a first region and a second region, a first gate insulating layer and a second gate insulating layer respectively formed on the first region and the second region , and several discrete gate structures respectively formed on the first gate insulating layer and the second gate insulating layer;
对所述第一区域进行轻掺杂漏处理;performing lightly doped drain treatment on the first region;
对位于所述第一区域上的所述栅极结构两侧的所述第一栅极绝缘层进行减薄处理,以于所述第一栅极绝缘层的上表面形成凸台结构;Thinning the first gate insulating layer on both sides of the gate structure on the first region to form a boss structure on the upper surface of the first gate insulating layer;
其中,所述第一栅极绝缘层上的所述栅极结构位于所述凸台结构上,一所述凸台结构上的所述栅极结构的下表面完全覆盖该凸台结构的上表面。Wherein, the gate structure on the first gate insulating layer is located on the boss structure, and the lower surface of the gate structure on a boss structure completely covers the upper surface of the boss structure .
在一实施例中,所述栅极结构的形成过程包括:In one embodiment, the forming process of the gate structure includes:
分别于所述第一栅极绝缘层和所述第二栅极绝缘层上形成若干分立的栅极;forming a plurality of discrete gates on the first gate insulating layer and the second gate insulating layer respectively;
于所述栅极的侧壁形成偏移间隔。Offset intervals are formed on sidewalls of the gate.
在一实施例中,于所述栅极的侧壁形成偏移间隔的步骤包括,于所述栅极的侧壁由内向外依次形成第一偏移间隔和第二偏移间隔。In one embodiment, the step of forming offset intervals on the sidewalls of the gate includes sequentially forming a first offset interval and a second offset interval on the sidewalls of the gate from inside to outside.
在一实施例中,所述第一偏移间隔的材料包括氧化物,所述第二偏移间隔包括氮化物。In one embodiment, the material of the first offset space includes oxide, and the material of the second offset space includes nitride.
在一实施例中,所述栅极的材料包括多晶硅。In an embodiment, the material of the gate includes polysilicon.
在一实施例中,对位于所述第一区域上的所述栅极结构两侧的所述第一栅极绝缘层进行减薄处理,以于所述第一栅极绝缘层的上表面的形成凸台结构之后,还包括,于所述栅极结构的侧壁形成间隔侧壁的步骤。In one embodiment, the first gate insulating layer on both sides of the gate structure on the first region is thinned so that the upper surface of the first gate insulating layer After forming the protrusion structure, it further includes the step of forming spacer sidewalls on the sidewalls of the gate structure.
在一实施例中,于所述栅极结构的侧壁形成间隔侧壁的步骤包括:In one embodiment, the step of forming spacer sidewalls on the sidewalls of the gate structure includes:
形成覆盖所述栅极结构的间隔侧壁材料层,蚀刻去除所述栅极结构顶部的所述间隔侧壁材料层,以分别于位于所述第一区域上的所述栅极结构和所述凸台结构的共同侧壁以及位于所述第二区域的所述栅极结构的侧壁形成所述间隔侧壁。forming a spacer sidewall material layer covering the gate structure, etching and removing the spacer sidewall material layer on the top of the gate structure, so as to separate the gate structure on the first region and the The common sidewall of the boss structure and the sidewall of the gate structure located in the second region form the spacer sidewall.
在一实施例中,所述形成覆盖所述栅极结构的间隔侧壁材料层,蚀刻去除所述栅极结构顶部的所述间隔侧壁材料层,以分别于位于所述第一区域上的所述栅极结构和所述凸台结构的共同侧壁以及位于所述第二区域的所述栅极结构的侧壁形成所述间隔侧壁的步骤包括:In one embodiment, the formation of the spacer sidewall material layer covering the gate structure, etching and removal of the spacer sidewall material layer on the top of the gate structure, respectively The common sidewall of the gate structure and the mesa structure and the sidewall of the gate structure located in the second region forming the spacer sidewall include:
形成覆盖所述栅极结构的第一间隔侧壁材料层;forming a first spacer sidewall material layer covering the gate structure;
形成覆盖所述第一间隔侧壁材料层的第二间隔侧壁材料层;forming a second spacer sidewall material layer covering the first spacer sidewall material layer;
依次蚀刻去除位于所述栅极结构顶部的所述第二间隔侧壁材料层和第一间隔侧壁材料层,以分别于位于所述第一区域的所述栅极结构和所述凸台结构的共同侧壁以及位于所述第二区域的所述栅极结构的侧壁形成由内外向的第一间隔侧壁和第二间隔侧壁。sequentially etching and removing the second spacer sidewall material layer and the first spacer sidewall material layer located on the top of the gate structure, so as to separate from the gate structure and the protrusion structure located in the first region The common sidewall of the gate structure and the sidewall of the gate structure located in the second region form a first spacer sidewall and a second spacer sidewall from inside to outside.
在一实施例中,所述第一间隔侧壁的材料包括氧化物,所述第二间隔侧壁的材料包括氮化物。In an embodiment, the material of the first spacer sidewall includes oxide, and the material of the second spacer sidewall includes nitride.
在一实施例中,所述第一间隔侧壁材料层的厚度小于所述凸台结构的厚度。In an embodiment, the thickness of the first spacer sidewall material layer is smaller than the thickness of the boss structure.
在一实施例中,所述衬底中形成有隔离结构,所述隔离结构将所述衬底分割成所述第一区域和所述第二区域。In an embodiment, an isolation structure is formed in the substrate, and the isolation structure divides the substrate into the first region and the second region.
在一实施例中,所述隔离结构包括浅沟槽隔离。In one embodiment, the isolation structure includes shallow trench isolation.
在一实施例中,未进行减薄处理前,所述第一栅极绝缘层的厚度大于所述第二栅极绝缘层的厚度。In an embodiment, before the thinning process is performed, the thickness of the first gate insulating layer is greater than the thickness of the second gate insulating layer.
在一实施例中,所述第一区域为高压区域,所述第二区域为低压区域。In one embodiment, the first region is a high pressure region, and the second region is a low pressure region.
在一实施例中,所述第一栅极绝缘层的材料包括氧化物,所述第二栅极绝缘层的材料包括氧化物。In an embodiment, the material of the first gate insulating layer includes oxide, and the material of the second gate insulating layer includes oxide.
在一实施例中,所述对所述第一区域进行轻掺杂漏处理的步骤包括:In one embodiment, the step of performing lightly doped drain treatment on the first region includes:
于所述半导体结构上形成图形化掩膜,所述图形化掩膜显露出所述第一栅极绝缘层和形成于所述第一栅极绝缘层上的所述栅极结构;forming a patterned mask on the semiconductor structure, the patterned mask exposing the first gate insulating layer and the gate structure formed on the first gate insulating layer;
利用所述图形化掩膜对所述第一区域进行轻掺杂漏处理。Lightly doped drain treatment is performed on the first region by using the patterned mask.
在一实施例中,所述对位于所述第一区域上的所述栅极结构两侧的所述第一栅极绝缘层进行减薄处理,以于所述第一栅极绝缘层的上表面的形成凸台结构的步骤包括:In an embodiment, the first gate insulating layer on both sides of the gate structure on the first region is thinned so that the first gate insulating layer The step of forming the boss structure on the surface comprises:
利用所述图形化掩膜对位于所述第一区域上的所述栅极结构两侧的所述第一栅极绝缘层进行减薄处理。Thinning the first gate insulating layer on both sides of the gate structure on the first region by using the patterned mask.
为实现上述目的及其他相关目的,本发明还提供一种半导体器件,所述半导体器件包括:To achieve the above object and other related objects, the present invention also provides a semiconductor device, which includes:
半导体结构,所述半导体结构包括:A semiconductor structure comprising:
具有第一区域和第二区域的衬底;a substrate having a first region and a second region;
分别位于所述第一区域和所述第二区域上的第一栅极绝缘层和第二栅极绝缘层,所述第一栅极绝缘层具有主体部以及自所述主体部的上表面向上突出形成的凸台结构;以及A first gate insulating layer and a second gate insulating layer respectively located on the first region and the second region, the first gate insulating layer has a main body portion and upwards from the upper surface of the main body portion protrudingly formed boss structures; and
分别形成于所述第一栅极绝缘层的凸台结构上和所述第二栅极绝缘层上的若干分立的栅极结构;a plurality of discrete gate structures respectively formed on the boss structure of the first gate insulating layer and on the second gate insulating layer;
其中,位于所述第一区域的所述栅极结构两侧的所述衬底中形成有轻掺杂漏区域,形成于一所述凸台结构上方的所述栅极结构的下表面完全覆盖该凸台结构的上表面。Wherein, a lightly doped drain region is formed in the substrate on both sides of the gate structure located in the first region, and the lower surface of the gate structure formed above a protrusion structure completely covers The upper surface of the boss structure.
在一实施例中,所述栅极结构包括栅极以及形成于所述栅极的侧壁的偏移间隔。In one embodiment, the gate structure includes a gate and offset spacers formed on sidewalls of the gate.
在一实施例中,所述偏移间隔包括由内向外依次形成于所述栅极的侧壁的第一偏移间隔和第二偏移间隔。In one embodiment, the offset interval includes a first offset interval and a second offset interval sequentially formed on the sidewall of the gate from inside to outside.
在一实施例中,所述第一偏移间隔的材料包括氧化物,所述第二偏移间隔包括氮化物。In one embodiment, the material of the first offset space includes oxide, and the material of the second offset space includes nitride.
在一实施例中,所述栅极的材料包括多晶硅。In an embodiment, the material of the gate includes polysilicon.
在一实施例中,所述衬底中形成有隔离结构,所述隔离结构将所述衬底分割成所述第一区域和所述第二区域。In an embodiment, an isolation structure is formed in the substrate, and the isolation structure divides the substrate into the first region and the second region.
在一实施例中,所述隔离结构包括浅沟槽隔离。In one embodiment, the isolation structure includes shallow trench isolation.
在一实施例中,所述凸台结构处的所述第一栅极绝缘层的厚度大于所述第二栅极绝缘层的厚度。In an embodiment, the thickness of the first gate insulating layer at the protrusion structure is greater than the thickness of the second gate insulating layer.
在一实施例中,所述第一区域为高压区域,所述第二区域为低压区域。In one embodiment, the first region is a high pressure region, and the second region is a low pressure region.
在一实施例中,所述第一栅极绝缘层的材料包括氧化物,所述第二栅极绝缘层的材料包括氧化物。In an embodiment, the material of the first gate insulating layer includes oxide, and the material of the second gate insulating layer includes oxide.
在一实施例中,所述半导体器件还包括间隔侧壁,所述间隔侧壁分别形成于位于所述第一区域上的所述栅极结构和所述凸台结构的共同侧壁以及位于所述第二区域的所述栅极结构的侧壁。In an embodiment, the semiconductor device further includes spacer sidewalls, and the spacer sidewalls are respectively formed on the common sidewalls of the gate structure and the mesa structure on the first region and on the sidewalls on the first region. sidewalls of the gate structure in the second region.
在一实施例中,所述间隔侧壁分别由内向外依次形成于位于所述第一区域的所述栅极结构和所述凸台结构的共同侧壁以及位于所述第二区域的所述栅极结构的侧壁的第一间隔侧壁和第二间隔侧壁。In one embodiment, the spacer sidewalls are sequentially formed on the common sidewalls of the gate structure and the mesa structure located in the first region and the sidewalls located in the second region in sequence from the inside to the outside. The first spacer sidewall and the second spacer sidewall of the sidewall of the gate structure.
在一实施例中,所述第二间隔侧壁的底表面低于所述凸台结构的上表面。In one embodiment, the bottom surface of the second spacer sidewall is lower than the upper surface of the boss structure.
在一实施例中,所述第一间隔侧壁的材料包括氧化物,所述第二间隔侧壁的材料包括氮化物。In an embodiment, the material of the first spacer sidewall includes oxide, and the material of the second spacer sidewall includes nitride.
本发明还提供一种采用上述任意一项所述的半导体结构制备而成的三维存储器。The present invention also provides a three-dimensional memory prepared by using any one of the semiconductor structures described above.
在本发明中,通过优化工艺步骤,将对高压区域的栅极结构(包括栅极和形成于栅极侧壁的偏移间隔)两侧的栅极绝缘层的蚀刻步骤调整到轻掺杂漏处理步骤与间隔侧壁的形成步骤之间,可以有效避免现有技术中在蚀刻高压区域的栅极结构两侧的底部栅极绝缘层时,会同时对栅极结构的间隔侧壁中的氧化物间隔侧壁(第一间隔侧壁)以及偏移间隔中的氧化物偏移间隔造成不期望的蚀刻,从而在氧化物间隔侧壁及氧化物偏移间隔的顶部形成缺陷凹槽的问题;In the present invention, by optimizing the process steps, the etching step of the gate insulating layer on both sides of the gate structure (including the gate and the offset space formed on the sidewall of the gate) in the high-voltage region is adjusted to the lightly doped drain Between the processing step and the step of forming the spacer sidewall, it is possible to effectively avoid oxidation in the spacer sidewall of the gate structure at the same time when etching the bottom gate insulating layer on both sides of the gate structure in the high-voltage region in the prior art The problem that the oxide spacer sidewall (first spacer sidewall) and the oxide offset space in the offset space cause undesired etching, thereby forming a defect groove on the top of the oxide spacer sidewall and the oxide offset space;
利用本发明,可以使对高压区域的栅极结构两侧的栅极绝缘层的蚀刻步骤和对于高压区轻掺杂漏LDD的工艺步骤共用一道掩膜MASK,降低生产成本。Utilizing the present invention, the etching step of the gate insulation layer on both sides of the gate structure in the high-voltage region and the process step of the lightly doped drain LDD in the high-voltage region can share one mask MASK, thereby reducing the production cost.
附图说明Description of drawings
图1显示为一种示例的半导体器件的制备工艺流程图。FIG. 1 shows a flow chart of an exemplary fabrication process of a semiconductor device.
图2显示为利用图1的半导体器件的制备工艺制备的半导体器件的结构示意图。FIG. 2 is a schematic structural diagram of a semiconductor device prepared by using the manufacturing process of the semiconductor device in FIG. 1 .
图3显示为图2中圆圈所示区域的放大图。Figure 3 shows an enlarged view of the area indicated by the circle in Figure 2.
图4显示为利用图1的半导体器件的制备工艺制备的半导体器件的TEM照片。FIG. 4 shows a TEM photo of a semiconductor device prepared by using the manufacturing process of the semiconductor device in FIG. 1 .
图5显示为本发明的半导体器件的制备方法的流程示意图。FIG. 5 is a schematic flowchart of a method for manufacturing a semiconductor device of the present invention.
图6显示为本发明的半导体器件的制备方法中的半导体结构的示意图。FIG. 6 is a schematic diagram of a semiconductor structure in the method for manufacturing a semiconductor device of the present invention.
图7显示为本发明的半导体器件的制备方法中于半导体结构上形成图形化掩膜层的横截面示意图。7 is a schematic cross-sectional view of forming a patterned mask layer on a semiconductor structure in the method for manufacturing a semiconductor device of the present invention.
图8显示为本发明的半导体器件的制备方法中利用图形化掩膜层对所述第一区域进行轻掺杂漏处理的横截面示意图。FIG. 8 is a schematic cross-sectional view of lightly doped and drain-treated the first region by using a patterned mask layer in the manufacturing method of the semiconductor device of the present invention.
图9显示为本发明的半导体器件的制备方法中利用图形化掩膜层对位于所述第一区域上的所述栅极结构两侧的所述第一栅极绝缘层进行减薄处理后的横截面示意图。FIG. 9 shows the results of thinning the first gate insulating layer on both sides of the gate structure on the first region by using a patterned mask layer in the method for manufacturing a semiconductor device of the present invention. Cross-sectional schematic.
图10显示为本发明的半导体器件的制备方法中形成覆盖栅极结构的间隔侧壁材料层后的横截面示意图。10 is a schematic cross-sectional view after forming a spacer sidewall material layer covering the gate structure in the manufacturing method of the semiconductor device of the present invention.
图11显示为本发明的半导体器件的制备方法中与所述栅极结构的侧壁形成间隔侧壁的横截面示意图。FIG. 11 is a schematic cross-sectional view of forming spacer sidewalls with the sidewalls of the gate structure in the manufacturing method of the semiconductor device of the present invention.
图12显示为利用本发明的半导体器件的制备方法制备的半导体器件的TEM照片。FIG. 12 shows a TEM photograph of a semiconductor device prepared by using the method for preparing a semiconductor device of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. For example, when describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional view showing the device structure will not be partially enlarged according to the general scale, and the schematic diagram is only an example, which should not limit the protection scope of the present invention. In addition, the three-dimensional space dimensions of length, width and depth should be included in actual production.
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。需要说明的,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,组件布局形态也可能更为复杂。For the convenience of description, spatial relation terms such as "below", "below", "below", "below", "above", "on" etc. may be used herein to describe an element or element shown in the drawings. The relationship of a feature to other components or features. It will be understood that these spatially relative terms are intended to encompass other orientations of the device in use or operation in addition to the orientation depicted in the figures. In addition, when a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. In the context of this application, structures described as having a first feature "on top of" a second feature may include embodiments where the first and second features are formed in direct contact, as well as additional features formed between the first and second features. Embodiments between the second feature such that the first and second features may not be in direct contact. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, so that only the components related to the present invention are shown in the diagrams rather than the number, shape and size of the components in actual implementation Drawing, the shape, quantity and proportion of each component can be changed arbitrarily during its actual implementation, and the layout of components may also be more complicated.
图1示出了一种TAS SPACER ETCH中的半导体器件的制备方法的流程示意图。所述半导体器件制备方法包括如下步骤:Fig. 1 shows a schematic flow chart of a method for preparing a semiconductor device in TAS SPACER ETCH. The method for preparing a semiconductor device comprises the following steps:
步骤一,提供一半导体结构,所述半导体结构包括具有高压区域和低压区域的衬底1'、分别形成于所述高压区域和所述低压区域上的第一栅极绝缘层81'和第二栅极绝缘层82'、以及分别形成于所述第一栅极绝缘层81'和所述第二栅极绝缘层82'上的若干分立的栅极结构,其中,所述衬底1'通过设置在其中的浅沟槽隔离2'分割成高压区域A1和低压区域A2,所述栅极结构包括栅极3'以及形成于所述栅极3'两侧侧壁的偏移间隔(Offsetspacer),该偏移间隔包括但不限于氧化物偏移间隔4'和氮化物偏移间隔5';
步骤二,于所述半导体结构上采用光刻工艺形成暴露所述高压区域A1的图形化的第一掩膜;
步骤三,利用所述第一掩膜对高压区域A1进行轻掺杂漏离子注入(HV LDD IMP),以在高压区域A1上的栅极结构两侧的衬底1'中形成轻掺杂漏区(未图示),另外,在进行步骤四之前还需要清除所述第一掩膜并执行清洗工艺;
步骤四,在两个区域的所述栅极结构上形成间隔侧壁材料层,具体是先在两个区域的所述栅极结构上形成一层氧化物层,接着在该氧化物层的表面形成一氮化物层;
步骤五,对间隔侧壁材料层进行蚀刻,以于两个区域的所述栅极结构的侧壁形成间隔侧壁,该间隔侧壁包括但不限于氧化物间隔侧壁6'和氮化物间隔侧壁7';
步骤六,于步骤五形成的结构上通过光刻工艺形成暴露所述高压区域A1的第二掩膜;
步骤七,利用所述第二掩膜对高压区域的第一栅极绝缘层81'进行减薄处理,形成图2所示的半导体器件,同样该步骤之后也需要执行掩膜的去除和清洗工艺。请参阅图2,所述第一栅极绝缘层81'的上表面形成有凸台结构812';其中,所述第一栅极绝缘层81'上的所述栅极结构及其两侧的间隔侧壁位于所述凸台结构812'上,一所述凸台结构812'上的所述栅极结构及其两侧的间隔侧壁的共同下表面与该凸台结构812'的上表面重合。
在上述的工艺步骤中,在步骤七中,对高压区域A1的第一栅极绝缘层81'进行减薄处理时,由于高压区域A1的偏移间隔和间隔侧壁也被第二掩膜暴露,偏移间隔和间隔侧壁中的氧化物偏移间隔4'和氧化物间隔侧壁6'的顶部也会被蚀刻掉,从而在氧化物偏移间隔4'的顶部形成缺陷(未图示),也会在氧化物间隔侧壁6'的顶部形成缺陷61',这会对随后制成的半导体器件的稳定性产生不利影响;另外,由于采用了两步光刻(需要铺设两次掩模),这增加了生产工艺步骤,从而增加了生产成本。In the above process steps, in
基于此,如图5所示,本发明提供了一种半导体器件及其制备方法和三维存储器,将对高压区域的栅极结构(包括栅极3和形成于栅极3侧壁的偏移间隔)两侧的栅极绝缘层的蚀刻步骤调整到轻掺杂漏处理步骤与间隔侧壁的形成步骤之间,可以有效避免现有技术中在蚀刻高压区域的栅极结构两侧的底部栅极绝缘层时,会同时对栅极结构的间隔侧壁中的氧化物间隔侧壁(第一间隔侧壁6)以及偏移间隔中的氧化物偏移间隔造成不期望的蚀刻,从而在氧化物间隔侧壁及氧化物偏移间隔的顶部形成缺陷凹槽的问题。下面将结合具体的实施例来阐述本发明的技术方案。Based on this, as shown in FIG. 5, the present invention provides a semiconductor device and its preparation method and a three-dimensional memory, the gate structure of the high-voltage region (including the
实施例一Embodiment one
请参阅图5,本实施例提供一种半导体器件的制备方法,所述半导体器件的制备方法包括:Please refer to FIG. 5, this embodiment provides a method for manufacturing a semiconductor device, the method for manufacturing a semiconductor device includes:
步骤S10、提供半导体结构,所述半导体结构包括具有第一区域A1和第二区域A2的衬底1、分别形成于所述第一区域A1和所述第二区域A2上的第一栅极绝缘层81和第二栅极绝缘层82、以及分别形成于所述第一栅极绝缘层81和所述第二栅极绝缘层82上的若干分立的栅极结构;Step S10, providing a semiconductor structure, the semiconductor structure comprising a
步骤S20、对所述第一区域A1进行轻掺杂漏处理LDD;Step S20, performing lightly doped drain treatment LDD on the first region A1;
步骤S30、对位于所述第一区域A1上的所述栅极结构两侧的所述第一栅极绝缘层81进行减薄处理,以于所述第一栅极绝缘层81的顶部形成凸台结构812;其中,所述第一栅极绝缘层81上的所述栅极结构位于所述凸台结构812上,一所述凸台结构812上的所述栅极结构的下表面完全覆盖该凸台结构812的上表面。Step S30, thinning the first
下面将结合附图详细说明本实施例半导体器件的制备方法,其中图6-11为根据本实施例的半导体器件制备过程中半导体器件的结构截面图。The manufacturing method of the semiconductor device of this embodiment will be described in detail below with reference to the accompanying drawings, wherein FIGS. 6-11 are structural cross-sectional views of the semiconductor device during the manufacturing process of the semiconductor device according to this embodiment.
