CN110440691B - A Practical Method for Locating the Centroid of Gaussian Spot with High Precision Four-Quadrant Detector - Google Patents
A Practical Method for Locating the Centroid of Gaussian Spot with High Precision Four-Quadrant Detector Download PDFInfo
- Publication number
- CN110440691B CN110440691B CN201910737846.6A CN201910737846A CN110440691B CN 110440691 B CN110440691 B CN 110440691B CN 201910737846 A CN201910737846 A CN 201910737846A CN 110440691 B CN110440691 B CN 110440691B
- Authority
- CN
- China
- Prior art keywords
- spot
- centroid
- relative position
- quadrant detector
- lookup table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明为一种实用的高精度四象限探测器高斯光斑质心定位方法,涉及激光光斑定位领域,所解决的技术问题在于克服现有算法直接计算光斑质心,与光斑半径相关的不足。包括步骤如下:步骤1,利用四象限探测器四路输出光电流计算出光斑质心的解算值;步骤2,以四象限探测器中心为坐标原点,建立直角坐标系,利用高斯光斑能量分布模型,根据精度要求,构造出光斑质心解算值和相对位置一一对应的查找表;步骤3,根据步骤1中的解算值在步骤2中构造的查找表中查找出对应的相对位置;步骤4,如果精度不满足要求,则对步骤3查找的结果进行校正,如果精度满足要求,则进行下一步骤;步骤5,依据光斑半径和步骤4中的相对位置计算出光斑质心。
The invention is a practical high-precision four-quadrant detector Gaussian spot centroid positioning method, which relates to the field of laser spot positioning. The steps are as follows: step 1, use the four-way output photocurrent of the four-quadrant detector to calculate the solution value of the spot centroid; step 2, take the center of the four-quadrant detector as the coordinate origin, establish a rectangular coordinate system, and use the Gaussian spot energy distribution model , according to the accuracy requirements, construct a look-up table corresponding to the calculated value of the spot centroid and the relative position; step 3, according to the calculated value in step 1, find out the corresponding relative position in the look-up table constructed in step 2; step 4. If the accuracy does not meet the requirements, correct the result searched in step 3, and if the accuracy meets the requirements, proceed to the next step; step 5, calculate the spot centroid according to the spot radius and the relative position in step 4.
Description
技术领域technical field
本发明涉及激光光斑定位技术领域,特别涉及一种实用的高精度四象限探测器高斯光斑质心定位方法。The invention relates to the technical field of laser spot positioning, in particular to a practical high-precision four-quadrant detector Gaussian spot centroid positioning method.
背景技术Background technique
四象限探测器(Quadrant Detector,QD)是一种常用的位置检测传感器,由于其信号处理电路简单,波长响应范围宽,固有噪声水平低,灵敏度高和响应速度快等优势,已被广泛地应用于激光准直、激光制导、激光监听、激光跟踪仪和空间激光通信等需要提供高精度微小位移或角度测量的领域。Quadrant Detector (QD) is a commonly used position detection sensor. It has been widely used due to its simple signal processing circuit, wide wavelength response range, low inherent noise level, high sensitivity and fast response speed. It is used in fields such as laser alignment, laser guidance, laser monitoring, laser tracker and space laser communication that need to provide high-precision micro-displacement or angle measurement.
影响激光光斑位置检测精度的因素主要有两个:一个是由于信号处理电路、背景光和大气湍流等噪声造成解算值随机波动而形成的随机误差。另一个是系统的固有误差,如光斑模型误差,四个象限非一致性误差,系统光学装调误差等。固有误差中,光斑质心定位算法占据着举足轻重的作用,由于高斯光斑质心和光斑质心解算值之间为非线性关系,直接计算几乎是不可能的,相关算法大多停留在理论研究和数值仿真阶段,能应用在实时应用领域的只有近似算法,但近似算法只在中心位置附近具有较高的精度,当光斑质心远离探测中心时会产生较大的误差。要想获得高精度的光斑质心定位,一种可行的办法是利用查找表的方式,目前查找表的算法都是直接利用光斑质心的解算值或者光电流比值建立二维数据库,查找计算光斑质心,这类方法的缺点是数据库较大,查找计算量大,不利于实时应用,更重要的是二维数据库与半径相关,当半径改变时就需要构造二维数据库,费时费力,使用非常不便。There are two main factors that affect the detection accuracy of the laser spot position: one is the random error caused by the random fluctuation of the solution value caused by noises such as signal processing circuit, background light and atmospheric turbulence. The other is the inherent error of the system, such as the error of the light spot model, the inconsistency error of the four quadrants, the error of the system optical adjustment and so on. Among the inherent errors, the spot centroid positioning algorithm plays a pivotal role. Due to the nonlinear relationship between the Gaussian spot centroid and the calculated value of the spot centroid, direct calculation is almost impossible, and most related algorithms remain in the theoretical research and numerical simulation stage. , only the approximate algorithm can be applied in real-time applications, but the approximate algorithm only has high accuracy near the center position, and a large error will occur when the spot centroid is far from the detection center. In order to obtain high-precision spot centroid positioning, a feasible way is to use a look-up table. The current look-up table algorithm is to directly use the solution value of the spot centroid or the photocurrent ratio to establish a two-dimensional database, and find and calculate the spot centroid. , the disadvantage of this method is that the database is large, and the search and calculation amount is large, which is not conducive to real-time applications. More importantly, the two-dimensional database is related to the radius. When the radius changes, a two-dimensional database needs to be constructed, which is time-consuming and labor-intensive.
