CN107271867A - GIS partial discharge fault type recognition method based on D S evidence theories - Google Patents
GIS partial discharge fault type recognition method based on D S evidence theories Download PDFInfo
- Publication number
- CN107271867A CN107271867A CN201710498705.4A CN201710498705A CN107271867A CN 107271867 A CN107271867 A CN 107271867A CN 201710498705 A CN201710498705 A CN 201710498705A CN 107271867 A CN107271867 A CN 107271867A
- Authority
- CN
- China
- Prior art keywords
- fault type
- partial discharge
- bel
- discharge fault
- gis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 42
- 230000004927 fusion Effects 0.000 claims abstract description 29
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims description 8
- 238000005315 distribution function Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 abstract description 8
- 238000004088 simulation Methods 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 abstract description 2
- 230000007547 defect Effects 0.000 description 21
- 239000007789 gas Substances 0.000 description 9
- 239000012212 insulator Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000009421 internal insulation Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1254—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Relating To Insulation (AREA)
Abstract
本发明公开了一种GIS局部放电故障类型识别方法,针对现有技术中超声波检测法、超高频检测法和SF6分解物检测法这三种检测法,不能对GIS设备局部放电故障类型进行完全有效识别的技术问题,提出了运用D‑S(Dempster‑Shafer)证据理论对现有技术中三种检测法的故障类型识别结果进行决策级融合,来弥补三种单一方法的不足;设计了基于D‑S理论的多传感器信息融合故障类型识别系统结构,通过对两种典型绝缘故障进行仿真计算,使GIS绝缘故障类型识别的准确度和快速性得以大大提高,对GIS设备绝缘状态检测的研究有一定的参考价值。
The invention discloses a GIS partial discharge fault type identification method, aiming at the three detection methods of ultrasonic detection method, ultra-high frequency detection method and SF6 decomposition product detection method in the prior art, it cannot completely identify the partial discharge fault type of GIS equipment To solve the technical problem of effective identification, it is proposed to use the D‑S (Dempster‑Shafer) evidence theory to carry out decision-level fusion of the fault type identification results of the three detection methods in the prior art to make up for the shortcomings of the three single methods; a design based on The multi-sensor information fusion fault type identification system structure of D‑S theory, through the simulation calculation of two typical insulation faults, the accuracy and rapidity of GIS insulation fault type identification can be greatly improved. Research on the insulation state detection of GIS equipment It has certain reference value.
Description
技术领域technical field
本发明涉及一种GIS设备绝缘状态识别方法,具体为基于 D-S(Dempster-Shafer)理论的决策级数据融合识别方法。The invention relates to a method for identifying the insulation state of GIS equipment, in particular to a decision-level data fusion identification method based on D-S (Dempster-Shafer) theory.
背景技术Background technique
对气体绝缘组合电器(Gas Insulated Switchgear,GIS)进行在线局部放电(Partial Discharge,PD)检测可有效掌握GIS内部绝缘状况,预防GIS绝缘故障跳闸造成电网事故。目前超声波、超高频两种检测方法工程应用较为普遍,技术也比较成熟,但工程应用反馈出许多问题,而SF6分解物组份检测法是目前比较新兴和发展趋势良好的在线检测方法。On-line Partial Discharge (PD) detection of Gas Insulated Switchgear (GIS) can effectively grasp the internal insulation status of GIS and prevent power grid accidents caused by GIS insulation fault tripping. At present, the engineering application of ultrasonic and ultra-high frequency detection methods is relatively common, and the technology is relatively mature, but many problems have been reported in the engineering application, and the SF6 decomposition component detection method is currently a relatively new online detection method with a good development trend.
超声波检测法通过超声波探头检测PD产生的超声波及振动信号来检测PD 信号,超高频法(Ultra High Frequency,UHF)通过天线接收PD产生的300~ 3000MHz频段UHF电磁波信号来检测PD信号。不同绝缘缺陷引起的局部放电所产生不同的分解化合气体,SF6分解物检测法通过对PD引起的GIS内部SF6气体分解生成的各种特征气体含量来检测PD信号。The ultrasonic detection method detects the PD signal by detecting the ultrasonic and vibration signals generated by the PD with an ultrasonic probe, and the Ultra High Frequency (UHF) method detects the PD signal by receiving the 300-3000MHz frequency band UHF electromagnetic wave signal generated by the PD through an antenna. Partial discharges caused by different insulation defects produce different decomposed compound gases. The SF6 decomposition product detection method detects the PD signal through the content of various characteristic gases generated by the decomposition of SF6 gas inside the GIS caused by PD.
在GIS内部模拟突出物A类缺陷、附着物B类缺陷、绝缘子气隙C类缺陷及自由微粒D类缺陷等4种绝缘缺陷,运用此三种方法进行故障检测,对检测图谱分析可知:超声波检测法对D类自由金属颗粒缺陷引起的PD检测效果最明显,对B类绝缘子附着污染物缺陷放电检测并不明显;超高频检测法中对A类金属突出物和C类绝缘子气隙缺陷引起的PD检测效果最为明显,对D类自由金属微粒缺陷放电检测效果最差;SF6分解物组分检测法一般是在PD发生15小时后,SF6气体分解物含量达到一定数量,才能够有效识别,其中A类金属突出物和B类绝缘子附着污染物缺陷产生的PD最稳定,且产气量大、分解速率高,识别效果最好,C类绝缘子气隙缺陷PD产气量相对较小,识别效果较差。Four types of insulation defects are simulated inside GIS, including protrusion type A defect, attachment type B defect, insulator air gap type C defect and free particle D type defect. Using these three methods for fault detection, the analysis of the detection map shows that: ultrasonic The detection method has the most obvious detection effect on PD caused by class D free metal particle defects, but it is not obvious for the discharge detection of class B insulators attached to pollutant defects; The detection effect of PD is the most obvious, and the detection effect of D-type free metal particle defect discharge is the worst; the SF6 decomposition product component detection method is generally 15 hours after the PD occurs, and the SF6 gas decomposition product content reaches a certain amount before it can be effectively identified. , among them, the PD produced by type A metal protrusions and type B insulators attached to pollutant defects is the most stable, with large gas production and high decomposition rate, and the best identification effect. The PD gas production of type C insulator air gap defects is relatively small, and the identification effect poor.
因此,运用超声波、超高频、SF6分解物组份检测这3种单一方法,不能对 GIS设备PD故障类型进行完全有效识别。Therefore, the three single methods of ultrasonic, ultra-high frequency, and SF6 decomposition component detection cannot fully and effectively identify the PD fault type of GIS equipment.
发明内容Contents of the invention
本发明运用D-S(Dempster-Shafer)理论对3种不同类型传感器采集数据分析结果进行决策级融合,将来自某一目标的多源信息加以智能合成,利用3种检测法之间互补性的特点,采用超声波、超高频和SF6分解物组份检测进行联合在线检测,运用D-S证据理论对3种不同类型传感器采集数据融合决策。The present invention uses the D-S (Dempster-Shafer) theory to carry out decision-level fusion on the data analysis results collected by three different types of sensors, intelligently synthesizes multi-source information from a certain target, and utilizes the complementary characteristics of the three detection methods, Ultrasound, ultra-high frequency and SF6 decomposition component detection are used for joint online detection, and the D-S evidence theory is used to make data fusion decisions from three different types of sensors.
为实现上述目标,本发明采用如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种GIS局部放电故障类型识别方法,其特征在于,将超声波检测法、超高频检测法和SF6分解物检测法这三种检测法进行数据融合,从而识别GIS局部放电故障类型。A GIS partial discharge fault type identification method is characterized in that three detection methods, namely, ultrasonic detection method, ultra-high frequency detection method and SF6 decomposition product detection method, are combined for data, so as to identify the GIS partial discharge fault type.
所述数据融合基于D-S证据理论。The data fusion is based on D-S evidence theory.
所述识别方法进一步包括如下步骤:The identification method further includes the steps of:
步骤一:由超声波传感器、超高频传感器、气体传感器分别对局部放电结果进行检测;Step 1: The partial discharge results are detected by ultrasonic sensors, ultra-high frequency sensors, and gas sensors;
步骤二:将所述步骤一中各个传感器检测到的数据进行预处理,并分别判断出故障类型;Step 2: Preprocessing the data detected by each sensor in the step 1, and determining the fault type respectively;
步骤三:运用D-S证据理论进行决策融合;Step 3: Use D-S evidence theory for decision fusion;
步骤四:输出识别结果。Step 4: Output the recognition result.
所述步骤三进一步包括如下步骤:Described step three further comprises the following steps:
(1)对超声波、超高频两种检测方法进行可信度数据融合;(1) Carry out reliability data fusion of ultrasonic and ultra-high frequency detection methods;
(2)将融合后的结果与分解物检测法的可信度结果再次进行融合,得到融合结果。(2) The fused result is fused again with the reliability result of the decomposition product detection method to obtain the fused result.
所述步骤(1)基于以下公式进行:Described step (1) carries out based on following formula:
其中,m(A)为A的基本可信度分配函数;A为命题可能的结果;Θ表示命题对应所有可能结论的非空集合,集合内含有限个元素,且所有元素互斥;设Θ上存在Bel1和Bel2两个信度函数,m1、m2分别是其对应Bel1、Bel2的基本可信度分配,若A∈Θ且m(A)>0,其焦元分别为A1,A2,…,Ak和B1,B2…,Bn;i表示常量1,2,…k;j表示常量1,2,…n;n表示自然数1,2,3,…。Among them, m(A) is the basic credibility distribution function of A; A is the possible result of the proposition; Θ represents the non-empty set of all possible conclusions corresponding to the proposition, and the set contains a limited number of elements, and all elements are mutually exclusive; let Θ There are two reliability functions of Bel 1 and Bel 2 on , and m 1 and m 2 are the basic reliability distributions corresponding to Bel 1 and Bel 2 respectively. If A∈Θ and m(A)>0, the focal elements are respectively For A 1 , A 2 ,...,A k and B 1 ,B 2 ...,B n ; i represents the constant 1, 2,...k; j represents the constant 1, 2,...n; n represents the natural number 1, 2, 3,....
所述步骤(2)基于以下公式进行:Described step (2) carries out based on following formula:
本发明的有益效果是:本发明针对单一类型检测方法辨识度方面的不足,设计了多传感器信息融合故障类型识别系统结构,使GIS绝缘故障类型识别的准确度和快速性得以大大提高。The beneficial effects of the present invention are: the present invention designs a multi-sensor information fusion fault type identification system structure for the lack of identification of a single type detection method, which greatly improves the accuracy and rapidity of GIS insulation fault type identification.
附图说明Description of drawings
图1为D-S证据理论信息融合的过程图;Figure 1 is a process diagram of information fusion of D-S evidence theory;
图2为GIS局放类型识别信息融合系统结构框图。Figure 2 is a structural block diagram of the GIS partial discharge type identification information fusion system.
具体实施方式detailed description
D-S(Dempster-Shafer)证据理论通过数学推理对不确定和不完整的信息进行归纳与计算,作出科学合理的决策。该理论提出了基本概率分配(BPA),信任函数(BEL)和似然函数(P1)的概念。D-S (Dempster-Shafer) evidence theory summarizes and calculates uncertain and incomplete information through mathematical reasoning, and makes scientific and reasonable decisions. The theory proposes the concepts of Basic Probability Assignment (BPA), Belief Function (BEL) and Likelihood Function (P1).
(1)识别框架Θ和基本概率分配BPA(1) Recognition framework Θ and basic probability assignment BPA
设Θ表示命题对应所有可能结论的非空集合,集合内含有限个元素,且所有元素互斥。Let Θ represent a non-empty set of propositions corresponding to all possible conclusions, the set contains a finite number of elements, and all elements are mutually exclusive.
Θ={A1,A2,...,An,θ}Θ={A 1 ,A 2 ,...,A n ,θ}
式中,Ai为命题可能的结果;θ表示结果的不确定性。In the formula, A i is the possible result of the proposition; θ represents the uncertainty of the result.
在Θ中存在一个mass函数m:2Θ→[0,1],且满足:There is a mass function m:2 Θ →[0,1] in Θ, and it satisfies:
则m(A)为A的基本概率分配BPA。Then m(A) is A's basic probability assignment BPA.
(2)信任函数Bel和似然函数Pl(2) Belief function Bel and likelihood function Pl
D-S证据理论给出了一个信任区间[Bel(A),P1(A)]来表示融合结果对事件支持的范围上下限,则下限函数bel定义为:The D-S evidence theory gives a confidence interval [Bel(A), P1(A)] to represent the upper and lower limits of the range supported by the fusion result to the event, then the lower limit function bel is defined as:
上线函数pl定义为:The online function pl is defined as:
其中:Bel(A)≤P1(A),Θ表示所有子集,融合计算时可以用Bel(A)或P1(A)表示对命题的信任支持程度。Among them: Bel(A)≤P1(A), Θ represents all subsets, and Bel(A) or P1(A) can be used to represent the degree of trust and support for the proposition during fusion calculation.
合成规则是融合的过程,证据融合算法为两个信度函数的合成和多个信度函数的合成两种。Combination rule is the process of fusion, evidence fusion algorithm is two kinds of combination of reliability functions and combination of multiple reliability functions.
⑴两个信度函数的合成算法(1) Synthesis algorithm of two reliability functions
设Θ上存在Bel1和Bel2两个信度函数,m1、m2分别是其对应Bel1、Bel2的基本可信度分配,若A∈Θ且m(A)>0,其焦元分别为A1,A2,…,Ak和B1,B2…,Bn,设:Assuming that there are two reliability functions Bel 1 and Bel 2 on Θ, m 1 and m 2 are the basic reliability distributions corresponding to Bel 1 and Bel 2 respectively. If A∈Θ and m(A)>0, its focal The elements are respectively A 1 , A 2 ,…,A k and B 1 ,B 2 …,B n , suppose:
则合成后的基本可信度分配函数为:Then the basic credibility distribution function after synthesis is:
式2中,若k≠1,则m可确定一个基本概率赋值;否则m1、m2两者矛盾,不能组合基本概率的赋值,i表示常量1,2,…k;j表示常量1,2,…n;n表示自然数1,2,3,…。In formula 2, if k≠1, then m can determine a basic probability assignment; otherwise m 1 and m 2 are contradictory, and the assignment of basic probability cannot be combined. i represents constants 1, 2, ...k; j represents constant 1, 2,...n; n represents the natural number 1, 2, 3,....
⑵多个信度函数的合成(2) Synthesis of multiple reliability functions
设同一Θ上存在信度函数Bel1,Bel2,…,Beln,对应的基本可信度分配为 m1,m2,…,mn,若存在且基本可信度分配为m,则:Assuming that there are reliability functions Bel1, Bel2,..., Beln on the same Θ, the corresponding basic reliability distributions are m1, m2,...,mn, if there are And the basic reliability distribution is m, then:
上式满足 The above formula is satisfied
合成后的基本可信度分配函数m为:The combined basic credibility distribution function m is:
D-S证据理论的信息融合过程如图1所示,可采用基于基本概率赋值的决策等多种方法,基于基本概率赋值决策输出规则应满足:The information fusion process of D-S evidence theory is shown in Figure 1. Various methods such as decision-making based on basic probability assignment can be used. The output rules of decision-making based on basic probability assignment should satisfy:
同时满足:Also meet:
则说明决策输出结果为A1。m(A1)为输出BPA最大值;m(A2)为输出BPA次最大值;ε为预设门槛值,本发明取0.25;m(θ)为不确定性BPA。Then it shows that the decision output result is A 1 . m(A 1 ) is the maximum value of the output BPA; m(A 2 ) is the second maximum value of the output BPA; ε is the preset threshold value, which is 0.25 in the present invention; m(θ) is the uncertainty BPA.
图2所示为基于D-S证据理论的GIS局部放电故障类型识别多信息融合系统。该系统有4部分组成:1)多类传感器的集合,由超声波、超高频、气体传感器构成;2)同质传感器采集信息融合部分,对数据预处理后,将同质数据进行融合;3)判断局部放电故障类型,采用3种单一方法检测出故障类型后,运用D-S证据理论进行决策级融合;4)决策输出,输出PD类型识别结果。Figure 2 shows the GIS partial discharge fault type identification multi-information fusion system based on D-S evidence theory. The system consists of four parts: 1) A collection of multiple types of sensors, consisting of ultrasonic, ultra-high frequency, and gas sensors; 2) The homogeneous sensor collection information fusion part, which fuses homogeneous data after data preprocessing; 3 ) Judging the type of partial discharge fault, using three single methods to detect the type of fault, using the D-S evidence theory for decision-level fusion; 4) Decision output, outputting the identification result of PD type.
构建故障识别框架Θ={F1,F2,F3,F4,θ},其中,F1为自由导电微粒缺陷;F2为表面附着物缺陷;F3为金属突出物缺陷;F4为绝缘子气隙缺陷;θ代表不确定性。Construct the fault identification framework Θ={F 1 ,F 2 ,F 3 ,F 4 ,θ}, where F1 is the defect of free conductive particles; F2 is the defect of surface attachment; F3 is the defect of metal protrusion; F4 is the air gap of the insulator defect; θ stands for uncertainty.
表1为对缺陷F3进行模拟测试的结果。通过公式(2)与公式(4)计算超声波S、超高频P和分解物组份Q等3种信息的BPA及通过D-S合成规则融合结果。首先通过公式(2)对S、P两种检测方法进行可信度数据融合,然后通过公式(4)将融合后的结果与分解物组份Q的可信度结果再次进行融合,最终结果如下表中D-S融合(S&P&Q)所示。Table 1 shows the results of the simulation test for defect F3. The BPA of three kinds of information, including ultrasonic S, UHF P, and decomposition product component Q, is calculated by formula (2) and formula (4), and the fusion result is obtained through the D-S synthesis rule. Firstly, the reliability data of the S and P detection methods are fused by the formula (2), and then the fused result is fused with the reliability result of the decomposition product component Q by the formula (4), and the final result is as follows D-S fusion (S&P&Q) is shown in the table.
首先计算证据体系冲突系数k:First calculate the conflict coefficient k of the evidence system:
则合成后可信度分配函数:Then the credibility distribution function after synthesis:
由上表可知,D-S融合(S&P&Q)后的,m(θ)=0.0376,m(F3)=0.9006,其中m(θ) 明显减小,即对诊断结果的不确定性降低,故障F3的可信度大幅提高,对应故障诊断的可靠性也相应大幅提高。3种辨识信息的输出结论基本一致,即都认为金属突出物出现故障的概率较大。It can be seen from the above table that after D-S fusion (S&P&Q), m(θ)=0.0376, m(F3)=0.9006, where m(θ) is significantly reduced, that is, the uncertainty of the diagnosis result is reduced, and the possibility of fault F3 The reliability is greatly improved, and the reliability of the corresponding fault diagnosis is also greatly improved. The output conclusions of the three types of identification information are basically the same, that is, they all believe that the probability of failure of the metal protrusion is relatively high.
m(A1)=0.9006>m(θ),m(A2)=0.0337,m(A 1 )=0.9006>m(θ), m(A 2 )=0.0337,
m(A1)-m(A2)=0.9006-0.0337=0.8669>ε,m(A 1 )-m(A 2 )=0.9006-0.0337=0.8669>ε,
本发明预设门槛值ε取0.25,融合的结果满足公式(5)与公式(6),符合基本概率赋值决策输出判决规则判定为表面附着物缺陷,与最初设置的故障类型一致。The preset threshold value ε of the present invention is set to 0.25, and the fusion result satisfies formula (5) and formula (6), which conforms to the basic probability assignment decision-making output judgment rule and is determined to be a surface attachment defect, which is consistent with the initially set fault type.
表2所示为对表面附着物缺陷的模拟测试结果,3种单一检测方法的辨识结果不完全一致,超高频P检测法辨识为F3缺陷和F2缺陷的概率较大,超声波 S和分解物组份Q检测法均认为F2绝缘子表面附着物的概率较大,但超声波S 同时还判别存在F1缺陷。通过D-S证据理论中公式(2)与公式(4)对S、P 和Q检测结果进行计算,得出D-S融合(S&P&Q)决策输出结果,判定为F2 绝缘子表面附着物缺陷的概率大大提高,不确定性m(θ)减小为0.0040,其结果满足公式(5)与公式(6),符合概率赋值决策输出判决规则,与实际模型设置故障相一致。Table 2 shows the simulation test results for surface attachment defects. The identification results of the three single detection methods are not completely consistent. The UHF P detection method has a higher probability of identifying F3 defects and F2 defects. Component Q detection methods all believe that the probability of F2 insulator surface attachment is relatively high, but ultrasonic S can also identify the existence of F1 defects at the same time. Through formula (2) and formula (4) in the D-S evidence theory to calculate the detection results of S, P and Q, the decision output result of D-S fusion (S&P&Q) is obtained. The deterministic m(θ) is reduced to 0.0040, and the result satisfies formula (5) and formula (6), conforms to the decision rule of probability assignment decision output, and is consistent with the actual model setting failure.
表1 3种单一方法及D-S融合后的检测结果可信度分配表1Table 1 Three single methods and D-S fusion test results reliability distribution table 1
表2 3种单一方法及D-S融合后的检测结果可信度分配表2Table 2 Three single methods and D-S fusion test results reliability distribution Table 2
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710498705.4A CN107271867A (en) | 2017-06-27 | 2017-06-27 | GIS partial discharge fault type recognition method based on D S evidence theories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710498705.4A CN107271867A (en) | 2017-06-27 | 2017-06-27 | GIS partial discharge fault type recognition method based on D S evidence theories |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107271867A true CN107271867A (en) | 2017-10-20 |
Family
ID=60068465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710498705.4A Pending CN107271867A (en) | 2017-06-27 | 2017-06-27 | GIS partial discharge fault type recognition method based on D S evidence theories |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107271867A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107908598A (en) * | 2017-11-24 | 2018-04-13 | 东北电力大学 | OPLC Fault Locating Methods based on DS evidence theories |
CN108761467A (en) * | 2018-05-25 | 2018-11-06 | 淮阴师范学院 | A kind of underwater map constructing method of three-dimensional based on Forward-looking Sonar |
CN108961203A (en) * | 2018-02-19 | 2018-12-07 | 江苏新时高温材料股份有限公司 | A kind of three-dimensional rebuilding method of fusion ultrasound and the hollow plate type ceramic film defect of machine vision technique |
CN109142989A (en) * | 2018-06-14 | 2019-01-04 | 中国电力科学研究院有限公司 | Super UHV transmission line composite insulator live-working safety appraisal procedure |
CN111505457A (en) * | 2020-05-07 | 2020-08-07 | 国家电网有限公司 | A GIS partial discharge comprehensive online monitoring device |
CN112014691A (en) * | 2020-07-10 | 2020-12-01 | 国网安徽省电力有限公司电力科学研究院 | Partial discharge detection terminal and method based on multi-information fusion under the power Internet of things |
CN112379235A (en) * | 2020-10-10 | 2021-02-19 | 广西电网有限责任公司电力科学研究院 | GIS insulation fault testability evaluation method |
CN112686093A (en) * | 2020-12-02 | 2021-04-20 | 重庆邮电大学 | Fusion partial discharge type identification method based on DS evidence theory |
CN113640629A (en) * | 2021-07-26 | 2021-11-12 | 国网电力科学研究院武汉南瑞有限责任公司 | GIS partial discharge state evaluation method, recording medium and system |
CN114065814A (en) * | 2021-11-16 | 2022-02-18 | 中国南方电网有限责任公司超高压输电公司广州局 | Method and device for identifying defect types of GIL partial discharge |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103267932A (en) * | 2013-04-25 | 2013-08-28 | 国家电网公司 | A GIS partial discharge detection system and method |
CN103777123A (en) * | 2014-01-27 | 2014-05-07 | 国家电网公司 | Partial discharge fault comprehensive diagnosis method for GIS device |
CN104655948A (en) * | 2013-11-21 | 2015-05-27 | 国家电网公司 | Novel multistage fault diagnosis method for power transformer |
CN105676085A (en) * | 2016-01-31 | 2016-06-15 | 国家电网公司 | Extra-high voltage GIS partial discharge detection method based on multi-sensor information fusion |
-
2017
- 2017-06-27 CN CN201710498705.4A patent/CN107271867A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103267932A (en) * | 2013-04-25 | 2013-08-28 | 国家电网公司 | A GIS partial discharge detection system and method |
CN104655948A (en) * | 2013-11-21 | 2015-05-27 | 国家电网公司 | Novel multistage fault diagnosis method for power transformer |
CN103777123A (en) * | 2014-01-27 | 2014-05-07 | 国家电网公司 | Partial discharge fault comprehensive diagnosis method for GIS device |
CN105676085A (en) * | 2016-01-31 | 2016-06-15 | 国家电网公司 | Extra-high voltage GIS partial discharge detection method based on multi-sensor information fusion |
Non-Patent Citations (1)
Title |
---|
汤会增: "基于多传感器的1000KV GIS局部放电在线检测技术研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107908598B (en) * | 2017-11-24 | 2021-04-30 | 东北电力大学 | OPLC fault positioning method based on DS evidence theory |
CN107908598A (en) * | 2017-11-24 | 2018-04-13 | 东北电力大学 | OPLC Fault Locating Methods based on DS evidence theories |
CN108961203A (en) * | 2018-02-19 | 2018-12-07 | 江苏新时高温材料股份有限公司 | A kind of three-dimensional rebuilding method of fusion ultrasound and the hollow plate type ceramic film defect of machine vision technique |
CN108961203B (en) * | 2018-02-19 | 2023-07-18 | 江苏新时高温材料股份有限公司 | A method for 3D reconstruction of defects in hollow plate ceramic membranes using ultrasonic and machine vision techniques |
CN108761467A (en) * | 2018-05-25 | 2018-11-06 | 淮阴师范学院 | A kind of underwater map constructing method of three-dimensional based on Forward-looking Sonar |
CN109142989B (en) * | 2018-06-14 | 2021-07-13 | 中国电力科学研究院有限公司 | Safety assessment method for live operation of composite insulators for EHV transmission lines |
CN109142989A (en) * | 2018-06-14 | 2019-01-04 | 中国电力科学研究院有限公司 | Super UHV transmission line composite insulator live-working safety appraisal procedure |
CN111505457A (en) * | 2020-05-07 | 2020-08-07 | 国家电网有限公司 | A GIS partial discharge comprehensive online monitoring device |
CN111505457B (en) * | 2020-05-07 | 2022-05-31 | 国家电网有限公司 | GIS partial discharge comprehensive online monitoring device |
CN112014691A (en) * | 2020-07-10 | 2020-12-01 | 国网安徽省电力有限公司电力科学研究院 | Partial discharge detection terminal and method based on multi-information fusion under the power Internet of things |
CN112379235A (en) * | 2020-10-10 | 2021-02-19 | 广西电网有限责任公司电力科学研究院 | GIS insulation fault testability evaluation method |
CN112379235B (en) * | 2020-10-10 | 2022-06-24 | 广西电网有限责任公司电力科学研究院 | GIS insulation fault testability evaluation method |
CN112686093A (en) * | 2020-12-02 | 2021-04-20 | 重庆邮电大学 | Fusion partial discharge type identification method based on DS evidence theory |
CN113640629A (en) * | 2021-07-26 | 2021-11-12 | 国网电力科学研究院武汉南瑞有限责任公司 | GIS partial discharge state evaluation method, recording medium and system |
CN114065814A (en) * | 2021-11-16 | 2022-02-18 | 中国南方电网有限责任公司超高压输电公司广州局 | Method and device for identifying defect types of GIL partial discharge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107271867A (en) | GIS partial discharge fault type recognition method based on D S evidence theories | |
CN105676085B (en) | Based on extra-high voltage GIS detection method for local discharge combined of multi-sensor information | |
CN102735999B (en) | Gas insulated substation (GIS) partial discharge online monitoring system and fault mode identifying method thereof | |
CN105068149B (en) | Multi-information integration-based thunder and lightning monitoring and forecasting method for electric transmission and transformation equipment | |
CN103267932B (en) | A kind of GIS partial discharge detection system and method | |
CN104318347A (en) | Power transmission line icing state assessment method based on information fusion of multiple sensors | |
US8400504B2 (en) | Contamination monitoring of high voltage insulators | |
CN102520286B (en) | Hyperspectrum-based composite insulator operation state classification method | |
Xuewei et al. | Research on transformer fault diagnosis method and calculation model by using fuzzy data fusion in multi-sensor detection system | |
CN106353651A (en) | Fault location method of acoustic electric joint partial discharge detection based on BP (Back Propagation) network in GIS (Gas Insulated Switchgear) | |
Liu et al. | Dual-channel convolutional network-based fault cause identification for active distribution system using realistic waveform measurements | |
CN117148076B (en) | Multi-feature fusion type high-voltage switch cabinet partial discharge identification method and system | |
CN116577788B (en) | Power transmission line foreign matter intrusion monitoring method, device and computer equipment | |
CN110347717A (en) | A kind of big data storage method based on urban electric power equipment monitoring | |
CN117351321B (en) | A single-stage lightweight subway lining cavity identification method and related equipment | |
CN115542099A (en) | Online GIS partial discharge detection method and device | |
CN109766912A (en) | A method and system for icing assessment of transmission line based on Kalman filter and support vector machine | |
CN104655914B (en) | Method and device for detecting interference signals and local discharging signals of GIS equipment | |
CN114283330B (en) | Online inspection identification method and system based on multi-source data | |
CN110672988A (en) | Partial discharge mode identification method based on hierarchical diagnosis | |
Wu et al. | Multi-source partial discharge pattern recognition algorithm based on DCGAN-Yolov5 | |
Cui et al. | Authenticating source information of distribution synchrophasors at intra-state locations for cyber-physical resilient power networks | |
CN111696330B (en) | Classification method and system for wind disaster of power transmission line | |
CN118427674A (en) | GIS insulation defect detection method based on multi-sensor and network fusion | |
CN111160383A (en) | Self-adaptive fire disaster model early warning detection method for oil-immersed transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171020 |
|
RJ01 | Rejection of invention patent application after publication |