在步骤S10中,请参阅图6,提供一半导体结构,该半导体结构包含一位于底部的衬底1,该衬底1例如是半导体衬底1,该半导体衬底中被分为两个区域,分别为用于形成高压元器件(例如高压晶体管)的高压区域(也即第一区域A1)和形成低压元器件的低压区域(第二区域A2)。需要说明的是,所述衬底1可以根据器件的实际需求进行选择,所述衬底1可以包括硅衬底、锗(Ge)衬底、锗化硅(SiGe)衬底、SOI(Silicon-on-insulator,绝缘体上硅)衬底或GOI(Germanium-on-Insulator,绝缘体上锗)衬底等等,在其它实施例中,所述衬底1还可以为包括其他元素半导体或化合物半导体的衬底,例如砷化镓、磷化铟或碳化硅等,所述衬底1还可以为堆叠结构,例如硅/锗硅叠层等,本实施例中,所述衬底1包括单晶硅衬底。另外,所述衬底1可以为进行离子掺杂后的衬底,可以进行P型掺杂,也可以进行N型掺杂。In step S10, referring to FIG. 6, a semiconductor structure is provided, the semiconductor structure includes a
需要说明的是,虽然在本实施例中,所述第一区域A1为高压区域,所述第二区域A2为低压区域,但是在其他实施例中,所述第一区域A1和所述第二区域A2也可以采用其他形式的划分方式。It should be noted that although in this embodiment, the first area A1 is a high-pressure area and the second area A2 is a low-pressure area, in other embodiments, the first area A1 and the second Area A2 may also be divided in other forms.
请参阅图6,所述衬底1中形成有隔离结构,通过该隔离结构将所述衬底1分成高低压区域。作为示例,所述隔离结构例如可以是浅沟槽隔离2,通过浅沟槽隔离2将衬底1分割第一区域A1和第二区域A2,形成浅沟槽隔离2区的工艺包括隔离氧化层沉积、 掩膜层沉积(如氮化物)、蚀刻形成槽、在槽中填充沉积绝缘材料(如氧化物)、平坦化处理等工艺步骤。Referring to FIG. 6 , an isolation structure is formed in the
请参阅图6,在本实施例中,所述隔离结构选用浅沟槽隔离2,未执行蚀刻减薄工艺之前,所述浅沟槽隔离2的高度高于位于第一区域A1上的第一栅极绝缘层81和位于第二区域A2上的第二栅极绝缘层82。需要说明的是,在一些实施例中,所述浅沟槽隔离2的高度可根据实际需要进行调节;在一些实施例中,所述浅沟槽隔离2也可用其他形式的隔离结构进行替换。Please refer to FIG. 6. In this embodiment,
请参阅图6,在所述衬底1的高压区域上形成有高压栅极绝缘层作为第一栅极绝缘层81,在所述衬底1的高压区域上形成低压栅极绝缘层作为第二栅极绝缘层82;所述高压栅极绝缘层和低压栅极绝缘层的厚度和该区域所形成的元器件的开启电压或者阈值电压有关,通常,栅极绝缘层的厚度越厚,其所对应的开启电压也越高,故设置在高压区域表面的第一栅极绝缘层81的厚度大于位于设置于低压区域表面的第二栅极绝缘层82的厚度。作为示例,所述第一和第二栅极绝缘层82的材料例如可以是氧化物。在一具体示例中,所述第一和第二栅极绝缘层81和82的材料例如可采用二氧化硅。Referring to FIG. 6, a high-voltage gate insulating layer is formed on the high-voltage region of the
在步骤S10中,请参阅图6,所述栅极结构的形成过程包括:分别于所述第一栅极绝缘层81和所述第二栅极绝缘层82上形成若干分立的栅极3;于所述栅极3的侧壁形成偏移间隔。作为示例,例如可以分别于所述第一栅极绝缘层81和所述第二栅极绝缘层82上形成栅极材料层,然后通过蚀刻工艺,分别在所述第一栅极绝缘层81和第二栅极绝缘层82上形成若干分立的栅极3。作为示例,所述栅极材料层的材料例如可包括多晶硅。需要说明的是,在一示例中,于所述第一栅极绝缘层81和所述第二栅极绝缘层82上形成若干分立的栅极3的步骤,可以在同一工艺步骤下在所述第一栅极绝缘层81和所述第二栅极绝缘层82上形成若干分立的栅极3,所述第一栅极绝缘层81和所述第二栅极绝缘层82上的栅极的结构相同;在另一示例中,于所述第一栅极绝缘层81和所述第二栅极绝缘层82上形成若干分立的栅极3的步骤,也可以是在不同的工艺步骤下分别形成所述第一栅极绝缘层81上的栅极3和所述第二栅极绝缘层82上的栅极3,当不同工艺步骤下时,所述第一栅极绝缘层81上的栅极3和所述第二栅极绝缘层82上的栅极3既可以结构相同,也可以结构不同。In step S10, please refer to FIG. 6 , the forming process of the gate structure includes: forming a plurality of
在步骤S10中,于所述栅极3的侧壁形成偏移间隔的步骤包括,于所述栅极3的侧壁由内向外依次形成第一偏移间隔4和第二偏移间隔5。作为示例,所述第一偏移间隔4的材料包括但不限于氧化物,例如二氧化硅等;所述第二偏移间隔5的材料包括但不限于氮化物,例如氮化硅等。在一示例中,可以先于两个区域的所述栅极3上沉积覆盖栅极3及半导体结构其他裸露区域的第一偏移间隔材料层,然后在所述第一偏移间隔材料层上继续沉积第二偏移间隔材料层,最后,依次蚀刻除去除覆盖在栅极3顶部以及栅极3两侧的第二偏移间隔材料层和第一偏移间隔材料层,以在两个区域的所述栅极3的侧壁由内向外依次形成第一偏移间隔4和第二偏移间隔5。在另一示例中,也可先于两个区域的所述栅极3上沉积覆盖栅极3及半导体结构其他裸露区域的第一偏移间隔材料层,然后蚀刻去除覆盖在栅极3顶部以及栅极3两侧的第一偏移间隔材料层,以在两个区域的所述栅极3的侧壁由内向外依次形成第一偏移间隔4;然后,在前一步骤形成的结构表面形成第二偏移间隔材料层,然后蚀刻去除覆盖在栅极3顶部以及第一偏移间隔4的裸露侧壁的第二偏移间隔材料层,以在两个区域的所述第一偏移间隔4的裸露侧壁上形成第二偏移间隔5。需要说明的是,例如可以采用如物理气相沉积(Physical Vapor Deposition,PVD)工艺、化学气相沉积(Chemical VaporDeposition,CVD)工艺或原子层沉积(Atomic Layer Deposition,ALD)等工艺形成所述第一偏移间隔材料层和所述第二偏移间隔材料层。需要说明的是,随着器件尺寸的进一步变小,器件的够到长度越来越小,源漏极的离子注入深度也越来越小,偏移间隔的作用在于提高形成的晶体管的沟道长度,减小短沟道效应和由于短沟道效应引起的热载流子效应。In step S10 , the step of forming offset intervals on the sidewalls of the
在步骤S20中,请参阅图7和8、随着栅极3的宽度不断减小,栅极3下的沟道长度不断的减小,为了有效的防止短沟道效应,需要对所述第一区域A1进行轻掺杂漏LDD处理(用图8中的向下箭头),对所述第一区域A1进行轻掺杂漏LDD处理的步骤包括,于所述半导体结构上形成图形化掩膜9,所述图形化掩膜9显露出所述第一栅极绝缘层81和形成于所述第一栅极绝缘层81上的所述栅极结构;利用所述图形化掩膜9对所述第一区域A1进行轻掺杂漏处理。作为示例,例如可采用光刻工艺形成所述图形化掩膜9,所述图形化掩膜9的材料例如可以是光刻胶PH,在其他示例中,该图形化掩膜9也可以采用其他合适的掩膜材料。作为示例,所述形成LDD的方法可以是离子注入工艺或扩散工艺,根据所需掺杂离子的浓度,离子注入工艺可以一步或者多步完成。作为示例,进行轻掺杂漏LDD处理时,可以采用大质量掺杂离子,可利用大质量材料和衬底1表面非晶态的结合形成的浅结来减少源漏间的沟道漏电流效应。作为示例,轻掺杂漏注入LDD可分为n-轻掺杂漏注入N-LDD,和p-轻掺杂漏注入P-LDD;在进行N-LDD注入时,可采用磷、砷、锑、铋中的一种或者组合,例如选用砷离子,在未被所述图形化掩膜9(例如光刻胶)保护的区域进行砷离子注入,形成低能量浅结,选用砷作为N-LDD的注入离子是由于砷的分子量大有利于硅表面非晶化,在注入中能够得到更均匀的掺杂深度;而在进行P-LDD注入时,采用更易于硅表面非晶化的氟化硼进行离子注入,形成低能量的浅结。需要说明的是,在完成所述离子注入后,还包括对离子注入后的器件进行退火的步骤,以消除离子注入而造成的半导体缺陷,并激活被注入离子。In step S20, please refer to FIGS. 7 and 8. As the width of the
在步骤S30中,请参阅图9,所述对位于所述第一区域A1上的所述栅极结构两侧的所述第一栅极绝缘层81进行减薄处理,以于所述第一栅极绝缘层81的上表面的形成凸台结构812的步骤包括:利用所述图形化掩膜9对位于所述第一区域A1上的所述栅极结构两侧的所述第一栅极绝缘层81进行减薄处理,以于所述第一栅极绝缘层81的上表面的形成凸台结构812。作为示例,所述减薄处理例如可以采用干法蚀刻工艺对被所述图形化掩膜9暴露的第一栅极绝缘层81进行蚀刻,位于第一区域A1上方的栅极结构(栅极3及其两侧的偏移间隔)可以有效保护其正下方的部分第一栅极绝缘层81不被蚀刻,从而蚀刻时只对第一区域A1上的栅极结构两侧的第一栅极绝缘层81进行蚀刻,从而形成凸台结构812,所述凸台结构812上的所述栅极结构的下表面完全覆盖该凸台结构812的上表面,也即一所述凸台结构812上的所述栅极结构的下表面的面积大于或等于该凸台结构812的上表面的面积。作为示例,在进行减薄处理时,可以通过控制蚀刻参数控制栅极结构两侧的第一栅极绝缘层81的厚度,也即主体部811的厚度。作为示例,在对位于所述第一区域A1上的所述栅极结构两侧的所述第一栅极绝缘层81进行减薄处理时,同时也会对该区域的浅沟槽隔离2的顶部进行同步蚀刻,从而使第一区域A1的浅沟槽隔离2的表面低于第二区域A2的浅沟槽隔离2的表面。需要说明的是,在对位于所述第一区域A1上的所述栅极结构两侧的所述第一栅极绝缘层81进行减薄处理的过程中,会对栅极3两侧的偏移间隔中的氧化层OX(第一偏移间隔4)的顶部进行蚀刻,会在偏移间隔中的氧化层的顶部形成凹槽缺陷(图中未示出),但该凹槽缺陷会在后续步骤S40中填充第一间隔侧壁材料层60(一般也选用氧化物)时被填充,从而弥补该缺陷。In step S30, referring to FIG. 9 , the first
需要说明的是,在本实施例中,步骤S20和步骤S30采用同一个图形化掩膜9进行高压区的LDD处理和高压区的第一栅极绝缘层81的减薄处理,有效降低生产成本。当然在其他实施例中,步骤S20和步骤S30中,也可分别采用不同的图形化掩膜9,这样在高压区LDD处理后,需要先清除半导体器件上的掩膜材料,然后进行清洗后,重新制作新的图形化掩膜9,并以该新的图形化掩膜9对高压区的第一栅极绝缘层81的减薄处理。It should be noted that, in this embodiment, step S20 and step S30 use the same patterned mask 9 to perform LDD treatment in the high-voltage region and thinning treatment of the first
请参阅图5,对位于所述第一区域A1上的所述栅极结构两侧的所述第一栅极绝缘层81进行减薄处理,以于所述第一栅极绝缘层81的上表面的形成凸台结构812之后,为了防止大剂量的源漏注入过于接近沟道从而导致沟道过短甚至源漏连通,还包括步骤S40、于所述栅极结构的侧壁形成间隔侧壁。Referring to FIG. 5 , the first
在步骤S40中,于所述栅极结构的侧壁形成间隔侧壁的步骤包括,先形成覆盖栅极结构的间隔侧壁材料层;蚀刻去除所述栅极结构顶部的所述间隔侧壁材料层,以于所述栅极结构的侧壁形成所述间隔侧壁;其中,所述间隔侧壁材料层除覆盖栅极结构外,还覆盖栅极结构两侧的半导体器件的裸露表面以及凸台结构812的侧壁,蚀刻后形成的间隔侧壁还形成于上述凸台结构812的侧壁上,换句话说,所述间隔侧壁分别形成于位于所述第一区域A1上的所述栅极结构和所述凸台结构812的共同侧壁以及位于所述第二区域A2的所述栅极结构的侧壁.In step S40, the step of forming spacer sidewalls on the sidewalls of the gate structure includes first forming a spacer sidewall material layer covering the gate structure; etching and removing the spacer sidewall material on the top of the gate structure layer, so as to form the spacer sidewall on the sidewall of the gate structure; wherein, in addition to covering the gate structure, the material layer of the spacer sidewall also covers the exposed surface of the semiconductor device on both sides of the gate structure and the raised The sidewalls of the
具体地,在本实施例中,请参阅图10和图11,所述形成覆盖栅极结构的间隔侧壁材料层,蚀刻去除所述栅极结构顶部的所述间隔侧壁材料层,以于所述栅极结构的侧壁形成所述间隔侧壁的步骤包括:形成覆盖所述栅极结构的第一间隔侧壁材料层60,其中,所述第一间隔侧壁材料层60除覆盖栅极结构外,还覆盖栅极结构两侧的半导体器件的裸露表面以及上述凸台结构812的侧壁;形成覆盖所述第一间隔侧壁材料层60的第二间隔侧壁材料层70;依次蚀刻去除位于所述栅极结构顶部的所述第二间隔侧壁材料层70和第一间隔侧壁材料层60,以分别于位于所述第一区域A1的所述栅极结构和所述凸台结构812的共同侧壁以及位于所述第二区域A2的所述栅极结构的侧壁由内外向形成第一间隔侧壁6和第二间隔侧壁7。作为示例,所述第一间隔侧壁6的材料包括但不限于氧化物,例如二氧化硅;所述第二间隔侧壁7的材料包括但不限于氮化物,例如氮化硅。请参阅图11,形成的所述间隔侧壁中,所述第一间隔侧壁6具有L形状;所述第一间隔侧壁6的水平部分的底表面与所述第一栅极3氧化层的主体部811的顶部表面平齐,并且所述第一间隔侧壁6的水平部分的顶部裸露表面上形成有所述第二间隔侧壁7,该第二间隔侧壁7与所述第一间隔侧壁6的垂直部分的侧壁接触。请参阅图11,在一示例中,所述第一间隔侧壁材料层的厚度远小于所述凸台结构812的厚度,因此,所述第二间隔侧壁7的底部的高度远低于所述凸台结构812的顶部表面,可以理解的是,在其他示例中,所述第一间隔侧壁材料层的厚度可以根据需要进行调整。在一具体的示例中,所述第一间隔侧壁6的厚度例如介于9-12nm,所述凸台结构812的厚度介于36-45nm之间,第二间隔侧壁7的厚度25-35nm之间,第二间隔侧壁7的底部与所述凸台结构812之间的高度差介于24-36nm之间。其中,图12给出了利用本实施例的方法制备的半导体器件的TEM照片,可以看出,采用本实施例的制备方法获取的半导体器件中,所述第一间隔侧壁6和所述第一偏移间隔4的顶部均未有缺口,因此,本实施例的制备方法可以有效解决图1所示的制备流程中存在的问题-也即在蚀刻高压区域的栅极结构两侧的底部栅极绝缘层时,会同时对栅极结构的间隔侧壁中的氧化物间隔侧壁(第一间隔侧壁6)以及偏移间隔中的氧化物偏移间隔(第一偏移间隔4)的顶部进行蚀刻,在对应位置形成凹槽缺陷,影响器件稳定性。Specifically, in this embodiment, referring to FIG. 10 and FIG. 11 , the formation of the spacer sidewall material layer covering the gate structure is performed, and the spacer sidewall material layer on the top of the gate structure is etched away, so that The step of forming the spacer sidewall on the sidewall of the gate structure includes: forming a first spacer
需要说明的是,在其他实施例中,所述形成覆盖栅极结构的间隔侧壁材料层,蚀刻去除所述栅极结构顶部的所述间隔侧壁材料层,以于所述栅极结构的侧壁形成所述间隔侧壁的步骤包括:先形成覆盖所述栅极结构的第一间隔侧壁材料层60,蚀刻去除位于所述栅极结构顶部的所述第一间隔侧壁材料层60,以分别于位于所述第一区域A1的所述栅极结构和所述凸台结构812的共同侧壁以及位于所述第二区域A2的所述栅极结构的侧壁由内外向形成第一间隔侧壁6;接着,形成覆盖所述第一间隔侧壁6和所述栅极结构的第二间隔侧壁材料层70,蚀刻去除位于所述栅极结构顶部和所述第一间隔侧壁6顶部的所述第二间隔侧壁材料层70,以于所述第一间隔侧壁6的裸露侧壁形成第二间隔侧壁7,所述第一间隔侧壁6和所述第二间隔侧壁7的底部表面与离子减薄后的凸台结构812两侧的第一栅极绝缘层81的表面平齐,也即第二间隔侧壁7的底部高度亦以远低于所述凸台结构812的顶部表面。It should be noted that, in other embodiments, the formation of the spacer sidewall material layer covering the gate structure is performed, and the spacer sidewall material layer on the top of the gate structure is etched away to facilitate the gate structure. The step of forming the spacer sidewall on the sidewall includes: firstly forming a first spacer
实施例二Embodiment two
请参阅图11,本实施例还提供一种利用实施例所述的制备方法制备的半导体器件,所述半导体器件包括:Please refer to FIG. 11, this embodiment also provides a semiconductor device prepared by using the preparation method described in the embodiment, and the semiconductor device includes:
半导体结构,所述半导体结构包括:A semiconductor structure comprising:
具有第一区域A1和第二区域A2的衬底1;a
分别位于所述第一区域A1和所述第二区域A2上的第一栅极绝缘层81和第二栅极绝缘层82,所述第一栅极绝缘层81具有主体部811以及自所述主体部811的上表面向上突出形成的凸台结构812;以及The first
分别形成于所述第一栅极绝缘层81的凸台结构812上和所述第二栅极绝缘层82上的若干分立的栅极结构;a plurality of discrete gate structures respectively formed on the
其中,形成于一所述凸台结构812上方的所述栅极结构的下表面完全覆盖该凸台结构812的上表面。Wherein, the lower surface of the gate structure formed above the
请参阅图11,所述半导体结构包含一位于底部的衬底1,该衬底1例如是半导体衬底1,该半导体衬底1中被分为两个区域,分别为用于形成高压元器件(例如高压晶体管)的高压区域(也即第一区域A1)和形成低压元器件的低压区域(第二区域A2)。需要说明的是,所述衬底1可以根据器件的实际需求进行选择,所述衬底1可以包括硅衬、锗(Ge)衬底、锗化硅(SiGe)衬底、SOI(Silicon-on-insulator,绝缘体上硅)衬底或GOI(Germanium-on-Insulator,绝缘体上锗)衬底等等,在其它实施例中,所述衬底1还可以为包括其他元素半导体或化合物半导体的衬底,例如砷化镓、磷化铟或碳化硅等,所述衬底1还可以为堆叠结构,例如硅/锗硅叠层等,本实施例中,所述衬底1包括单晶硅衬底。另外,所述衬底1可以为进行离子掺杂后的衬底,可以进行P型掺杂,也可以进行N型掺杂。Please refer to FIG. 11 , the semiconductor structure includes a
需要说明的是,虽然在本实施例中,所述第一区域A1为高压区域,所述第二区域A2为低压区域,但是在其他实施例中,所述第一区域A1和所述第二区域A2也可以采用其他形式的划分方式。It should be noted that although in this embodiment, the first area A1 is a high-pressure area and the second area A2 is a low-pressure area, in other embodiments, the first area A1 and the second Area A2 may also be divided in other forms.
请参阅图11,所述衬底1中形成有隔离结构,通过该隔离结构将所述衬底1分成高低压区域。作为示例,所述隔离结构例如可以是浅沟槽隔离2,通过浅沟槽隔离2将衬底1分割第一区域A1和第二区域A2,形成浅沟槽隔离2区的工艺包括隔离氧化层沉积、掩膜层沉积(如氮化物)、蚀刻形成槽、在槽中填充沉积绝缘材料(如氧化物)、平坦化处理等工艺步骤。请参阅图11,在本实施例中,所述隔离结构选用浅沟槽隔离2,所述浅沟槽隔离2也可用其他形式的隔离结构进行替换。Referring to FIG. 11 , an isolation structure is formed in the
请参阅图11,高压区域的栅极结构底部的高压栅极绝缘层(第一栅极绝缘层81)和低压区域的栅极结构底部的低压栅极绝缘层(第二栅极绝缘层82)的厚度和该区域所形成的元器件的开启电压或者阈值电压有关,通常,栅极绝缘层的厚度越厚,其所对应的开启电压也越高,故设置在高压区域的栅极结构底部的高压栅极绝缘层的厚度(也即凸台结构812及其底部的主体部11的厚度之和)大于位于设置于低压区域的栅极结构底部的低压栅极绝缘层的厚度,也即所述凸台结构812处的所述第一栅极结构81的厚度大于所述第二栅极绝缘层82的厚度。作为示例,所述第一和第二栅极绝缘层82的材料例如可以是氧化物。在一具体示例中,所述第一和第二栅极绝缘层82的材料例如可采用二氧化硅。Please refer to FIG. 11 , the high-voltage gate insulating layer (first gate insulating layer 81 ) at the bottom of the gate structure in the high-voltage area and the low-voltage gate insulating layer (second gate insulating layer 82 ) at the bottom of the gate structure in the low-voltage area. The thickness of the gate insulating layer is related to the turn-on voltage or threshold voltage of the components formed in this area. Generally, the thicker the gate insulating layer is, the higher the corresponding turn-on voltage is. The thickness of the high-voltage gate insulating layer (that is, the sum of the thicknesses of the
需要说明的是,所述栅极结构包括所述栅极结构包括栅极3以及形成于所述栅极3的侧壁的偏移间隔。作为示例,所述栅极3所述栅极3的材料包括多晶硅。作为示例,所述偏移间隔包括由内向外依次形成于所述栅极3的侧壁的第一偏移间隔4和第二偏移间隔5,所述第一偏移间隔4的材料包括但不限于氧化物(例如二氧化硅),所述第二偏移间隔5包括但不限于氮化物(例如氮化硅)。需要说明的是,随着器件尺寸的进一步变小,器件的够到长度越来越小,源漏极的离子注入深度也越来越小,偏移间隔的作用在于提高形成的晶体管的沟道长度,减小短沟道效应和由于短沟道效应引起的热载流子效应。所述偏移间隔的形成工艺详见实施例一种相关部分,再次不做赘述。It should be noted that the gate structure includes a
需要说明的是,随着栅极3的宽度不断减小,栅极3下的沟道长度不断的减小,为了有效的防止短沟道效应,需要对所述第一区域A1进行轻掺杂漏LDD处理(用图8中的向下箭头表示),所述第一区域A1还经过轻掺杂漏LDD处理,以于高压区域的栅极结构两侧的衬底1中形成有LDD区(未图示)。需要说明的是,对于所述第一区域A1进行轻掺杂漏LDD处理过程详见实施例中的相关部分,在此不做赘述。It should be noted that as the width of the
请参阅图11,为了防止大剂量的源漏注入过于接近沟道从而导致沟道过短甚至源漏连通,所述半导体器件还包括间隔侧壁,所述间隔侧壁形成于位于所述第一区域A1的所述栅极结构和所述凸台结构812的侧壁以及位于所述第二区域A2的所述栅极结构的侧壁,也即,在第一区域A1,所述间隔侧壁形成于第一区域A1上的栅极结构的两侧侧壁和该栅极结构下方的凸台结构812的两侧侧壁,而在第二区域A2所述间隔侧壁形成于所述第二区域A2上的栅极结构的两侧侧壁。作为示例,所述间隔侧壁包括由内向外依次形成于位于所述第一区域A1上的所述栅极结构和所述凸台结构812的侧壁以及位于所述第二区域A2的所述栅极结构的侧壁的第一间隔侧壁6和第二间隔侧壁7。作为示例,所述第一间隔侧壁6的材料包括但不限于氧化物,例如二氧化硅;所述第二间隔侧壁7的材料包括但不限于氮化物,例如氮化硅。请参阅图11,形成的所述间隔侧壁中,所述第一间隔侧壁6具有L形状;所述第一间隔侧壁6的水平部分的底表面与所述第一栅极3氧化层的主体部811的顶部表面平齐,并且所述第一间隔侧壁6的水平部分的顶部裸露表面上形成有所述第二间隔侧壁7,该第二间隔侧壁7与所述第一间隔侧壁6的垂直部分的侧壁接触。请参阅图11,由于第一间隔侧壁6的厚度较薄远小于所述凸台结构812位置的第一栅极绝缘层81的厚度,因此,所述第二间隔侧壁7的底部的高度远低于所述凸台结构812的顶部表面。在一具体的示例中,所述第一间隔侧壁6的厚度例如介于9-12nm,所述凸台结构812的厚度介于36-45nm之间,第二间隔侧壁7的厚度25-35nm之间,第二间隔侧壁7的底部与所述凸台结构812之间的高度差介于24-36nm之间。其中,图12给出了利用本实施例的方法制备的半导体器件的TEM照片,可以看出,采用本实施例的制备方法获取的半导体器件中,所述第一间隔侧壁6和所述第一偏移间隔4的顶部均未有缺口,因此,本实施例的制备方法可以有效解决图1所示的制备流程中存在的问题-即在蚀刻高压区域的栅极结构两侧的底部栅极绝缘层时,会同时对栅极结构的间隔侧壁中的氧化物间隔侧壁(第一间隔侧壁6)以及偏移间隔中的氧化物偏移间隔(第一偏移间隔4)的顶部进行蚀刻,从而在对应位置形成凹槽缺陷,影响器件稳定性。需要说明的是,所述间隔侧壁的形成过程详见上文相关部分描述,在此不做赘述。Please refer to FIG. 11 , in order to prevent the source and drain implantation of a large dose from being too close to the channel, resulting in the channel being too short or even the source and drain being connected, the semiconductor device further includes spacer sidewalls, and the spacer sidewalls are formed at the first The sidewalls of the gate structure and the
需要说明的是,在其他实施例中,所述第一间隔侧壁6和所述第二间隔侧壁7为平行结构,所述第一间隔侧壁6及所述第二间隔侧壁7的底部分别直接与第二栅极绝缘层81的主体部811的表面接触,也即第二间隔侧壁7的底部高度亦以远低于所述凸台结构812的顶部表面。It should be noted that, in other embodiments, the
需要说明的是,本实施例的所述半导体器件可以作为制备三维存储器工艺过程中的一个中间结构。It should be noted that the semiconductor device in this embodiment can be used as an intermediate structure in the manufacturing process of the three-dimensional memory.
综上所述,在本发明中,通过优化工艺过程,将对高压区域的栅极结构(包括栅极3和形成于栅极3侧壁的偏移间隔)两侧的栅极绝缘层的蚀刻步骤调整到轻掺杂漏处理步骤与间隔侧壁的形成步骤之间,可以有效避免现有技术中在蚀刻高压区域的栅极结构两侧的底部栅极绝缘层时,会同时对栅极结构的间隔侧壁中的氧化物间隔侧壁(第一间隔侧壁6)以及偏移间隔中的氧化物偏移间隔造成不期望的蚀刻,从而在氧化物间隔侧壁及氧化物偏移间隔的顶部形成缺陷凹槽的问题。另外,在本发明中,可以使对高压区域的栅极结构两侧的栅极绝缘层的蚀刻步骤和对于高压区轻掺杂漏LDD的工艺步骤共用一道掩膜MASK,降低生产成本。所以本发明有效克服了现有技术中的种种缺点而具有产业利用价值。To sum up, in the present invention, by optimizing the process, the etching of the gate insulating layer on both sides of the gate structure in the high-voltage region (including the
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010032358.8A CN111223916B (en) | 2020-01-13 | 2020-01-13 | Semiconductor device and its manufacturing method and three-dimensional memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010032358.8A CN111223916B (en) | 2020-01-13 | 2020-01-13 | Semiconductor device and its manufacturing method and three-dimensional memory |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111223916A CN111223916A (en) | 2020-06-02 |
CN111223916B true CN111223916B (en) | 2023-06-16 |
Family
ID=70828260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010032358.8A Active CN111223916B (en) | 2020-01-13 | 2020-01-13 | Semiconductor device and its manufacturing method and three-dimensional memory |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111223916B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113921386B (en) * | 2020-07-10 | 2025-01-14 | 长鑫存储技术有限公司 | Semiconductor device and method for manufacturing the same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316304B1 (en) * | 2000-07-12 | 2001-11-13 | Chartered Semiconductor Manufacturing Ltd. | Method of forming spacers of multiple widths |
CN101064348A (en) * | 2006-04-28 | 2007-10-31 | 株式会社半导体能源研究所 | Semiconductor device and method for manufacturing the same |
CN101170079A (en) * | 2006-10-27 | 2008-04-30 | 台湾积体电路制造股份有限公司 | Method for forming semiconductor structure |
CN101197285A (en) * | 2006-12-05 | 2008-06-11 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and its making method |
CN101350310A (en) * | 2007-07-18 | 2009-01-21 | 东部高科股份有限公司 | Semiconductor device and manufacturing method thereof |
CN101459046A (en) * | 2007-12-13 | 2009-06-17 | 中芯国际集成电路制造(上海)有限公司 | Test construction for light doped drain doping region square resistor and manufacturing method thereof |
CN203800057U (en) * | 2012-12-27 | 2014-08-27 | 美国博通公司 | Semiconductor device |
US9478656B2 (en) * | 2013-12-04 | 2016-10-25 | Semiconductor Manufacturing International (Shanghai) Corporation | Method for fabricating a field effect transistor with local isolations on raised source/drain trench sidewalls |
CN108666320A (en) * | 2018-05-03 | 2018-10-16 | 武汉新芯集成电路制造有限公司 | A kind of three-dimensional storage organization |
CN109494191A (en) * | 2018-11-19 | 2019-03-19 | 武汉新芯集成电路制造有限公司 | Semiconductor devices and preparation method thereof |
CN109950249A (en) * | 2019-03-20 | 2019-06-28 | 上海华虹宏力半导体制造有限公司 | The manufacturing method of SONOS device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100510525B1 (en) * | 2003-04-08 | 2005-08-26 | 삼성전자주식회사 | Method for fabricating a semiconductor device having shallow source/drain regions |
US8174071B2 (en) * | 2008-05-02 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | High voltage LDMOS transistor |
JP6147528B2 (en) * | 2012-06-01 | 2017-06-14 | 株式会社ニューフレアテクノロジー | Multi-charged particle beam writing method and multi-charged particle beam writing apparatus |
-
2020
- 2020-01-13 CN CN202010032358.8A patent/CN111223916B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316304B1 (en) * | 2000-07-12 | 2001-11-13 | Chartered Semiconductor Manufacturing Ltd. | Method of forming spacers of multiple widths |
CN101064348A (en) * | 2006-04-28 | 2007-10-31 | 株式会社半导体能源研究所 | Semiconductor device and method for manufacturing the same |
CN101170079A (en) * | 2006-10-27 | 2008-04-30 | 台湾积体电路制造股份有限公司 | Method for forming semiconductor structure |
CN101197285A (en) * | 2006-12-05 | 2008-06-11 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and its making method |
CN101350310A (en) * | 2007-07-18 | 2009-01-21 | 东部高科股份有限公司 | Semiconductor device and manufacturing method thereof |
CN101459046A (en) * | 2007-12-13 | 2009-06-17 | 中芯国际集成电路制造(上海)有限公司 | Test construction for light doped drain doping region square resistor and manufacturing method thereof |
CN203800057U (en) * | 2012-12-27 | 2014-08-27 | 美国博通公司 | Semiconductor device |
US9478656B2 (en) * | 2013-12-04 | 2016-10-25 | Semiconductor Manufacturing International (Shanghai) Corporation | Method for fabricating a field effect transistor with local isolations on raised source/drain trench sidewalls |
CN108666320A (en) * | 2018-05-03 | 2018-10-16 | 武汉新芯集成电路制造有限公司 | A kind of three-dimensional storage organization |
CN109494191A (en) * | 2018-11-19 | 2019-03-19 | 武汉新芯集成电路制造有限公司 | Semiconductor devices and preparation method thereof |
CN109950249A (en) * | 2019-03-20 | 2019-06-28 | 上海华虹宏力半导体制造有限公司 | The manufacturing method of SONOS device |
Also Published As
Publication number | Publication date |
---|---|
CN111223916A (en) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10700194B2 (en) | Vertical tunneling FinFET | |
US10256351B2 (en) | Semi-floating gate FET | |
US6800885B1 (en) | Asymmetrical double gate or all-around gate MOSFET devices and methods for making same | |
US10629734B2 (en) | Fabricating method of fin structure with tensile stress and complementary FinFET structure | |
CN110571193B (en) | Manufacturing method of single diffusion blocking structure and manufacturing method of semiconductor device | |
US11903193B2 (en) | Two dimensional structure to control flash operation and methods for forming the same | |
CN107452627A (en) | The manufacture method of semiconductor device | |
CN104201193A (en) | Double-gate SOI (Signal Operation Instruction) device structure and manufacturing method thereof | |
CN110265359B (en) | Semiconductor device and method for manufacturing the same | |
CN114883266A (en) | LDMOS device and preparation method thereof | |
CN111223916B (en) | Semiconductor device and its manufacturing method and three-dimensional memory | |
CN104362093B (en) | SOI (silicon on insulator) structure and manufacturing method thereof | |
US11205721B2 (en) | Semiconductor device with isolation layer and fabrication method thereof | |
CN104637814A (en) | Finned field effect transistor and manufacturing method thereof | |
KR100832017B1 (en) | Semiconductor device increased channel area and method for manufacturing the same | |
CN110176402A (en) | A kind of shallow Doped ions method for implanting of FDSOI PMOS | |
CN117153866A (en) | Semiconductor device and manufacturing method thereof | |
US6917064B2 (en) | Trench capacitor and a method for manufacturing the same | |
CN108630609B (en) | A method of manufacturing a semiconductor device | |
CN115662902A (en) | Manufacturing method of trench type field effect transistor | |
US12211852B2 (en) | Semiconductor structure with a second isolation dam and manufacturing method thereof | |
US20250006743A1 (en) | Method for improving fdsoi device leakage | |
CN111755327B (en) | Fin field effect transistor device and manufacturing method thereof | |
US9029255B2 (en) | Semiconductor device and fabrication method therof | |
CN113823600B (en) | Semiconductor structure, forming method thereof and mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |