CN109995359B - Metastable state observation system and method for edge trigger - Google Patents
Metastable state observation system and method for edge trigger Download PDFInfo
- Publication number
- CN109995359B CN109995359B CN201910282713.4A CN201910282713A CN109995359B CN 109995359 B CN109995359 B CN 109995359B CN 201910282713 A CN201910282713 A CN 201910282713A CN 109995359 B CN109995359 B CN 109995359B
- Authority
- CN
- China
- Prior art keywords
- trigger
- oscilloscope
- value
- delayer
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K21/00—Details of pulse counters or frequency dividers
- H03K21/40—Monitoring; Error detection; Preventing or correcting improper counter operation
Landscapes
- Tests Of Electronic Circuits (AREA)
Abstract
本发明提供了一种边沿触发器亚稳态观测系统及其观测方法,包括:一种边沿触发器亚稳态观测系统,包括:脉冲信号源、延迟器A、延迟器B、触发器、NRZ/RZ变换器、误码测试单元和示波器;在触发器的D端和CP端分别接入了延迟器A和延迟器B,用示波器读出延迟器A和延迟器B的输入延迟间隔τ01。NRZ/RZ变换器设于触发器Q端和误码测试单元之间;用误码测试单元对触发器Q端脉冲上跳沿和CP端脉冲上升沿分别进行计数。本发明优点在于:该观测系统简单易行、可靠性高,对从事边沿触发器亚稳态特性研究的工程技术人员和教学人员具有重要的参考价值。
The invention provides an edge trigger metastable observation system and its observation method, including: an edge trigger metastable observation system, including: a pulse signal source, a delayer A, a delayer B, a trigger, an NRZ /RZ converter, bit error test unit and oscilloscope; delayer A and delayer B are respectively connected to the D terminal and CP terminal of the flip-flop, and the input delay interval τ 01 of delayer A and delayer B is read out with the oscilloscope . The NRZ/RZ converter is arranged between the Q terminal of the flip-flop and the error code testing unit; the pulse rising edge of the Q terminal of the flip-flop and the pulse rising edge of the CP terminal are respectively counted by the code error testing unit. The invention has the advantages that the observation system is simple and easy to implement, has high reliability, and has important reference value for engineering technicians and teaching personnel engaged in the research on the metastable characteristics of the edge trigger.
Description
技术领域technical field
本发明涉及亚稳态观测技术领域,特别涉及一种边沿触发器亚稳态观测系统。The invention relates to the technical field of metastable state observation, in particular to an edge trigger metastable state observation system.
背景技术Background technique
触发器作为一种高速的存贮记忆元件,广泛地运用于当代IT硬件电路与系统中。为实现对输入数据的可靠存贮,要求输入数据在时钟上升沿前后的建立时间和保持时间区域保持恒定,否则将发生亚稳态,造成触发器中存贮数据的误码。在对触发器内部电路研究和触发器跨时钟域应用中,人们常需要观测亚稳态发生过程。但由于亚稳态过程属随机过程,在实际工作中很难观测得到。As a high-speed storage memory element, flip-flop is widely used in contemporary IT hardware circuits and systems. In order to realize the reliable storage of the input data, it is required that the setup time and hold time area of the input data before and after the rising edge of the clock remain constant, otherwise a metastable state will occur, resulting in bit errors of the data stored in the flip-flop. In the study of the internal circuit of flip-flops and the application of flip-flops across clock domains, people often need to observe the occurrence of metastable states. However, because the metastable process is a random process, it is difficult to observe it in actual work.
发明内容Contents of the invention
本发明针对现有技术的缺陷,提供了一种边沿触发器亚稳态观测系统,能有效的解决上述现有技术存在的问题。Aiming at the defects of the prior art, the present invention provides an edge trigger metastable observation system, which can effectively solve the above-mentioned problems in the prior art.
为了实现以上发明目的,本发明采取的技术方案如下:In order to realize above object of the invention, the technical scheme that the present invention takes is as follows:
一种边沿触发器亚稳态观测系统,包括:脉冲信号源、延迟器A、延迟器B、触发器、NRZ/RZ变换器、误码测试单元和示波器;An edge trigger metastability observation system, comprising: a pulse signal source, a delayer A, a delayer B, a trigger, an NRZ/RZ converter, a bit error testing unit and an oscilloscope;
在触发器的D端和CP端分别接入了延迟器A和延迟器B,用示波器读出延迟器A和延迟器B的输入延迟间隔τ01。The delayer A and the delayer B are respectively connected to the D terminal and the CP terminal of the flip-flop, and the input delay interval τ 01 of the delayer A and the delayer B is read out with an oscilloscope.
NRZ/RZ变换器设于触发器Q端和误码测试单元之间;The NRZ/RZ converter is set between the trigger Q terminal and the error test unit;
用误码测试单元对触发器Q端脉冲上跳沿和CP端脉冲上升沿分别进行计数,然后按公式得出该输入激励情况下的误码率δ01。Use the bit error test unit to count the rising edge of the trigger Q terminal pulse and the rising edge of the CP terminal pulse respectively, and then press The formula yields the bit error rate δ 01 for this input excitation.
误码测试单元由NI采集卡和Labview软件构成,The bit error test unit is composed of NI acquisition card and Labview software.
LABVIEW编程时,只需将NI采集卡端口采集进来的数据进行上升沿判别,用移位寄存器连续计数,并编写清零端。When programming in LABVIEW, you only need to judge the rising edge of the data collected by the port of the NI acquisition card, count continuously with the shift register, and program the clear terminal.
NI采集卡端口采集的数据进行上升沿判别程序中,先用索引数组VI将两个端口的数据区分开,再分别使用布尔值转换(逐点)VI进行上升沿判别,该VI中,方向选择false-true。清零端采取在条件结构为假时将数据0写入到移位寄存器的办法,达到数据清零的目的。In the procedure for judging the rising edge of the data collected by the port of the NI acquisition card, first use the index array VI to distinguish the data of the two ports, and then use the Boolean value conversion (point by point) VI to judge the rising edge. In this VI, the direction selection false-true. The clearing terminal adopts the method of writing
进一步地,脉冲信号源输出0~5V方波,占空比50%,频率100Hz。移相器R=100Ω。Further, the pulse signal source outputs a 0-5V square wave with a duty cycle of 50% and a frequency of 100 Hz. Phase shifter R=100Ω.
一种边沿触发器亚稳态观测系统的观测方法,包括以下步骤:An observation method of an edge trigger metastable state observation system, comprising the following steps:
步骤1,通过示波器观测,使触发器的D端上跳沿与触发器CP端上升沿间距|τ01|>|τ01L|。
步骤2,实现对|τ01|在建立时间范围内的递减扫描。
步骤3,当|τ01|<|τ01L|时,在触发器Q端用示波器可观察到误码波形,此时可由示波器读出τ01值,由误码测试单元读出δ01值。
步骤4,随着|τ01|的减小,δ01值将逐渐单调增大。当|τ01|<|τ01H|时,δ01值将达到100%。继续减小|τ01|直至为0时,δ01值将始终保持100%值。Step 4, with the decrease of |τ 01 |, the value of δ 01 will gradually increase monotonously. When |τ 01 |<|τ 01H |, the value of δ 01 will reach 100%. Continue to reduce |τ 01 | until it is 0, the value of δ 01 will always maintain 100% value.
与现有技术相比本发明的优点在于:该观测系统简单易行、可靠性高,对从事边沿触发器亚稳态特性研究的工程技术人员和教学人员具有重要的参考价值。Compared with the prior art, the invention has the advantages of simple operation and high reliability, and has important reference value for engineering technicians and teaching personnel who are engaged in the research on the metastable characteristics of the edge trigger.
附图说明Description of drawings
图1为本发明建立时间内的误码曲线图;Fig. 1 is the bit error curve figure in the time of establishment of the present invention;
图2为本发明D端在[τ01L,τ01H]区间上跳变示意图;Fig. 2 is a schematic diagram of jumping in the [τ 01L , τ 01H ] interval of the D terminal of the present invention;
图3为本发明Q端的随机误码波形图;Fig. 3 is the random bit error waveform figure of Q end of the present invention;
图4为本发明亚稳态观测系统框图;Fig. 4 is a block diagram of the metastable observation system of the present invention;
图5为本发明亚稳态观测系统电路图;Fig. 5 is the circuit diagram of the metastable observation system of the present invention;
图6为本发明误码测试单元结构图;Fig. 6 is a structural diagram of a bit error testing unit of the present invention;
图7为本发明实施例亚稳态实验观测流程图;Fig. 7 is the flow chart of the experimental observation of the metastable state of the embodiment of the present invention;
图8为本发明实施例74HC74建立时间内δ~τ误码曲线图Fig. 8 is the δ~τ bit error curve diagram within the establishment time of the embodiment of the present invention 74HC74
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下列结合附图并举实施例,对本发明做进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and examples.
工作原理working principle
在边沿D触发器建立时间Tsu区域,存在一条如图1所示的误码曲线。In the edge D flip-flop setup time T su area, there is a bit error curve as shown in Fig. 1 .
当D端数据由跳变前一时刻的“0”跳变至后一时刻的“1”时,D跳变沿与CP上升沿间隔为τ01,且满足|τ01L|>|τ01|>|τ01H|时,如图2所示。When the data at the D terminal jumps from "0" at the moment before the jump to "1" at the next moment, the interval between the D jump edge and the CP rising edge is τ 01 , and |τ 01L |>|τ 01 | >|τ 01H |, as shown in Figure 2.
在触发器Q端能观测到稳定的亚稳态误码波形,如图3所示。A stable metastable error code waveform can be observed at the Q end of the flip-flop, as shown in Figure 3.
图3中,Q端随机误码波形在某一时刻并不确定,但具有统计学规律,随着τ01从大到小,误码率将从0%逐渐单调上升至100%。In Figure 3, the random bit error waveform at the Q end is not certain at a certain moment, but it has a statistical law. As τ 01 increases from large to small, the bit error rate will gradually rise monotonously from 0% to 100%.
对CP、Q(RZ)上升沿计数,计数值之间存在数学关系:Counting the rising edges of CP and Q(RZ), there is a mathematical relationship between the count values:
为方便计数,需将Q端输出不归零波形Q(NRZ)转换为归零波形Q(RZ)。For the convenience of counting, it is necessary to convert the non-return-to-zero waveform Q(NRZ) output by the Q terminal into the return-to-zero waveform Q(RZ).
亚稳态观测系统的构成Composition of Metastable Observation System
亚稳态观测系统构成框图如图4所示。为实现D端与CP端的延迟,在D端和CP端分别接入了延迟器1和延迟器2,用示波器读出输入延迟间隔τ01。用误码测试单元对Q端脉冲上跳沿和CP端脉冲上升沿分别进行计数,然后按(3)式得出该输入激励情况下的误码率δ01。The block diagram of the metastable observation system is shown in Figure 4. In order to realize the delay between the D end and the CP end, the
如D端和CP端采用同一脉冲信号源,延迟器选用RC延迟电路,NRZ/RZ电路由Q端与CP端相与得到,就可实现图3所示的时序。实验具体电路如图5所示。If the D terminal and CP terminal use the same pulse signal source, the delayer uses an RC delay circuit, and the NRZ/RZ circuit is obtained by phase-ANDing the Q terminal and the CP terminal, the timing shown in Figure 3 can be realized. The specific circuit of the experiment is shown in Figure 5.
图5电路中,工作电压5V,脉冲信号源型号RIGOL DS1102E,示波器型号TektronixMSO58。脉冲信号源输出0~5V方波,占空比50%,频率100Hz。移相器R=100Ω,C2选用5/20pF微调电容。与门选用集成四2输入端与门CD4081。为了整形与隔离,非门选用集成六输入非门CD4069。In the circuit in Figure 5, the operating voltage is 5V, the pulse signal source model is RIGOL DS1102E, and the oscilloscope model is TektronixMSO58. The pulse signal source outputs a 0-5V square wave with a duty cycle of 50% and a frequency of 100Hz. Phase shifter R = 100Ω, C 2 selects 5/20pF fine-tuning capacitor. The AND gate selects and integrates four 2-input AND gate CD4081. In order to shape and isolate, the non-gate selects the integrated six-input non-gate CD4069.
误码测试单元BERT
误码测试单元由NI采集卡和Labview软件构成,如图6所示。The bit error test unit is composed of NI acquisition card and Labview software, as shown in Figure 6.
采集卡的型号为NI USB-6001,具有13个数字端口。此实验使用两个数字I/O端口,即端口P0.0、端口P0.1。The capture card is model NI USB-6001 with 13 digital ports. This experiment uses two digital I/O ports, Port P0.0, Port P0.1.
LABVIEW编程时,只需将P0.0、P0.1端口采集进来的数据进行上升沿判别,用移位寄存器连续计数,并编写清零端即可。When programming in LABVIEW, you only need to judge the rising edge of the data collected by the P0.0 and P0.1 ports, count continuously with the shift register, and program the clear terminal.
数据端口采集的数据进行上升沿判别程序中,先用索引数组VI将两个端口的数据区分开,再分别使用布尔值转换(逐点)VI进行上升沿判别,该VI中,方向选择false-true。清零端采取在条件结构为假时将数据0写入到移位寄存器的办法,达到数据清零的目的。In the procedure for judging the rising edge of the data collected by the data port, first use the index array VI to distinguish the data of the two ports, and then use the Boolean value conversion (point by point) VI to judge the rising edge. In this VI, the direction selection is false- true. The clearing terminal adopts the method of writing
实施例1Example 1
利用亚稳态观测系统对边沿D触发器进行实验观测的流程如图7所示。The process of using the metastable observation system to conduct experimental observations on the edge D flip-flop is shown in Figure 7.
一种边沿触发器亚稳态观测系统的观测方法,包括以下步骤:An observation method of an edge trigger metastable state observation system, comprising the following steps:
步骤1,使C1、C2最小,增大C3,通过示波器观测,使触发器的D端上跳沿与触发器CP端上升沿间距|τ01|>|τ01L|。Step 1: Make C 1 and C 2 the smallest, increase C 3 , observe with an oscilloscope, and make the distance between the rising edge of the D terminal of the trigger and the rising edge of the CP terminal of the trigger |τ 01 |>|τ 01L |.
步骤2,固定C3,逐渐增大C1,实现对|τ01|在建立时间范围内的递减扫描。
步骤3,当|τ01|<|τ01L|时,在触发器Q端用示波器可观察到误码波形,此时可由示波器读出τ01值,由误码测试单元读出δ01值。
步骤4,固定C1和C3,增大细调电容C2值。随着|τ01|的减小,δ01值将逐渐单调增大。当|τ01|<|τ01H|时,δ01值将达到100%。继续减小|τ01|直至为0时,δ01值将始终保持100%值。Step 4, fix C 1 and C 3 and increase the value of fine-tuning capacitor C 2 . As |τ 01 | decreases, the value of δ 01 will gradually increase monotonously. When |τ 01 |<|τ 01H |, the value of δ 01 will reach 100%. Continue to reduce |τ 01 | until it is 0, the value of δ 01 will always maintain 100% value.
在图5中,将图中的D触发器由集成触发器74HC74替代,作为亚稳态观测实例。实测数据如表1所示。In Fig. 5, the D flip-flop in the figure is replaced by an integrated flip-flop 74HC74 as an example of metastable state observation. The measured data are shown in Table 1.
表1 74HC74集成触发器误码率数据记录Table 1 BER Data Record of 74HC74 Integrated Trigger
表1中的τ01由示波器从D端和CP端波形半高读出。τ 01 in Table 1 is read by the oscilloscope from the half-height of the D-end and CP-end waveforms.
用示波器监测Q端,当τ01进入[τ01L,τ01H]区间内,出现亚稳态误码。Use an oscilloscope to monitor the Q terminal. When τ 01 enters the [τ 01L , τ 01H ] interval, a metastable bit error occurs.
由表1数据绘制的误码曲线如图8所示,τ01L=1.675ns,τ01H=1.013ns,误码过渡带位于1.675ns~1.013ns范围内。The bit error curve drawn from the data in Table 1 is shown in Fig. 8, τ 01L = 1.675ns, τ 01H = 1.013ns, and the bit error transition zone is located in the range of 1.675ns ~ 1.013ns.
本实施例介绍了边沿触发器亚稳态观测系统的设计思想,给出了具体的测试电路和详细测试流程。当触发器D端与CP端之间的延时值处于建立时间内的某一区间,通过示波器能直观地看到发生亚稳态时的Q端误码输出波形。实施例中以集成边沿触发器74HC74作为实例,在建立时间1.675ns~1.013ns范围内呈现出0%~100%的单调稳定的误码波形,测试精度达0.001ns。This embodiment introduces the design idea of the edge trigger metastability observation system, and provides a specific test circuit and a detailed test process. When the delay value between the D terminal and the CP terminal of the flip-flop is within a certain interval within the settling time, the error code output waveform of the Q terminal when the metastable state occurs can be visually seen through the oscilloscope. In the embodiment, the integrated edge trigger 74HC74 is taken as an example, and it presents a monotonic and stable bit error waveform of 0% to 100% in the range of 1.675 ns to 1.013 ns in the settling time, and the test accuracy reaches 0.001 ns.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the implementation method of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910282713.4A CN109995359B (en) | 2019-04-10 | 2019-04-10 | Metastable state observation system and method for edge trigger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910282713.4A CN109995359B (en) | 2019-04-10 | 2019-04-10 | Metastable state observation system and method for edge trigger |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109995359A CN109995359A (en) | 2019-07-09 |
CN109995359B true CN109995359B (en) | 2023-03-28 |
Family
ID=67132700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910282713.4A Expired - Fee Related CN109995359B (en) | 2019-04-10 | 2019-04-10 | Metastable state observation system and method for edge trigger |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109995359B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111262583B (en) * | 2019-12-26 | 2021-01-29 | 普源精电科技股份有限公司 | Metastable state detection device and method and ADC circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1380998A (en) * | 2000-03-06 | 2002-11-20 | 皇家菲利浦电子有限公司 | Method and apparatus for generating random numbers using flip-flop meta-stability |
CN102346236A (en) * | 2011-06-21 | 2012-02-08 | 电子科技大学 | Time parameter measurement system |
CN104182203A (en) * | 2014-08-27 | 2014-12-03 | 曙光信息产业(北京)有限公司 | True random number generating method and device |
-
2019
- 2019-04-10 CN CN201910282713.4A patent/CN109995359B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1380998A (en) * | 2000-03-06 | 2002-11-20 | 皇家菲利浦电子有限公司 | Method and apparatus for generating random numbers using flip-flop meta-stability |
CN102346236A (en) * | 2011-06-21 | 2012-02-08 | 电子科技大学 | Time parameter measurement system |
CN104182203A (en) * | 2014-08-27 | 2014-12-03 | 曙光信息产业(北京)有限公司 | True random number generating method and device |
Non-Patent Citations (1)
Title |
---|
边沿触发器亚稳态现象的实验观测;侯凤妹等;《光电器件》;20181201;第39卷(第6期);第806-810页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109995359A (en) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102621383B (en) | Method and system for measuring nanosecond ultra-narrow pulse | |
CN105044420B (en) | A kind of waveform searching method of digital oscilloscope | |
CN102680855A (en) | Cable fault detecting and positioning method based on waveform replication | |
CN105890685A (en) | Ultrasonic flow measuring device based on accumulated phase difference | |
CN109633253B (en) | Circuit and method for realizing voltage transient signal detection based on FPGA | |
CN107121587B (en) | Peak and peak time tracking detection circuit | |
CN109995359B (en) | Metastable state observation system and method for edge trigger | |
CN113406877B (en) | High time precision measurement method and system of pulse signal based on characteristic point | |
CN101839931A (en) | Alternating current signal measurement device, system and method | |
CN111624469A (en) | Propagation delay test circuit of digital isolator | |
CN103684365A (en) | High frequency clock duty ratio test circuit | |
CN108896897B (en) | A device for measuring steady-state parameters of a two-terminal transit time device | |
CN105403765A (en) | Amplitude stabilization loop device for pulse power measurement | |
CN112511164B (en) | High-speed real-time weak signal detection method and device based on single-bit sampling | |
CN102439465B (en) | Method and device for testing signal sequence | |
CN201251601Y (en) | Weak low frequency instant vibration signal detection circuit based on frequency measurement | |
CN216561747U (en) | A High Sampling Rate Equivalent Sampling System Based on FPGA | |
CN105388437A (en) | Method for testing waveform capture rate of digital storage oscilloscope | |
CN104977556A (en) | Dead-time measurement-based average waveform capture rate test method | |
CN114545185A (en) | Pulse test system of GaN bidirectional switch based on state machine mode | |
Moreno-Garcia et al. | An approach to the equivalent-time sampling technique for pulse transient measurements | |
CN208432659U (en) | High precision low frequency Frequency tester | |
CN208043910U (en) | A kind of novel peak-detector circuit | |
CN110988495B (en) | A high-speed pulse signal amplitude measurement method | |
CN209310860U (en) | A kind of ultrasonic signal energizing circuit of zero-time delay variance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230328 |