发明内容SUMMARY OF THE INVENTION
本发明所解决的技术问题在于克服现有算法直接计算光斑质心,与光斑半径相关的不足,提供一种实用的高精度四象限探测器高斯光斑质心定位方法,极大的提高定位精度、加快处理速度和增加易用性。The technical problem solved by the present invention is to overcome the deficiencies related to the radius of the light spot directly calculated by the existing algorithm, and to provide a practical method for locating the centroid of the Gaussian light spot of a high-precision four-quadrant detector, which greatly improves the positioning accuracy and speeds up the processing. speed and increased ease of use.
为了解决上述技术问题,本发明的技术方案具体如下:In order to solve the above-mentioned technical problems, the technical scheme of the present invention is as follows:
一种实用的高精度四象限探测器高斯光斑质心定位方法,其特征在于,包括如下步骤:A practical high-precision four-quadrant detector Gaussian spot centroid location method, characterized in that it includes the following steps:
步骤1、利用四象限探测器四路输出光电流计算出光斑质心的解算值;Step 1. Use the four-way output photocurrent of the four-quadrant detector to calculate the solution value of the spot centroid;
步骤2、以四象限探测器中心为坐标原点,建立直角坐标系,利用高斯光斑能量分布模型,根据精度要求,构造出光斑质心解算值和相对位置一一对应的查找表;
步骤3、根据所述步骤1中的解算值在所述步骤2中构造的查找表中查找出对应的相对位置;Step 3, find out the corresponding relative position in the lookup table constructed in the
步骤4、如果精度不满足要求,则对所述步骤3查找的结果进行校正,如果精度满足要求,则进行下一步骤;
步骤5、依据光斑半径和所述步骤4中的相对位置计算出光斑质心。Step 5: Calculate the centroid of the light spot according to the radius of the light spot and the relative position in
优选的,所述步骤1中光斑质心的解算值计算公式为:Preferably, the calculation formula of the solution value of the centroid of the light spot in the step 1 is:
式中,IA、IB、IC、ID分别为四个象限的光电流,和分别为x和y方向上的光斑质心解算值。In the formula, I A , I B , I C , and I D are the photocurrents of the four quadrants, respectively, and are the calculated values of the spot centroid in the x and y directions, respectively.
优选的,所述步骤2中的高斯光斑能量分布模型的表达式为:Preferably, the expression of the Gaussian spot energy distribution model in the
式中,p0为光斑中心光强,(x0,y0)为光斑质心,r为高斯光斑半径。In the formula, p 0 is the light intensity at the center of the spot, (x 0 , y 0 ) is the centroid of the spot, and r is the radius of the Gaussian spot.
优选的,所述步骤2中构造出光斑质心解算值和相对位置一一对应的查找表,光斑质心解算值和相对位置的关系为:Preferably, in the
式中,xr和yr分别为x和y方向的相对位置,x方向计算公式为xr=x0/r,是光斑质心x0与光斑半径r的比值,取值范围为[-1,1];y方向计算公式为yr=y0/r,是光斑质心y0与光斑半径r的比值,取值范围为[-1,1]。In the formula, x r and y r are the relative positions of the x and y directions, respectively. The calculation formula of the x direction is x r = x 0 /r, which is the ratio of the spot centroid x 0 to the spot radius r, and the value range is [-1 ,1]; the calculation formula for the y direction is y r =y 0 /r, which is the ratio of the spot centroid y 0 to the spot radius r, and the value range is [-1,1].
优选的,所述步骤2中根据精度要求,查找表大小设定为(2n+1)×1,其中2n+1为对四象限探测器动态范围[-r,r]的细分数;Preferably, according to the accuracy requirement in the
优选的,根据x和y方向的对称独立性,所述步骤2中构造查找表表格的方法包括以下几种:Preferably, according to the symmetry independence of the x and y directions, the method for constructing the lookup table table in the
(1)x和y方向共用一个全动态范围[-r,r]的查找表,(2n+1)为对四象限探测器动态范围的细分数,则表格大小为(2n+1)×1,表格数量为1,可直接利用解算值查表计算相对位置;(1) The x and y directions share a look-up table with the full dynamic range [-r, r], (2n+1) is the number of subdivisions for the dynamic range of the four-quadrant detector, then the size of the table is (2n+1)× 1. The number of tables is 1, and the relative position can be calculated by directly using the solution value to look up the table;
(2)x和y方向共用一个正半动态范围[0,r]的查找表,(2n+1)为对四象限探测器动态范围的细分数,则表格大小为(n+1)×1,表格数量为1,正半动态范围[0,r]的解算值可直接利用解算值查表计算相对位置,而负半动态范围[-r,0]的解算值先取其绝对值查表计算相对位置,最后取查得的相对位置的负值;(2) The x and y directions share a look-up table with a positive half dynamic range [0,r], (2n+1) is the number of subdivisions for the dynamic range of the four-quadrant detector, then the size of the table is (n+1)× 1. The number of tables is 1. The calculated value of the positive half dynamic range [0, r] can directly use the calculated value to look up the table to calculate the relative position, while the calculated value of the negative half dynamic range [-r, 0] first takes its absolute value The value look-up table calculates the relative position, and finally takes the negative value of the relative position found;
(3)x和y方向共用一个负半动态范围[-r,0]的查找表,(2n+1)为对四象限探测器动态范围的细分数,则表格大小为(n+1)×1,表格数量为1,负半动态范围[-r,0]的解算值可直接利用解算值查表计算相对位置,而正半动态范围[0,r]的解算值先取其负数查表计算相对位置,最后取查得的相对位置的负值;(3) The x and y directions share a negative half dynamic range [-r, 0] lookup table, (2n+1) is the number of subdivisions for the dynamic range of the four-quadrant detector, then the size of the table is (n+1) ×1, the number of tables is 1, the solution value of the negative half dynamic range [-r, 0] can directly use the solution value to look up the table to calculate the relative position, and the solution value of the positive half dynamic range [0, r] is taken first The negative number look-up table calculates the relative position, and finally takes the negative value of the relative position found;
(4)考虑实际应用x和y方向可能存在差异,x和y分别构造独立的表格,同样有以上三种方法,表格数量增加为2个。(4) Considering that there may be differences in the x and y directions of the actual application, x and y construct independent tables respectively. There are also the above three methods, and the number of tables is increased to 2.
优选的,所述步骤2中构造查找表中的数列可以采用升序排列或者降序排列。Preferably, the sequence in the lookup table constructed in the
优选的,所述步骤3中在查找表中查找的方法可以是适用于排序序列的任意快速查表法;Preferably, the method of searching in the look-up table in the step 3 may be any quick look-up table method suitable for sorting sequences;
优选的,所述步骤4中对查找的相对位置进行校正,采用线性插值法进行校正。Preferably, in the
优选的,所述步骤5依据光斑半径和相对位置计算光斑质心的公式为:Preferably, the formula for calculating the centroid of the light spot according to the radius of the light spot and the relative position in the step 5 is:
x0=xr×rx 0 =x r ×r
y0=yr×ry 0 =y r ×r
本发明具有以下的有益效果:The present invention has the following beneficial effects:
本发明的一种实用的高精度四象限探测器高斯光斑质心定位方法,与现有技术相比,其显著优点为:Compared with the prior art, a practical high-precision four-quadrant detector Gaussian spot centroid positioning method of the present invention has the following significant advantages:
(1)本发明可以根据实际应用对精度和计算速度的需求,构造不同细分数的查找表,来获得满足不同应用需求的高斯光斑质心定位算法。(1) The present invention can construct look-up tables with different subdivisions according to the requirements of practical applications for accuracy and calculation speed, so as to obtain Gaussian spot centroid positioning algorithms that meet different application requirements.
(2)本发明获得的算法能够满足实际高斯光斑质心定位中的各种要求。(2) The algorithm obtained by the present invention can meet various requirements in the actual Gaussian spot centroid location.
(3)采用本发明的方法制作的表格与光斑半径无关,当光斑半径发生变化时,无需重新构造表格,因此具有定位精度高、处理速度快、通用性强易于实现等优点,在需要高斯光束高精度定位的场合(激光通信、激光制导、激光准直等),尤其在对计算量较敏感的嵌入式实时应用场合具有广阔的应用前景和实用价值。(3) The table made by the method of the present invention has nothing to do with the radius of the light spot. When the radius of the light spot changes, there is no need to rebuild the table, so it has the advantages of high positioning accuracy, fast processing speed, strong versatility and easy implementation. When a Gaussian beam is required High-precision positioning occasions (laser communication, laser guidance, laser alignment, etc.), especially in embedded real-time applications that are sensitive to computation, have broad application prospects and practical value.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
图1为本发明的一种实用的高精度四象限探测器高斯光斑质心定位方法的流程图;1 is a flow chart of a practical method for locating the Gaussian spot centroid of a high-precision four-quadrant detector according to the present invention;
图2为本发明的一种实用的高精度四象限探测器高斯光斑质心定位方法的高斯光斑模型下四象限探测器工作示意图;FIG. 2 is a working schematic diagram of a four-quadrant detector under a Gaussian spot model of a practical high-precision four-quadrant detector Gaussian spot centroid location method of the present invention;
图3为本发明的一种实用的高精度四象限探测器高斯光斑质心定位方法中本算法计算的光斑质心和理论质心的误差曲线图。FIG. 3 is an error curve diagram of the spot centroid and the theoretical centroid calculated by the algorithm in a practical high-precision four-quadrant detector Gaussian spot centroid location method of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1-3,一种实用的高精度四象限探测器高斯光斑质心定位方法,包括以下步骤:Please refer to Figure 1-3, a practical high-precision four-quadrant detector Gaussian spot centroid location method, including the following steps:
步骤1、利用四象限探测器四路输出光电流计算出x和y方向上的光斑质心的解算值和其计算公式为:Step 1. Use the four-way output photocurrent of the four-quadrant detector to calculate the solution value of the spot centroid in the x and y directions and Its calculation formula is:
式中,IA、IB、IC、ID分别为四个象限的光电流。In the formula, I A , I B , I C , and I D are the photocurrents of the four quadrants, respectively.
步骤2、在以四象限探测器中心为坐标原点,建立直角坐标系,利用高斯光斑能量分布模型,根据精度要求,使用MATLAB构造出光斑质心解算值和相对位置一一对应的查找表。高斯光斑能量分布模型的表达式为:
式中,p0为光斑中心光强,(x0,y0)为光斑质心,r为高斯光束半径。In the formula, p 0 is the light intensity at the center of the spot, (x 0 , y 0 ) is the centroid of the spot, and r is the radius of the Gaussian beam.
步骤2构造出光斑质心解算值和相对位置一一对应的查找表,光斑质心解算值和相对位置的关系为:Step 2: Construct a lookup table with one-to-one correspondence between the calculated value of the spot centroid and the relative position. The relationship between the calculated value of the spot centroid and the relative position is:
式中,xr和yr分别为x和y方向的相对位置,x方向计算公式为xr=x0/r,是光斑质心x0与光斑半径r的比值,取值范围为[-1,1];y方向计算公式为yr=y0/r,是光斑质心y0与光斑半径r的比值,取值范围为[-1,1]。In the formula, x r and y r are the relative positions of the x and y directions, respectively. The calculation formula of the x direction is x r = x 0 /r, which is the ratio of the spot centroid x 0 to the spot radius r, and the value range is [-1 ,1]; the calculation formula for the y direction is y r =y 0 /r, which is the ratio of the spot centroid y 0 to the spot radius r, and the value range is [-1,1].
查找表大小设定为(2n+1)×1,其中2n+1为对四象限探测器动态范围[-r,r]的细分数。The lookup table size is set to (2n+1)×1, where 2n+1 is the number of subdivisions for the dynamic range [-r,r] of the four-quadrant detector.
根据x和y方向的对称独立性,步骤2构造查找表表格的方法包括以下几种:According to the symmetry independence of the x and y directions, the methods for constructing the lookup table table in
(1)x和y方向共用一个全动态范围[-r,r]的查找表,(2n+1)为对四象限探测器动态范围的细分数,则表格大小为(2n+1)×1,表格数量为1,可直接利用解算值查表计算相对位置;(1) The x and y directions share a look-up table with the full dynamic range [-r, r], (2n+1) is the number of subdivisions for the dynamic range of the four-quadrant detector, then the size of the table is (2n+1)× 1. The number of tables is 1, and the relative position can be calculated by directly using the solution value to look up the table;
(2)x和y方向共用一个正半动态范围[0,r]的查找表,(2n+1)为对四象限探测器动态范围的细分数,则表格大小为(n+1)×1,表格数量为1,正半动态范围[0,r]的解算值可直接利用解算值查表计算相对位置,而负半动态范围[-r,0]的解算值先取其绝对值查表计算相对位置,最后取查得的相对位置的负值;(2) The x and y directions share a look-up table with a positive half dynamic range [0,r], (2n+1) is the number of subdivisions for the dynamic range of the four-quadrant detector, then the size of the table is (n+1)× 1. The number of tables is 1. The calculated value of the positive half dynamic range [0, r] can directly use the calculated value to look up the table to calculate the relative position, while the calculated value of the negative half dynamic range [-r, 0] first takes its absolute value The value look-up table calculates the relative position, and finally takes the negative value of the relative position found;
(3)x和y方向共用一个负半动态范围[-r,0]的查找表,(2n+1)为对四象限探测器动态范围的细分数,则表格大小为(n+1)×1,表格数量为1,负半动态范围[-r,0]的解算值可直接利用解算值查表计算相对位置,而正半动态范围[0,r]的解算值先取其负数查表计算相对位置,最后取查得的相对位置的负值;(3) The x and y directions share a negative half dynamic range [-r, 0] lookup table, (2n+1) is the number of subdivisions for the dynamic range of the four-quadrant detector, then the size of the table is (n+1) ×1, the number of tables is 1, the solution value of the negative half dynamic range [-r, 0] can directly use the solution value to look up the table to calculate the relative position, and the solution value of the positive half dynamic range [0, r] is taken first The negative number look-up table calculates the relative position, and finally takes the negative value of the relative position found;
(4)考虑实际应用x和y方向可能存在差异,x和y分别构造独立的表格,同样有以上三种方法,表格数量增加为2个。(4) Considering that there may be differences in the x and y directions of the actual application, x and y construct independent tables respectively. There are also the above three methods, and the number of tables is increased to 2.
步骤2构造查找表中的数列可以采用升序排列或者降序排列。In
步骤3、根据步骤1中的解算值在步骤2中构造的查找表中查找出对应的相对位置;在查找表中查找的方法可以是适用于排序序列的任意快速查表法;Step 3. Find out the corresponding relative position in the look-up table constructed in
步骤4、依据精度要求,对步骤3查找表的相对位置采用采用线性插值法进行校正。
步骤5、依据光斑半径和步骤4中的相对位置计算出光斑质心,其计算公式为:Step 5. Calculate the centroid of the light spot according to the radius of the light spot and the relative position in
x0=xr×rx 0 =x r ×r
y0=yr×r。y 0 =y r ×r.
以下结合具体实施例对本发明的具体实现进行详细描述:The specific implementation of the present invention is described in detail below in conjunction with specific embodiments:
结合图1,本发明一种实用的高精度四象限探测器高斯光斑质心定位方法,包括以下步骤:With reference to FIG. 1 , a practical method for locating the centroid of a Gaussian spot with a high-precision four-quadrant detector of the present invention includes the following steps:
步骤1、结合图2,利用四象限探测器四路输出光电流计算出x和y方向上的光斑质心的解算值和其计算公式为:Step 1. Combined with Figure 2, use the four-way output photocurrent of the four-quadrant detector to calculate the solution value of the centroid of the light spot in the x and y directions and Its calculation formula is:
式中,IA、IB、IC、ID分别为四个象限的光电流。In the formula, I A , I B , I C , and I D are the photocurrents of the four quadrants, respectively.
步骤2、结合图2在以四象限探测器中心为坐标原点,建立直角坐标系,利用高斯光斑能量分布模型,根据精度要求,使用MATLAB构造出光斑质心解算值和相对位置一一对应的查找表。高斯光斑能量分布模型的表达式为:
式中,p0为光斑中心光强取为1,(x0,y0)光斑质心,r为高斯光斑半径取0.75mm。In the formula, p 0 is the light intensity at the center of the spot, which is taken as 1, (x 0 , y 0 ) at the centroid of the spot, and r is the radius of the Gaussian spot, which is taken as 0.75mm.
步骤2构造出光斑质心解算值和相对位置一一对应的查找表,光斑质心解算值和相对位置的关系为:Step 2: Construct a lookup table with one-to-one correspondence between the calculated value of the spot centroid and the relative position. The relationship between the calculated value of the spot centroid and the relative position is:
式中,xr和yr分别为x和y方向的相对位置,x方向计算公式为xr=x0/r,是光斑质心x0与光斑半径r的比值,取值范围为[-1,1];y方向计算公式为yr=y0/r,是光斑质心y0与光斑半径r的比值,取值范围为[-1,1]。In the formula, x r and y r are the relative positions of the x and y directions, respectively. The calculation formula of the x direction is x r = x 0 /r, which is the ratio of the spot centroid x 0 to the spot radius r, and the value range is [-1 ,1]; the calculation formula for the y direction is y r =y 0 /r, which is the ratio of the spot centroid y 0 to the spot radius r, and the value range is [-1,1].
本实施例中,四象限探测器全动态范围细分数(2n+1)取为151,即查找表分辨率为10μm,x和y共用一个升序排列表格,获得的光斑质心解算值和相对位置查找表如表1所示。In this embodiment, the full dynamic range subdivision number (2n+1) of the four-quadrant detector is set to 151, that is, the resolution of the lookup table is 10 μm, and x and y share an ascending order table. The location lookup table is shown in Table 1.
表1部分光斑质心解算值和相对位置查找表计算结果Table 1 Part of the spot centroid solution value and relative position lookup table calculation results
步骤3、利用快速查表二分法在步骤2的查找表中查找计算值对应的相对位置。Step 3. Use the quick look-up table dichotomy method to find the relative position corresponding to the calculated value in the look-up table of
步骤4、使用线性插值法校正相对位置。
步骤5、利用公式x0=xr×r计算出光斑质心。图3为计算出的光斑质心和光斑质心的误差曲线,可以看到最大误差为66.21nm,可以满足大部分应用需求,需要更高精度,增加四象限探测器全动态范围细分数即可。Step 5. Calculate the centroid of the light spot by using the formula x 0 =x r ×r. Figure 3 shows the calculated error curve of the spot centroid and the spot centroid. It can be seen that the maximum error is 66.21nm, which can meet the needs of most applications. If higher precision is required, it is sufficient to increase the full dynamic range subdivision of the four-quadrant detector.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910737846.6A CN110440691B (en) | 2019-08-12 | 2019-08-12 | A Practical Method for Locating the Centroid of Gaussian Spot with High Precision Four-Quadrant Detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910737846.6A CN110440691B (en) | 2019-08-12 | 2019-08-12 | A Practical Method for Locating the Centroid of Gaussian Spot with High Precision Four-Quadrant Detector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110440691A CN110440691A (en) | 2019-11-12 |
CN110440691B true CN110440691B (en) | 2020-11-10 |
Family
ID=68434433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910737846.6A Active CN110440691B (en) | 2019-08-12 | 2019-08-12 | A Practical Method for Locating the Centroid of Gaussian Spot with High Precision Four-Quadrant Detector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110440691B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111272084A (en) * | 2020-03-03 | 2020-06-12 | 丹阳钒曦光电科技有限公司 | Calibration method of four-quadrant detector |
CN111272074B (en) * | 2020-03-18 | 2021-11-05 | 北京工业大学 | Position sensitive detector model establishing method based on laser tracking measurement system |
CN112435301A (en) * | 2020-11-18 | 2021-03-02 | 中国科学院上海技术物理研究所 | Remote sensing camera on-orbit geometric calibration method based on star locus |
CN114964085B (en) * | 2022-04-07 | 2024-08-13 | 西安应用光学研究所 | Laser spot position resolving method based on four-quadrant detector |
CN115046475B (en) * | 2022-05-26 | 2023-03-14 | 中国地质大学(武汉) | High-precision laser spot position detection method based on four-quadrant detector |
CN115031927B (en) * | 2022-05-31 | 2023-07-07 | 西安电子科技大学 | A high-precision positioning method for the centroid of elliptical Gaussian distribution spot |
CN115297239B (en) * | 2022-08-01 | 2024-05-28 | 苏州中科行智智能科技有限公司 | Camera focusing method based on light spot tracking |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1684599A1 (en) * | 1989-06-06 | 1991-10-15 | Предприятие П/Я В-8769 | Device for measuring light spot displacement |
CN103984103A (en) * | 2014-02-18 | 2014-08-13 | 上海大学 | Method for generating vortex light beam by use of calculation hologram |
CN105203027A (en) * | 2015-09-22 | 2015-12-30 | 北京凯普林光电科技有限公司 | Laser spot size measuring device and method |
CN107504862A (en) * | 2017-08-04 | 2017-12-22 | 南京理工大学 | A kind of omnidirectional high-accuracy laser positioning method |
-
2019
- 2019-08-12 CN CN201910737846.6A patent/CN110440691B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1684599A1 (en) * | 1989-06-06 | 1991-10-15 | Предприятие П/Я В-8769 | Device for measuring light spot displacement |
CN103984103A (en) * | 2014-02-18 | 2014-08-13 | 上海大学 | Method for generating vortex light beam by use of calculation hologram |
CN105203027A (en) * | 2015-09-22 | 2015-12-30 | 北京凯普林光电科技有限公司 | Laser spot size measuring device and method |
CN107504862A (en) * | 2017-08-04 | 2017-12-22 | 南京理工大学 | A kind of omnidirectional high-accuracy laser positioning method |
Non-Patent Citations (3)
Title |
---|
基于四象限探测器的光斑中心高精度定位算法;郭小康等;《激光与红外》;20071130;第47卷(第11期);正文第1354页第1栏第1段至第2栏第3段 * |
基于四象限探测器的高精度定位算法研究;孙晓林;《中国优秀硕士学位论文全文数据库》;20121031(第10期);正文第9-36页及图3.7、图3.13 * |
孙晓林.基于四象限探测器的高精度定位算法研究.《中国优秀硕士学位论文全文数据库》.2012,(第10期), * |
Also Published As
Publication number | Publication date |
---|---|
CN110440691A (en) | 2019-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110440691B (en) | A Practical Method for Locating the Centroid of Gaussian Spot with High Precision Four-Quadrant Detector | |
CN107356197B (en) | A spot location method based on Gaussian distribution for a four-quadrant photodetector | |
CN108413988B (en) | Method for quickly calibrating coordinate system of theodolite at tail end of robot | |
CN102607459B (en) | Lidar measurement data splicing method and device | |
CN107167119B (en) | Data processing method for projection deformation | |
CN106792524B (en) | A Hybrid Indoor Localization Method Based on Bidirectional Correction in Dynamic Environment | |
CN108548488B (en) | An error detection and separation method for a high-precision laser measurement system | |
CN111504283A (en) | A point calibration method for aircraft assembly measurement field | |
CN103888979B (en) | Indoor positioning method based on wireless local area network | |
CN116448053A (en) | A Deviating Spot Location Method Based on Laser Triangulation Ranging System | |
CN113835541B (en) | Detection and calculation method for correcting handwriting inclination angle of electromagnetic pen | |
CN111998875A (en) | Angular position sensor based on photoelectric detector and measuring method thereof | |
CN110793435A (en) | A fast calibration method for four-quadrant photodetector position measurement | |
CN107504862B (en) | An all-round high-precision laser positioning method | |
CN110087307B (en) | Underwater sensor network positioning method based on ranging correction | |
CN115508775B (en) | A node positioning method using incoming wave azimuth difference measurement | |
CN115031927B (en) | A high-precision positioning method for the centroid of elliptical Gaussian distribution spot | |
CN114964085B (en) | Laser spot position resolving method based on four-quadrant detector | |
CN110530315B (en) | Automatic segmentation fitting method for position measurement calibration of four-quadrant photoelectric detector | |
CN109102545A (en) | A kind of distortion correction method based on nonmetric | |
CN116858181A (en) | CPIII measurement scheme and measurement method | |
CN115046475B (en) | High-precision laser spot position detection method based on four-quadrant detector | |
CN108871725B (en) | Correction method for wind tunnel experiment reference static pressure | |
CN111711985A (en) | A Bluetooth RSSI value noise elimination method and Bluetooth positioning method | |
CN104316017A (en) | Cylindricity three-section measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |