CN110253584B - A Discrete Time Variable Boundary Bilateral Control Method for Remote Control - Google Patents
A Discrete Time Variable Boundary Bilateral Control Method for Remote Control Download PDFInfo
- Publication number
- CN110253584B CN110253584B CN201910592144.3A CN201910592144A CN110253584B CN 110253584 B CN110253584 B CN 110253584B CN 201910592144 A CN201910592144 A CN 201910592144A CN 110253584 B CN110253584 B CN 110253584B
- Authority
- CN
- China
- Prior art keywords
- bilateral
- joint angle
- control
- time
- discrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
技术领域technical field
本发明属于机械臂动力学领域,涉及一种面向远程操控的离散时间变边界双边控制方法。The invention belongs to the field of mechanical arm dynamics, and relates to a remote control-oriented discrete-time variable boundary bilateral control method.
背景技术Background technique
远程操控技术能够支持机器人在人类难以涉足的危险或者跨域情景下实现人类行为在时空上的迁移,如可在水下、有毒、有核及空间环境下执行对任务目标的接管和操控等动作。考虑到远程操控中主端和从端操作的同步问题,需要设计高同步的有限状态控制方法,一方面提升远程操控的同步精度,一方面保证从端操作的可靠性。当前普遍采用的方法有涉及状态有界,然而没有适用于实际物理系统的离散时间方法,无法有效化解采样时间对控制效果的影响,继而降低了双边控制精度。Remote control technology can support robots to realize the migration of human behavior in time and space in dangerous or cross-domain scenarios that are difficult for humans to enter, such as taking over and controlling mission targets in underwater, toxic, nuclear and space environments. . Considering the synchronization problem of master and slave operations in remote control, it is necessary to design a high-synchronization finite state control method to improve the synchronization accuracy of remote control and ensure the reliability of slave operations. The currently commonly used methods involve state bounded, but there is no discrete time method suitable for actual physical systems, which cannot effectively resolve the influence of sampling time on the control effect, thereby reducing the bilateral control accuracy.
发明内容SUMMARY OF THE INVENTION
要解决的技术问题technical problem to be solved
为了避免现有技术的不足之处,本发明提出一种面向远程操控的离散时间变边界双边控制方法使用该方法实现状态有界的双边控制方法在计算机系统中的直接应用,保证双边同步的同时,通过参数的合理选取还能确保系统的稳定精度。In order to avoid the deficiencies of the prior art, the present invention proposes a remote control-oriented discrete-time variable-boundary bilateral control method. This method is used to realize the direct application of the state-bounded bilateral control method in a computer system, and to ensure bilateral synchronization at the same time. , and the reasonable selection of parameters can also ensure the stability and accuracy of the system.
技术方案Technical solutions
一种面向远程操控的离散时间变边界双边控制方法,其特征在于步骤如下:A discrete-time variable boundary bilateral control method for remote control, characterized in that the steps are as follows:
步骤1:离散时间远程操控双边控制系统:Step 1: Discrete time remote control of bilateral control system:
其中,下标m和s分别指代远程操控的主端和从端机械臂,为了方便说明,用i=m,s说明后续变量,k表示采样时刻,表示关节交向量,表示正定惯量矩阵,表示科氏力矩阵,是未知但有界的外部扰动,表示人类操作人员的输入力,表示环境力,表示机械臂输出的力矩;Among them, the subscripts m and s refer to the master and slave manipulators of the remote control respectively. For the convenience of description, i=m, s is used to describe the subsequent variables, k is the sampling time, represents the joint intersection vector, represents the positive definite inertia matrix, represents the Coriolis force matrix, is an unknown but bounded external disturbance, represents the input force of the human operator, represents the environmental force, Indicates the torque output by the robotic arm;
将双边控制模型进行转换,获得如下的差分表达式:Transform the bilateral control model to obtain the following differential expression:
qi(k+1)=qi(k)+δΔqi(k)q i (k+1)=q i (k)+δΔq i (k)
Δqi(k+1)=Δqi(k)+δfi(k)+δgi(k)ui(k)+δdi(k)Δq i (k+1)=Δq i (k)+δf i (k)+δg i (k)u i (k)+δd i (k)
其中δ表示离散时间系统的采样间隔,对应双边控制模型,获得:where δ represents the sampling interval of the discrete-time system, corresponding to the bilateral control model, to obtain:
di(k)=-Bi(Δqi(k))d i (k)=-B i (Δq i (k))
其中,Fi(k)依情况,分别对应环境力与操作人员的输入;Among them, F i (k) corresponds to the environmental force and the operator's input according to the situation;
步骤2:对于预定的状态边界,结合状态偏差的值特征,设计控制律的切换信号:Step 2: For the predetermined state boundary, design the switching signal of the control law in combination with the value characteristics of the state deviation:
同步误差: Synchronization error:
其中,主端误差为em(k),从端误差为es(k),Tm和Ts分别表示主端和从端的延迟时间相对于采样间隔的倍率。双边机械臂的关节角限制为其中qij(k)表示主端或者从端机械臂的第j个关节角的角位置,γ ij(k)关节角变化的下界,关节角变化的上界;Among them, the master-side error is em ( k ), the slave-side error is es ( k ), and T m and T s represent the multiples of the delay time of the master and slave ends relative to the sampling interval, respectively. The joint angle of the bilateral manipulator is limited to where q ij (k) represents the angular position of the jth joint angle of the master or slave arm, γ ij (k) is the lower bound of the joint angle change, The upper bound of the joint angle change;
定义各个关节角的期望角位置同样满足 Define the desired angular position for each joint angle also satisfied
定义两个正数变量,满足 Define two positive variables such that
定义双边同步误差 Defining Bilateral Synchronization Error
定义切换信号 Define the toggle signal
定义如下的辅助符号 Auxiliary symbols are defined as follows
步骤3:设计离散时间双边控制律,并以此进行控制:Step 3: Design a discrete-time bilateral control law and control it accordingly:
ui(k)=vi(k)+wi(k)u i (k)=vi (k)+ wi ( k)
其中,θi和是对角矩阵,所有非零元素都为正where θi and is a diagonal matrix, all nonzero elements are positive
状态变量的限制边界与初始值的差的绝对值应不小于1,θi选择为采样周期的倒数。The absolute value of the difference between the limit boundary of the state variable and the initial value should not be less than 1, and θ i is selected as the reciprocal of the sampling period.
有益效果beneficial effect
本发明提出的一种面向远程操控的离散时间变边界双边控制方法,建立离散时间远程操控双边控制系统,对于预定的状态边界,结合状态偏差的值特征,设计控制律的切换信号,设计离散时间双边控制律。本发明实现状态有界的双边控制方法在计算机系统中的直接应用,保证双边同步的同时,通过参数的合理选取还能确保系统的稳定精度。The present invention proposes a remote control-oriented discrete-time variable boundary bilateral control method. A discrete-time remote-control bilateral control system is established. For a predetermined state boundary, combined with the value characteristics of the state deviation, the switching signal of the control law is designed, and the discrete-time control system is designed. Bilateral control law. The invention realizes the direct application of the state-bounded bilateral control method in the computer system, ensures the bilateral synchronization, and also ensures the stable precision of the system through the reasonable selection of parameters.
具体实施方式Detailed ways
现结合实施例对本发明作进一步描述:Now in conjunction with embodiment, the present invention will be further described:
为了解决上述存在的技术问题,本发明是通过以下技术方案实现的:In order to solve the above-mentioned technical problems, the present invention is achieved through the following technical solutions:
一种面向远程操控的离散时间强化变化边界双边控制方法,其步骤包括:A discrete-time enhanced-change boundary bilateral control method oriented to remote control, the steps of which include:
a)考虑离散时间远程操控双边控制系统:a) Consider a discrete-time remote control bilateral control system:
其中,下标m和s分别指代远程操控的主端和从端机械臂,为了方便说明,用i=m,s说明后续变量,k表示采样时刻,表示关节交向量,表示正定惯量矩阵,表示科氏力矩阵,是未知但有界的外部扰动,表示人类操作人员的输入力,表示环境力,表示机械臂输出的力矩。Among them, the subscripts m and s refer to the master and slave manipulators of the remote control respectively. For the convenience of description, i=m, s is used to describe the subsequent variables, k is the sampling time, represents the joint intersection vector, represents the positive definite inertia matrix, represents the Coriolis force matrix, is an unknown but bounded external disturbance, represents the input force of the human operator, represents the environmental force, Indicates the torque output by the robotic arm.
将双边控制模型进行转换,获得如下的差分表达式:Transform the bilateral control model to obtain the following differential expression:
qi(k+1)=qi(k)+δΔqi(k)q i (k+1)=q i (k)+δΔq i (k)
Δqi(k+1)=Δqi(k)+δfi(k)+δgi(k)ui(k)+δdi(k)Δq i (k+1)=Δq i (k)+δf i (k)+δg i (k)u i (k)+δd i (k)
其中δ表示离散时间系统的采样间隔,对应双边控制模型,容易获得where δ represents the sampling interval of the discrete-time system, corresponding to the bilateral control model, which is easy to obtain
di(k)=-Bi(Δqi(k))d i (k)=-B i (Δq i (k))
其中,Fi(k)依情况,分别对应环境力与操作人员的输入;Among them, F i (k) corresponds to the environmental force and the operator's input according to the situation;
b)对于预定的状态边界,结合状态偏差的值特征,设计控制律的切换信号:b) For the predetermined state boundary, design the switching signal of the control law in combination with the value feature of the state deviation:
设计同步误差:Design synchronization error:
em(k)=qm(k)-qs(k-Ts)e m (k)=q m (k)-q s (kT s )
es(k)=qs(k)-qm(k-Tm)e s (k)=q s (k)-q m (kT m )
其中,主端误差为em(k),从端误差为es(k),Tm和Ts分别表示主端和从端的延迟时间相对于采样间隔的倍率。双边机械臂的关节角限制为其中qij(k)表示主端或者从端机械臂的第j个关节角的角位置,类似地,定义各个关节角的期望角位置同样满足定义两个正数变量,满足Among them, the master-side error is em ( k ), the slave-side error is es ( k ), and T m and T s represent the multiples of the delay time of the master and slave ends relative to the sampling interval, respectively. The joint angle of the bilateral manipulator is limited to where q ij (k) represents the angular position of the jth joint angle of the master or slave arm, and similarly, defines the desired angular position of each joint angle also satisfied Define two positive variables such that
定义双边同步误差Defining Bilateral Synchronization Error
定义切换信号Define the toggle signal
定义如下的辅助符号Auxiliary symbols are defined as follows
ξij(k)=hij(k)ηij(k)+(1-hij(k))ζij(k)ξ ij (k)=h ij (k)η ij (k)+(1-h ij (k))ζ ij (k)
c)设计离散时间双边控制律;c) Design discrete-time bilateral control law;
ui(k)=vi(k)+wi(k)u i (k)=vi (k)+ wi ( k)
其中,θi和是对角矩阵,所有非零元素都为正,where θi and is a diagonal matrix, all non-zero elements are positive,
为了保证双边系统的同步稳定,状态变量的限制边界与初始值的差的绝对值应不小于1,θi建议选择为采样周期的倒数。In order to ensure the synchronization and stability of the bilateral system, the absolute value of the difference between the limit boundary of the state variable and the initial value should not be less than 1, and θ i is recommended to be selected as the reciprocal of the sampling period.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910592144.3A CN110253584B (en) | 2019-07-03 | 2019-07-03 | A Discrete Time Variable Boundary Bilateral Control Method for Remote Control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910592144.3A CN110253584B (en) | 2019-07-03 | 2019-07-03 | A Discrete Time Variable Boundary Bilateral Control Method for Remote Control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110253584A CN110253584A (en) | 2019-09-20 |
CN110253584B true CN110253584B (en) | 2022-04-22 |
Family
ID=67923868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910592144.3A Active CN110253584B (en) | 2019-07-03 | 2019-07-03 | A Discrete Time Variable Boundary Bilateral Control Method for Remote Control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110253584B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115319800A (en) * | 2022-09-14 | 2022-11-11 | 西北工业大学 | A Design Method of Predetermined Time Controller for Double-joint Manipulator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002318602A (en) * | 2001-02-19 | 2002-10-31 | Komatsu Ltd | Device and method for controlling discrete time sliding mode for process system having dead time |
CN107422639A (en) * | 2017-07-13 | 2017-12-01 | 西北工业大学 | A kind of bilateral teleoperation control method based on time delay estimadon |
CN108646569A (en) * | 2018-07-09 | 2018-10-12 | 燕山大学 | The control method of remote control system under discrete-time state |
CN108803344A (en) * | 2018-07-25 | 2018-11-13 | 西北工业大学 | A kind of symmetrical forecast Control Algorithm of robot bilateral teleoperation based on Mode-switch |
-
2019
- 2019-07-03 CN CN201910592144.3A patent/CN110253584B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002318602A (en) * | 2001-02-19 | 2002-10-31 | Komatsu Ltd | Device and method for controlling discrete time sliding mode for process system having dead time |
CN107422639A (en) * | 2017-07-13 | 2017-12-01 | 西北工业大学 | A kind of bilateral teleoperation control method based on time delay estimadon |
CN108646569A (en) * | 2018-07-09 | 2018-10-12 | 燕山大学 | The control method of remote control system under discrete-time state |
CN108803344A (en) * | 2018-07-25 | 2018-11-13 | 西北工业大学 | A kind of symmetrical forecast Control Algorithm of robot bilateral teleoperation based on Mode-switch |
Non-Patent Citations (1)
Title |
---|
一种基于共享控制的双臂协同遥操作控制方法;黄攀峰 等;《宇航学报》;20180131;104-110 * |
Also Published As
Publication number | Publication date |
---|---|
CN110253584A (en) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107942684B (en) | Mechanical arm trajectory tracking method based on fractional order self-adaptive nonsingular terminal sliding mode | |
CN109189085B (en) | Attitude Control Method of Spacecraft Network System Based on Event Trigger | |
CN107870570B (en) | Terminal sliding mode mechanical arm track tracking method based on fractional order power approach law | |
CN108803326A (en) | Industrial machinery arm linear active disturbance rejection tracking and controlling method with interference and time delay | |
CN106393116B (en) | Mechanical arm fractional order iterative learning control method with Initial state learning and system | |
CN110687870B (en) | Manipulator tracking controller and system based on nonlinear extended state observer | |
CN105159083B (en) | A kind of high-precision friciton compensation control method of double-frame magnetic suspension CMG frame systems | |
CN113589689A (en) | Sliding mode controller design method based on multi-parameter adaptive neural network | |
CN108155833B (en) | Asymptotic Stability Control Method of Motor Servo System Considering Electrical Characteristics | |
CN111736472B (en) | A RISE-based asymptotic control method for motor adaptive preset performance | |
CN114895564A (en) | Design method of electric drive flexible joint mechanical arm adaptive neural network controller based on disturbance observer and command filter | |
CN108942928A (en) | One kind being based on the servo-controlled drive lacking flexible mechanical arm system of restraining force robust | |
CN116339141B (en) | Mechanical arm global fixed time track tracking sliding mode control method | |
CN114035436A (en) | Backstepping control method based on saturation adaptive law, storage medium and equipment | |
CN110253584B (en) | A Discrete Time Variable Boundary Bilateral Control Method for Remote Control | |
CN107065559B (en) | An incremental adaptive control method for industrial robots | |
CN105301959B (en) | A kind of robot for space control method of independent of model parameter | |
CN110625616B (en) | Fixed time control method considering uncertainty and interference of mechanical arm parameters | |
De Luca et al. | Iterative learning control of robots with elastic joints | |
CN113110070B (en) | A teleoperating system adaptive control method under actuator saturation | |
CN108326857A (en) | Calligraphy based on Robust Adaptive Control algorithm and Sculpture robot control method | |
CN111752158A (en) | A Second-Order Sliding Mode Control Method with Finite Time Convergence | |
Gao | Adaptive Neural Control for Hysteresis Motor Driving Servo System with Bouc‐Wen Model | |
CN108646563B (en) | A fixed-time parameter identification and position synchronization control method for a multi-manipulator system based on mean value coupling | |
CN108107726B (en) | An output-limited backstepping control method for quadrotor aircraft based on symmetric time-varying obstacle Lyapunov function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |