[go: up one dir, main page]

CN107176899A - The method that a kind of dioxygen oxidation alcohol or aldehyde prepare acid - Google Patents

The method that a kind of dioxygen oxidation alcohol or aldehyde prepare acid Download PDF

Info

Publication number
CN107176899A
CN107176899A CN201610141434.2A CN201610141434A CN107176899A CN 107176899 A CN107176899 A CN 107176899A CN 201610141434 A CN201610141434 A CN 201610141434A CN 107176899 A CN107176899 A CN 107176899A
Authority
CN
China
Prior art keywords
oxygen
acid
aldehyde
alcohol
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610141434.2A
Other languages
Chinese (zh)
Other versions
CN107176899B (en
Inventor
麻生明
姜兴国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Organic Chemistry of CAS
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN201610141434.2A priority Critical patent/CN107176899B/en
Priority to CN202110259272.3A priority patent/CN113004108B/en
Publication of CN107176899A publication Critical patent/CN107176899A/en
Application granted granted Critical
Publication of CN107176899B publication Critical patent/CN107176899B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/88Benzo [c] furans; Hydrogenated benzo [c] furans with one oxygen atom directly attached in position 1 or 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/08Formation or introduction of functional groups containing oxygen of carboxyl groups or salts, halides or anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/313Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/24Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/94Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom spiro-condensed with carbocyclic rings or ring systems, e.g. griseofulvins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • C07J9/005Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane containing a carboxylic function directly attached or attached by a chain containing only carbon atoms to the cyclopenta[a]hydrophenanthrene skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种以氧气或空气中的氧气为氧化剂氧化醇或醛制备酸的方法,系在室温下,在有机溶剂中,以硝酸铁(Fe(NO3)3·9H2O)、2,2,6,6‑四甲基哌啶氮氧化物(TEMPO)和无机卤化物为催化剂,以氧气或空气作为氧化剂,由醇或醛氧化生成酸,二醇氧化生成内酯;或,以醛为原料,以硝酸铁作为催化剂,在中性条件下反应,所述醛氧化生成酸和过氧酸。本发明具有绿色环保、成本低、产率高、原子经济性高、底物官能团兼容性好、反应条件温和、反应规模可放大等优点,适合应用于工业生产。The invention provides a method for preparing acid by oxidizing alcohol or aldehyde with oxygen or oxygen in the air as an oxidant. It is at room temperature in an organic solvent with iron nitrate (Fe(NO 3 ) 3 .9H 2 O), 2 , 2,6,6-tetramethylpiperidine nitrogen oxide (TEMPO) and inorganic halides are used as catalysts, oxygen or air is used as oxidant, and alcohol or aldehyde is oxidized to generate acid, and diol is oxidized to generate lactone; or, with Aldehydes are used as raw materials, and ferric nitrate is used as a catalyst to react under neutral conditions, and the aldehydes are oxidized to generate acid and peroxyacid. The invention has the advantages of environmental protection, low cost, high yield, high atom economy, good substrate functional group compatibility, mild reaction conditions, scalable reaction scale, etc., and is suitable for industrial production.

Description

一种氧气氧化醇或醛制备酸的方法A kind of method that oxygen oxidation alcohol or aldehyde prepares acid

技术领域technical field

本发明涉及一种以氧气或空气中的氧气为氧化剂氧化醇或醛生产酸的方法,具体涉及一种以铁催化的,通过氧气或空气氧化醇或醛制备酸的方法。The invention relates to a method for producing acid by oxidizing alcohol or aldehyde by using oxygen or oxygen in air as an oxidant, in particular to a method for producing acid by oxidizing alcohol or aldehyde with iron catalysis.

背景技术Background technique

羧酸是重要的一类有机化合物,在工业、农业、医药和人们的日常生活中有着广泛应用。从醇到酸的氧化反应是有机化学中一种基本的、重要的化学反应。在工业和制药领域,羧酸的生产常通过氧化的方法获得。因此,寻找一种高效、价格低廉、条件温和、官能团兼容性好、环境友好的催化氧化体系具有良好的应用前景。从醇到酸转化的难点在于从醛到酸的氧化。传统上,酸的合成是通过利用当量或过量的氧化剂来氧化相应的醇而获得,如KMnO4氧化、Jone’s氧化及其他基于CrO3的氧化方法等。此类方法的缺点是氧化剂含重金属,价格昂贵,废液污染环境,反应常需要强酸性,条件苛刻,对设备要求高,不适用于大规模工业生产(Oxidation of Primary Alcohols to Carboxylic Acids,Springer:Berlin,2007;Mahmood,A.;Robinson,G.E.;Powell,L.Org.Process Res.Dev.1999,3,363-364;Thottathil,J.K.;Moniot,J.L.;Mueller,R.H.;Wong,M.K.Y.;Kissick,T.P.J.Org.Chem.1986,51,3140-3143)。氧气是一种廉价易得、清洁、高原子经济性、环境友好的氧化剂。空气是更为理想的氧化剂,无需制备和运输,在工业生产中更为安全。目前,以氧气为氧化剂实现从醇到酸的氧化方法非常有限,且集中在贵金属催化领域,空气氧化的报道更为少见。如1940-年代发展的Pt催化的Heyns氧化,然而Pt昂贵的价格和易于毒化的特点限制了Heyns氧化在工业生产上的应用;姜标小组在2014年以Ag(NHC)/KOH体系实现了利用干燥的空气氧化卞醇生成酸;Davis等人报道了Au/H2O界面催化乙醇和丙三醇生成酸;张泽会等人报道了负载的磁性Pd纳米催化剂催化氧气氧化5-羟甲基糠醛生成2,5-呋喃二甲酸;Buffin等人报道了Pd催化下,醇可被氧气氧化为羧酸和酯的混合物,卞醇可被氧化为醛和酸的混合物;2015年,李朝军小组报道了在AgO2/IPr体系中,由氧气氧化醛生成酸。Ag、Au、Ru、Pd等金属催化的氧化反应也有一定报道,但底物局限性强,大多需要纳米技术或负载实现(Dalmer,O.;Heyns,K.U.S.Pat.1940,2,190,377;Han,L.;Xing,P.;Jiang,B.Org.Lett.2014,16,3428-3431;Zope,B.N.;Hibbitts,D.D.;Neurock,M.;Davis,R.J.Science,2010,330,74-78;Kerdi,F.;Rass,H.A.;Pinel,C.;Besson,M.;Peru,G.;Leger,B.;Rio,S.;Monflier,E.;Ponchel,A.Appl.Catal.A.2015,506,206-219;Buffin,B.P.;Clarkson,J.P.;Belitz,N.L.;Kundu,A.J.Mol.Catal.A.2005,225,111-116;eLiu,M.X.;Wang,H.N.;Zeng,H.Y.;Li,C.J.Sci.Adv.2015,1,e1500020)。TEMPO能提供一种稳定的氧自由基,在与Fe或者Cu协同催化氧化醇得到醛或酮的过程中发挥了重要的作用(StahlS.S.;Ryland,B.L.Angew.Chem.Int.Ed.2014,53,8824-8838;Cao,Q.;Dornan,L.M.;Rogan,L.;Hughes,N.L.;Muldoon,M.J.Chem.Commun.,2014,50,4524-4543)。但在此类体系中还未能实现氧气氧化醇或醛生成酸的报道。Carboxylic acid is an important class of organic compounds, widely used in industry, agriculture, medicine and people's daily life. The oxidation reaction from alcohol to acid is a fundamental and important chemical reaction in organic chemistry. In industry and pharmaceuticals, carboxylic acids are often produced by oxidation. Therefore, finding a catalytic oxidation system with high efficiency, low price, mild conditions, good functional group compatibility and environmental friendliness has a good application prospect. The difficulty in converting alcohols to acids is the oxidation of aldehydes to acids. Traditionally, the synthesis of acids is obtained by oxidizing the corresponding alcohols with equivalent or excess oxidizing agents, such as KMnO4 oxidation, Jones' oxidation, and other CrO3 - based oxidation methods, etc. The disadvantage of this type of method is that the oxidant contains heavy metals, is expensive, and the waste liquid pollutes the environment. The reaction often requires strong acidity, harsh conditions, and high equipment requirements. It is not suitable for large-scale industrial production (Oxidation of Primary Alcohols to Carboxylic Acids, Springer: Berlin, 2007; Mahmood, A.; Robinson, GE; Powell, L. Org. Process Res. Dev. 1999, 3, 363-364; Thottathil, JK; Moniot, JL; Mueller, RH; Wong, MKY; Chem. 1986, 51, 3140-3143). Oxygen is a cheap, easy-to-obtain, clean, high-atom-economical, and environmentally friendly oxidizing agent. Air is a more ideal oxidant, without preparation and transportation, and is safer in industrial production. At present, the oxidation methods from alcohol to acid using oxygen as oxidant are very limited, and they are concentrated in the field of noble metal catalysis, and the reports on air oxidation are even rarer. For example, the Pt-catalyzed Heyns oxidation developed in the 1940s, however, the high price and easy poisoning of Pt limit the application of Heyns oxidation in industrial production; Jiang Biao's group realized the use of Ag(NHC)/KOH system in 2014 Dry air oxidizes benzyl alcohol to generate acid; Davis et al. reported that Au/H 2 O interface catalyzed ethanol and glycerol to generate acid; Zhang Zehui et al. reported that supported magnetic Pd nanocatalyst catalyzed oxygen oxidation of 5-hydroxymethylfurfural 2,5-furandicarboxylic acid; Buffin et al. reported that under the catalysis of Pd, alcohols can be oxidized by oxygen to a mixture of carboxylic acids and esters, and alcohol can be oxidized to a mixture of aldehydes and acids; in 2015, Li Chaojun’s group reported that in In the AgO 2 /IPr system, acid was generated by oxygen oxidation of aldehyde. Ag, Au, Ru, Pd and other metal-catalyzed oxidation reactions have also been reported, but the substrates have strong limitations, and most of them require nanotechnology or support to realize (Dalmer, O.; Heyns, KUS Pat. 1940, 2, 190, 377; Han, L.; Xing, P.; Jiang, B. Org. Lett. 2014, 16, 3428-3431; Zope, BN; Hibbitts, DD; Neurorock, M.; Davis, RJ Science, 2010, 330, 74-78; Kerdi, F. ; Rass, HA; Pinel, C.; Besson, M.; Peru, G.; Leger, B.; ; Buffin, BP; Clarkson, JP; Belitz, NL; Kundu, AJ Mol. Catal. A. 2005, 225, 111-116; eLiu, MX; ). TEMPO can provide a stable oxygen radical, which plays an important role in the process of synergistically catalyzing the oxidation of alcohols with Fe or Cu to obtain aldehydes or ketones (StahlS.S.; Ryland, BLAngew.Chem.Int.Ed.2014, 53, 8824-8838; Cao, Q.; Dornan, LM; Rogan, L.; Hughes, NL; Muldoon, MJ Chem. Commun., 2014, 50, 4524-4543). However, there have been no reports on the oxidation of alcohols or aldehydes to acids by oxygen in such systems.

发明内容Contents of the invention

本发明克服了现有技术中使用当量重金属为氧化剂或贵金属为催化剂、反应条件比较苛刻、底物官能团兼容性差、反应需高温高压等缺陷,提供了一种通过室温常压下,由氧气或空气氧化醇或醛来生成酸的方法,以工业易得的硝酸铁、TEMPO、无机卤化物作为共催化剂,以来源广泛的氧气或空气作为氧化剂,降低了成本,减少了反应过程中产生的废物污染,具有高效、温和、反应规模易于放大的优势。The invention overcomes the defects in the prior art of using equivalent heavy metals as oxidants or noble metals as catalysts, harsh reaction conditions, poor compatibility of substrate functional groups, high temperature and high pressure required for the reaction, and provides a method that is produced by oxygen or air at room temperature and normal pressure. The method of oxidizing alcohols or aldehydes to generate acids, using ferric nitrate, TEMPO, and inorganic halides that are readily available in the industry as co-catalysts, and using oxygen or air from a wide range of sources as oxidants, reduces costs and reduces waste pollution generated during the reaction process , which has the advantages of high efficiency, mildness, and easy scale-up of the reaction scale.

本发明的目的在于提供一种反应条件温和、高效、低成本、绿色环保的催化氧气氧化醇或醛制备酸的方法。The purpose of the present invention is to provide a method for preparing acid by catalyzing oxygen oxidation of alcohol or aldehyde with mild reaction conditions, high efficiency, low cost, and environmental protection.

本发明提供的一种氧气氧化醇或醛制备酸的方法,在室温下,在有机溶剂中,以氧气或空气中的氧气作为氧化剂,以醇、二醇或醛为原料,以硝酸铁、2,2,6,6-四甲基哌啶氮氧化物(TEMPO)、无机卤化物作为催化剂,在中性条件下反应时间为1-48小时,醇或醛氧化生成酸,二醇氧化生成内酯或二酸。A method for preparing acid by oxygen oxygen oxidation of alcohol or aldehyde provided by the invention, at room temperature, in an organic solvent, with oxygen or oxygen in the air as an oxidant, with alcohol, glycol or aldehyde as raw material, iron nitrate, 2 , 2,6,6-tetramethylpiperidine nitrogen oxide (TEMPO), inorganic halides are used as catalysts, the reaction time is 1-48 hours under neutral conditions, alcohol or aldehyde is oxidized to generate acid, diol is oxidized to generate internal ester or diacid.

本发明方法中,所述醇、二醇或醛、硝酸铁、2,2,6,6-四甲基哌啶氮氧化物、无机卤化物的摩尔比为100:1~10:1~20:1~10;优选地,所述醇(或醛)、硝酸铁、2,2,6,6-四甲基哌啶氮氧化物、无机卤化物的摩尔比为100:10:20:10。In the method of the present invention, the molar ratio of the alcohol, diol or aldehyde, ferric nitrate, 2,2,6,6-tetramethylpiperidine nitrogen oxide, and inorganic halide is 100:1~10:1~20 : 1~10; Preferably, the mol ratio of described alcohol (or aldehyde), ferric nitrate, 2,2,6,6-tetramethylpiperidine nitrogen oxide, inorganic halide is 100:10:20:10 .

本发明还提供了一种氧气氧化醇或醛制备酸的方法,在室温下,在有机溶剂中,以氧气或空气中的氧气作为氧化剂,以醛为原料,以硝酸铁作为催化剂,在中性条件下反应,醛氧化生成酸和过氧酸。本发明方法中,所述原料醛、硝酸铁摩尔比为100~10:1,生成相应的酸和过氧酸。The present invention also provides a method for preparing acid by oxidizing alcohol or aldehyde with oxygen. At room temperature, in an organic solvent, oxygen or oxygen in the air is used as an oxidant, aldehyde is used as a raw material, and iron nitrate is used as a catalyst. Under these conditions, the aldehyde is oxidized to form acid and peroxyacid. In the method of the present invention, the molar ratio of the raw material aldehyde to iron nitrate is 100-10:1 to generate corresponding acid and peroxyacid.

本发明方法中,所述醇是R1CH2OH。In the method of the present invention, the alcohol is R 1 CH 2 OH.

其中,R1是指C1-C16的碳链,C3-C8的碳环或杂环,含有卤素、芳基、杂环、酯基、醚键、炔基、双键等官能团的烷基,萜类、甾体等结构;Among them, R1 refers to a C1 -C16 carbon chain, a C3-C8 carbocyclic or heterocyclic ring, an alkyl group containing functional groups such as halogen, aryl group, heterocyclic ring, ester group, ether bond, alkynyl group, double bond, etc., terpene Classes, steroids and other structures;

所述卤素为氟、氯、溴、碘;The halogen is fluorine, chlorine, bromine, iodine;

所述芳基为苯基、烷氧基苯基、硝基苯基、卤代苯基、呋喃基或萘基;其中,所述烷氧基苯基为甲氧基苯基、乙氧基苯基,所述卤代苯基为氟代苯基、氯代苯基、溴代苯基、碘代苯基;The aryl is phenyl, alkoxyphenyl, nitrophenyl, halophenyl, furyl or naphthyl; wherein, the alkoxyphenyl is methoxyphenyl, ethoxyphenyl Base, the halogenated phenyl is fluorophenyl, chlorophenyl, bromophenyl, iodophenyl;

所述杂环为呋喃环、噻吩环。The heterocycles are furan rings and thiophene rings.

优选地,所述R1为C2-C16的碳链,C3-C8的碳环或杂环,含有卤素、苯基、杂环、酯基、醚键、炔基、双键等官能团的烷基,萜类、甾体等结构。Preferably, the R is a C2-C16 carbon chain, a C3-C8 carbocycle or heterocycle, an alkyl group containing functional groups such as halogen, phenyl, heterocycle, ester group, ether bond, alkynyl, double bond, etc. , Terpenes, steroids and other structures.

进一步地,R1为C2-C16的碳链,C3-C8的碳环,含硫、氧脂杂环,含有卤素、苯基、噻吩基、呋喃基、酯基、醚键、炔基、双键等官能团的烷基,萜类、甾体等结构。Further, R 1 is a carbon chain of C2-C16, a carbon ring of C3-C8, sulfur-containing, oxygen aliphatic heterocyclic ring, containing halogen, phenyl, thienyl, furyl, ester group, ether bond, alkynyl, bis Alkyl groups with functional groups such as bonds, structures such as terpenoids and steroids.

更进一步地,所述原料醇为辛醇、十二醇、苯丙醇、十六烷基醇、6-羟基己酸甲酯、8-乙酰氧基辛醇、四氢呋喃-2-甲醇、噻吩-2-乙醇、9-溴-1-壬醇、2-己氧基乙醇、7-炔-1-辛醇、4-戊炔-1-醇、10-十一炔-1-醇、3-三甲基硅基丙炔醇、环己-3-烯-1-甲醇、辛二醇、香紫苏二醇、(3α,5β)-3,24-胆二醇、邻苯二醇。Further, the raw material alcohol is octanol, dodecanol, phenylpropanol, cetyl alcohol, methyl 6-hydroxyhexanoate, 8-acetoxy octanol, tetrahydrofuran-2-methanol, thiophene- 2-Ethanol, 9-bromo-1-nonanol, 2-hexyloxyethanol, 7-alkyne-1-octanol, 4-pentyn-1-ol, 10-undecyn-1-ol, 3- Trimethylsilylpropynol, Cyclohex-3-ene-1-methanol, Octanediol, Sclarediol, (3α,5β)-3,24-Cholediol, Ortho-Phenylenediol.

本发明方法中,所述醛是R2CHO。In the method of the present invention, the aldehyde is R 2 CHO.

其中,所述R2是指C1-C16的碳链,C3-C8的碳环或杂环,含有卤素、芳基、杂环、酯基、醚键、炔基、双键等官能团的烷基、萜类、甾体等结构;Wherein, the R2 refers to a C1 - C16 carbon chain, a C3-C8 carbocycle or heterocycle, an alkyl group containing functional groups such as halogen, aryl, heterocycle, ester group, ether bond, alkynyl, double bond, etc. , terpenes, steroids and other structures;

其中,所述卤素为氟、氯、溴、碘;Wherein, the halogen is fluorine, chlorine, bromine, iodine;

所述芳基为苯基、烷氧基苯基、硝基苯基、卤代苯基、噻吩基、呋喃基或萘基,其中,所述烷氧基苯基为甲氧基苯基、乙氧基苯基,所述卤代苯基为氟代苯基、氯代苯基、溴代苯基、碘代苯基;The aryl is phenyl, alkoxyphenyl, nitrophenyl, halophenyl, thienyl, furyl or naphthyl, wherein the alkoxyphenyl is methoxyphenyl, ethyl Oxyphenyl, the halogenated phenyl is fluorophenyl, chlorophenyl, bromophenyl, iodophenyl;

所述杂环为呋喃环、噻吩环。The heterocycles are furan rings and thiophene rings.

优选地,所述R2为C2-C16的碳链,C3-C8的碳环或杂环,含有卤素、苯基、杂环、酯基、醚键、炔基、双键等官能团的烷基,萜类、甾体等结构。Preferably, the R2 is a C2 - C16 carbon chain, a C3-C8 carbocycle or heterocycle, an alkyl group containing functional groups such as halogen, phenyl, heterocycle, ester group, ether bond, alkynyl, double bond, etc. , Terpenes, steroids and other structures.

进一步地,所述R2为C2-C16的碳链,C3-C8的碳环,含硫、氧脂杂环,含有卤素、苯基、噻吩基、呋喃基、酯基、醚键、炔基、双键等官能团的烷基,萜类、甾体等结构。Further, the R2 is a carbon chain of C2 - C16, a carbon ring of C3-C8, sulfur-containing, oxygen aliphatic heterocyclic ring, containing halogen, phenyl, thienyl, furyl, ester group, ether bond, alkynyl Alkyl groups with functional groups such as double bonds, terpenes, steroids and other structures.

更进一步地,所述原料醛为辛醛、十二醛、环己基甲醛、苯丙醛。Further, the raw material aldehydes are octanal, dodecanal, cyclohexyl formaldehyde, and phenylpropionaldehyde.

本发明方法中,所述二醇包括1,4-二醇和1,5-二醇及1,8-二醇。In the method of the present invention, the diol includes 1,4-diol, 1,5-diol and 1,8-diol.

本发明方法中,所述有机溶剂为乙酸乙酯、二氯甲烷、1,2-二氯乙烷、1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、硝基甲烷、乙二醇二甲醚、二氧六环、四氢呋喃、乙腈、苯或甲苯中的一种或多种混合;优选地,所述有机溶剂为1,2-二氯乙烷。In the method of the present invention, the organic solvent is ethyl acetate, dichloromethane, 1,2-dichloroethane, 1,1-dichloroethane, 1,2-dichloropropane, 1,3-dichloro One or more mixtures of propane, nitromethane, ethylene glycol dimethyl ether, dioxane, tetrahydrofuran, acetonitrile, benzene or toluene; preferably, the organic solvent is 1,2-dichloroethane .

本发明方法中,所述无机卤化物为卤化锂、卤化钠、卤化钾、卤化铷、卤化铯,卤原子为氟、氯、溴、碘。优选为氯化钾、氯化钠。进一步优选为氯化钾。In the method of the present invention, the inorganic halides are lithium halides, sodium halides, potassium halides, rubidium halides, and cesium halides, and the halogen atoms are fluorine, chlorine, bromine, and iodine. Potassium chloride and sodium chloride are preferred. Potassium chloride is more preferred.

本发明方法中,当氧气为氧化剂时,所述反应时间优选地为12小时;当空气中的氧气为氧化剂时,所述反应时间优选地为16小时。In the method of the present invention, when oxygen is the oxidant, the reaction time is preferably 12 hours; when oxygen in the air is the oxidant, the reaction time is preferably 16 hours.

本发明方法中,硝酸铁为路易斯酸,所述中性条件是指无质子酸或碱参与,即不添加质子酸或碱。In the method of the present invention, ferric nitrate is a Lewis acid, and the neutral condition refers to the participation of no protic acid or base, that is, no addition of protonic acid or base.

进一步地,本发明中以空气中的氧气为氧化剂将反应放大时,还可采用两种技术手段,解决工业生产中反应放大的问题:一种方法是以空气袋作为氧气的主要来源,反应1.5小时后,增加氧气球作为补充;另一种方法是通过缓慢空气流方法,使空气缓慢流过反应容器,实现氧化目的。这些技术手段避免了工业上纯氧气条件下反应可能带来的危险,满足设备要求,便于工业上的应用。Further, in the present invention, when the oxygen in the air is used as the oxidant to amplify the reaction, two technical means can also be used to solve the problem of amplifying the reaction in industrial production: one method is to use the air bag as the main source of oxygen, and the reaction is 1.5 Hours later, add oxygen balloons as a supplement; another method is to make the air slowly flow through the reaction vessel through the slow air flow method to achieve the purpose of oxidation. These technical means avoid the dangers that may be brought by the reaction under the condition of pure oxygen in industry, meet the equipment requirements, and are convenient for industrial application.

本发明的反应机理为:Int 1,TEMPO和Fe3+结合的产物,与醇反应生成Int 2。Int 2通过β-消除和还原消除得到了醛,TEMPOH,Fe 2+。在反应体系中,Fe2+可以在NO2作用下重新被氧化为Fe3+,而NO2被还原为NO。NO2通过NO与O2的反应再生。TEMPOH通过和Fe3+的反应被转化回到TEMPO。醛的水合物Int 3通过H2O在Fe3+的调节下进攻醛生成。醛的水合物Int 3经历一个相似的过程得到羧酸,如图1所示。The reaction mechanism of the present invention is: Int 1, the combined product of TEMPO and Fe 3+ , reacts with alcohol to generate Int 2 . Int 2 obtained aldehyde, TEMPOH, Fe 2+ by β-elimination and reductive elimination. In the reaction system, Fe 2+ can be re-oxidized to Fe 3+ under the action of NO 2 , while NO 2 is reduced to NO. NO2 is regenerated by the reaction of NO with O2 . TEMPOH is converted back to TEMPO by reaction with Fe 3+ . Aldehyde hydrate Int 3 is generated by H 2 O attacking aldehyde under the regulation of Fe 3+ . The aldehyde hydrate Int 3 undergoes a similar process to give the carboxylic acid, as shown in Figure 1.

本发明公开了在室温下,在有机溶剂中,以Fe(NO3)3.9H2O、TEMPO(2,2,6,6-四甲基哌啶氮氧化物)、和无机卤化物(如KCl)为催化剂,以氧气或空气作为氧化剂,氧化醇或醛生成相应的酸的方法。本发明还公开了在室温下,在有机溶剂中,以氧气作为氧化剂,以醛为原料,以硝酸铁作为催化剂,在中性条件下反应,原料醛氧化生成酸和过氧酸的方法。本发明方法,通过常压下纯氧气或空气,可将含有碳碳单键,碳碳双键,碳碳三键、卤素、酯基等多种官能团的醇或醛选择性地氧化,将一级醇氧化生成相应的酸。本发明具有反应条件温和、产率高、操作简单、分离纯化方便、底物官能团兼容性好、节能、绿色、环境友好等诸多优点,是一种适合工业化生产的方法。The invention discloses that at room temperature, in an organic solvent, Fe(NO 3 ) 3 .9H 2 O, TEMPO (2,2,6,6-tetramethylpiperidine nitrogen oxide), and an inorganic halide ( Such as KCl) as a catalyst, using oxygen or air as an oxidant to oxidize alcohols or aldehydes to generate corresponding acids. The invention also discloses a method for reacting under neutral conditions in an organic solvent with oxygen as an oxidant, aldehyde as a raw material, and ferric nitrate as a catalyst to oxidize the raw material aldehyde to generate acid and peroxyacid. The method of the present invention can selectively oxidize alcohols or aldehydes containing carbon-carbon single bonds, carbon-carbon double bonds, carbon-carbon triple bonds, halogens, ester groups and other functional groups by pure oxygen or air under normal pressure. Alcohols are oxidized to the corresponding acids. The invention has many advantages such as mild reaction conditions, high yield, simple operation, convenient separation and purification, good substrate functional group compatibility, energy saving, greenness, and environmental friendliness, and is a method suitable for industrial production.

本发明具有底物普适性广的优点,既可催化氧化普通醇,又可用于催化氧化结构比较复杂的醇,如含有酯基、醚、卤素、苯环、杂环、炔基、双键等官能团的醇等,甚至萜类、甾体结构亦可在本发明条件下兼容,适用于药物研发领域。本发明具有产率高、反应条件温和、操作简单、分离纯化方便等优点。本发明克服了现有技术中使用当量重金属为氧化剂或贵金属为催化剂、反应条件比较苛刻、底物官能团兼容性差、反应需高温高压等缺陷。本发明的方法,既可用于小规模实验室合成,也适用于大规模工业生产。The invention has the advantage of wide substrate universality, and can be used to catalyze and oxidize common alcohols, and can also be used to catalyze and oxidize alcohols with complex structures, such as ester groups, ethers, halogens, benzene rings, heterocycles, alkynyl groups, double bonds Alcohols and other functional groups, and even terpenes and steroid structures are also compatible under the conditions of the present invention, and are suitable for the field of drug research and development. The invention has the advantages of high yield, mild reaction conditions, simple operation, convenient separation and purification, and the like. The invention overcomes the defects in the prior art of using equivalent heavy metals as oxidants or noble metals as catalysts, relatively harsh reaction conditions, poor compatibility of substrate functional groups, high temperature and high pressure required for the reaction, and the like. The method of the present invention can be used for small-scale laboratory synthesis and also suitable for large-scale industrial production.

本发明采用廉价、来源广泛的氧气或空气作为氧化剂,替代传统氧化剂体系中所使用的化学氧化剂。所用催化剂硝酸铁、TEMPO和无机卤化物均为工业易得试剂。由于本发明催化氧化条件极为温和,因此,只需在室温、常压、中性的条件下就可以进行,操作极为便利且易于控制。由于反应过程中所用氧化剂是氧气或空气,副产物是水,因此,整个反应过程几乎对环境不会造成任何污染,是一种绿色化学合成方法。本发明后处理简单,产品收率高,可有效降低生产制造成本。The invention uses cheap and widely sourced oxygen or air as the oxidizing agent to replace the chemical oxidizing agent used in the traditional oxidizing agent system. The catalysts used are ferric nitrate, TEMPO and inorganic halides, all of which are readily available in industry. Since the catalytic oxidation condition of the present invention is very mild, it can be carried out only under room temperature, normal pressure and neutral conditions, and the operation is very convenient and easy to control. Since the oxidizing agent used in the reaction process is oxygen or air, and the by-product is water, the whole reaction process hardly causes any pollution to the environment, and it is a green chemical synthesis method. The invention has simple post-processing, high product yield and can effectively reduce production and manufacturing costs.

在本发明条件下,二醇可生成内酯或二酸。具体的说,部分1,4-二醇和1,5-二醇可生成内酯。而1,8-二醇可生成二酸。这为内酯和二酸产品的合成也提供了一种绿色环保、成本低的新方法。Under the conditions of the present invention, diols can form lactones or diacids. Specifically, some 1,4-diols and 1,5-diols can form lactones. And 1,8-diols can generate diacids. This also provides a green and low-cost new method for the synthesis of lactone and diacid products.

本发明还提出了所述酸在实验室制备、药物合成、工业生产中的应用。The invention also proposes the application of the acid in laboratory preparation, drug synthesis and industrial production.

本发明还提出了所述二酸在实验室制备、药物合成、工业生产中的应用。The invention also proposes the application of the diacid in laboratory preparation, drug synthesis and industrial production.

本发明还提出了所述内酯,在实验室制备、药物合成、工业生产中的应用。The invention also proposes the application of the lactone in laboratory preparation, drug synthesis and industrial production.

本发明还提出了一种合成式(I)所示(Ra)-7,8-二十联烯酸(phlomic acid)的方法,所述方法包括:The present invention also proposes a method for synthesizing (R a )-7,8-eicosenoic acid (phlomic acid) shown in formula (I), said method comprising:

(1)以7-辛炔-1-醇为原料,以硝酸铁、2,2,6,6-四甲基哌啶氮氧化物、无机卤化物为催化剂,发生氧化反应得到7-辛炔酸;(1) Using 7-octyn-1-ol as raw material, ferric nitrate, 2,2,6,6-tetramethylpiperidine nitrogen oxide, and inorganic halides as catalysts, an oxidation reaction occurs to obtain 7-octyne acid;

(2)对步骤(1)制备的7-辛炔酸进行甲基化反应,得到7-辛炔酸甲酯;(2) carry out methylation reaction to the 7-octynoic acid prepared in step (1), obtain 7-octynoic acid methyl ester;

(3)通过溴化铜、二甲基脯氨醇催化步骤(2)制备的7-辛炔酸甲酯,发生EATA反应(炔烃的不对称联烯基反应),得到联烯酸甲酯;(3) The 7-octynoic acid methyl ester prepared by copper bromide and dimethylprolinol catalytic step (2) undergoes EATA reaction (asymmetric allenyl reaction of alkynes) to obtain allenoic acid methyl ester ;

(4)在氢氧化钾存在下,在甲醇/水体系中,水解步骤(3)制备的联烯酸甲酯,得到式(I)所示轴手性联烯酸(Ra)-7,8-二十联烯酸。(4) In the presence of potassium hydroxide, in a methanol/water system, hydrolyze the allenoic acid methyl ester prepared in step (3) to obtain the axial chiral allenoic acid (R a )-7 shown in formula (I), 8-Eicosenoic acid.

其中,所述步骤(1)制备7-辛炔酸所采用的是本发明提出的氧气氧化醇或醛制备酸的方法,所述原料为7-辛炔-1-醇。Wherein, the method for preparing 7-octynoic acid in the step (1) is the method for preparing acid by oxygen oxidation of alcohol or aldehyde proposed in the present invention, and the raw material is 7-octyn-1-ol.

所述反应过程如路线(a)所示:Described reaction process is shown in route (a):

在一个具体的实验方案中,如反应式(i)所示,以十二醇3a为原料,以硝酸铁(Fe(NO3)3·9H2O)、2,2,6,6-四甲基哌啶氮氧化物和KCl作为催化剂时,以核磁内标方法监测反应中醇、醛、酸的含量。其中,KCl的用量为10mol%时,首先生成初始产物十二醛1a,2小时后生成十二酸2a,十二醇在六小时内消耗完全(如图2A所示);而用10mol%NaCl替代10mol%的KCl时,十二醇在4小时仍不能生成十二酸2a(如图2B所示)。In a specific experimental scheme, as shown in reaction formula (i), dodecanol 3a is used as raw material, ferric nitrate (Fe(NO 3 ) 3 9H 2 O), 2,2,6,6-tetra When methylpiperidine nitrogen oxide and KCl were used as catalysts, the content of alcohol, aldehyde and acid in the reaction was monitored by NMR internal standard method. Wherein, when the consumption of KCl is 10mol%, at first generate initial product dodecanal 1a, after 2 hours, generate dodecanoic acid 2a, dodecyl alcohol is consumed completely (as shown in Figure 2A) in six hours; And with 10mol%NaCl When 10 mol% of KCl was replaced, dodecanol could not generate dodecanoic acid 2a within 4 hours (as shown in FIG. 2B ).

附图说明Description of drawings

图1为本发明反应机理的示意图。Fig. 1 is the schematic diagram of reaction mechanism of the present invention.

图2中图2A为本发明以KCl作为催化剂时由原料十二醇生成产物十二酸;图2B为本发明以NaCl作为催化剂时由原料十二醇生成产物十二酸。Among Fig. 2, Fig. 2A shows that the product dodecanoic acid is generated from the raw material dodecanol when KCl is used as the catalyst in the present invention; Fig. 2B shows that the product dodecanoic acid is generated from the raw material dodecanol when NaCl is used as the catalyst in the present invention.

具体实施方式detailed description

结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。The present invention will be further described in detail in conjunction with the following specific embodiments and accompanying drawings. The process, conditions, experimental methods, etc. for implementing the present invention, except for the content specifically mentioned below, are common knowledge and common knowledge in this field, and the present invention has no special limitation content.

实施例1:十二酸的合成Embodiment 1: the synthesis of dodecanoic acid

其中,rt为室温。Among them, rt is room temperature.

在氧气氛围(氧气球)下,将Fe(NO3)3·9H2O(40.4mg,0.10mmol),2,2,6,6-四甲基哌啶氮氧化物(TEMPO,15.5mg,0.10mmol),KCl(7.5mg,0.10mmol),十二醇(189.0mg,98%纯度,1.0mmol)和1,2-二氯乙烷(DCE,4mL)加入到50mL Schlenk管中。室温搅拌12h,TLC监测直至反应完成。反应液粗硅胶短柱过滤,乙醚(75mL)淋洗,浓缩得粗产品。该粗产品通过硅胶柱层析(石油醚:乙酸乙酯=5:1)得到相应的十二酸(199.2mg,100%)。1H NMR(400MHz,CDCl3)δ11.68(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),1.63(quint,J=7.3Hz,2H,CH2),1.39-1.21(m,16H,8×CH2),0.88(t,J=7.0Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.7,34.1,31.9,29.6,29.4,29.3,29.2,29.0,24.6,22.7,14.1.Under an oxygen atmosphere (oxygen balloon), Fe(NO 3 ) 3 ·9H 2 O (40.4mg, 0.10mmol), 2,2,6,6-tetramethylpiperidine nitrogen oxide (TEMPO, 15.5mg, 0.10 mmol), KCl (7.5 mg, 0.10 mmol), dodecanol (189.0 mg, 98% purity, 1.0 mmol) and 1,2-dichloroethane (DCE, 4 mL) were added to a 50 mL Schlenk tube. Stir at room temperature for 12 h, and monitor by TLC until the reaction is complete. The reaction solution was filtered through a short column of silica gel, rinsed with ether (75 mL), and concentrated to obtain a crude product. The crude product was subjected to silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) to obtain the corresponding dodecanoic acid (199.2 mg, 100%). 1 H NMR (400MHz, CDCl 3 ) δ11.68 (brs, 1H, COOH), 2.35 (t, J=7.6Hz, 2H, CH 2 ), 1.63 (quint, J=7.3Hz, 2H, CH 2 ), 1.39-1.21 (m, 16H, 8×CH 2 ), 0.88 (t, J=7.0Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ180.7, 34.1, 31.9, 29.6, 29.4, 29.3, 29.2, 29.0, 24.6, 22.7, 14.1.

实施例2:辛酸的合成Embodiment 2: the synthesis of octanoic acid

其他操作参考实施例1,所用原料为辛醇,反应时间为12小时,得到辛酸(122.1mg,85%)。1H NMR(400MHz,CDCl3)δ11.47(brs,1H,COOH),2.35(t,J=7.4Hz,2H,CH2),1.63(quint,J=7.4Hz,2H,CH2),1.39-1.21(m,8H,4×CH2),0.88(t,J=7.0Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.6,34.1,31.6,29.0,28.9,24.6,22.6,14.0.Other operations refer to Example 1, the raw material used is octanol, and the reaction time is 12 hours to obtain octanoic acid (122.1 mg, 85%). 1 H NMR (400MHz, CDCl 3 ) δ11.47 (brs, 1H, COOH), 2.35 (t, J=7.4Hz, 2H, CH 2 ), 1.63 (quint, J=7.4Hz, 2H, CH 2 ), 1.39-1.21 (m, 8H, 4×CH 2 ), 0.88 (t, J=7.0Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl3) δ180.6, 34.1, 31.6, 29.0, 28.9, 24.6 , 22.6, 14.0.

实施例3:苯丙酸的合成Embodiment 3: the synthesis of phenylpropionic acid

其他操作参考实施例1,所用原料为苯丙醇(138.4mg,98%纯度,1.0mmol),反应时间为12小时,得到苯丙酸(147.1mg,98%)。1H NMR(400MHz,CDCl3)δ11.48(brs,1H,COOH),7.33-7.15(m,5H,Ar-H),2.95(t,J=8.0Hz,2H,CH2),2.67(t,J=7.8Hz,2H,CH2);13C NMR(100MHz,CDCl3)δ179.6,140.1,128.5,128.2,126.3,35.6,30.5.Other operations refer to Example 1, the raw material used is phenylpropanol (138.4mg, 98% purity, 1.0mmol), and the reaction time is 12 hours to obtain phenylpropionic acid (147.1mg, 98%). 1 H NMR (400MHz, CDCl 3 ) δ11.48 (brs, 1H, COOH), 7.33-7.15 (m, 5H, Ar-H), 2.95 (t, J=8.0Hz, 2H, CH 2 ), 2.67 ( t, J=7.8Hz, 2H, CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ179.6, 140.1, 128.5, 128.2, 126.3, 35.6, 30.5.

实施例4:十六烷基酸的合成Embodiment 4: the synthesis of hexadecanoic acid

其他操作参考实施例1,所用原料为十六烷基醇(247.4mg,98%纯度,1.0mmol),反应时间为12小时,得到十六烷基酸(254.2mg,99%)。熔点:62-63℃(石油醚/乙酸乙酯=100/1重结晶)(文献值:62.2–63.3℃);1H NMR(400MHz,CDCl3)δ11.60(brs,1H,COOH),2.35(t,J=7.4Hz,2H,CH2),1.63(quint,J=7.4Hz,2H,CH2),1.38-1.19(m,24H,12×CH2),0.88(t,J=6.8Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.7,34.1,31.9,29.71,29.69,29.68,29.66,29.65,29.60,29.44,29.37,29.2,29.1,24.7,22.7,14.1;IR(neat,cm-1):3300-2300,1698,1471,1430,1310,1293,1271,1250,1228,1207,1188;MS(EI)m/z(%):256(M+,60.14),73(100).Other operations refer to Example 1, the raw material used is cetyl alcohol (247.4 mg, 98% purity, 1.0 mmol), and the reaction time is 12 hours to obtain cetyl acid (254.2 mg, 99%). Melting point: 62-63°C (petroleum ether/ethyl acetate=100/1 recrystallization) (literature value: 62.2–63.3°C); 1 H NMR (400MHz, CDCl 3 ) δ11.60 (brs, 1H, COOH), 2.35(t, J=7.4Hz, 2H, CH 2 ), 1.63(quint, J=7.4Hz, 2H, CH 2 ), 1.38-1.19(m, 24H, 12×CH 2 ), 0.88(t, J= 6.8Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ180.7, 34.1, 31.9, 29.71, 29.69, 29.68, 29.66, 29.65, 29.60, 29.44, 29.37, 29.2, 29.1, 24.7, 22.7, 14.1; IR (neat, cm -1 ): 3300-2300, 1698, 1471, 1430, 1310, 1293, 1271, 1250, 1228, 1207, 1188; MS (EI) m/z (%): 256 (M + ,60.14),73(100).

实施例5:6-甲氧基-6-羰基己酸的合成Example 5: Synthesis of 6-methoxyl-6-oxoylhexanoic acid

其他操作参考实施例1,所用原料为6-羟基己酸甲酯(146.5mg,1.0mmol),反应时间为12小时,得到6-甲氧基-6-羰基己酸(138.4mg,94%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ9.21(brs,1H,COOH),3.68(s,3H,CH3),2.43-2.31(m,4H,2×CH2),1.75-1.62(m,4H,2×CH2);13C NMR(100MHz,CDCl3)δ179.4,173.8,51.6,33.6,24.2,24.0;IR(neat,cm-1):3400-2700,1736,1707,1438,1416,1367,1259,1199,1175,1143,1080,1016.MS(ESI,Neg)m/z(%):159(M-1)-.Other operations refer to Example 1, the raw material used is methyl 6-hydroxyhexanoate (146.5 mg, 1.0 mmol), and the reaction time is 12 hours to obtain 6-methoxy-6-oxohexanoic acid (138.4 mg, 94%) (petroleum ether: ethyl acetate = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ9.21 (brs, 1H, COOH), 3.68 (s, 3H, CH 3 ), 2.43-2.31 (m, 4H, 2×CH 2 ), 1.75-1.62 (m, 4H, 2×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ179.4, 173.8, 51.6, 33.6, 24.2, 24.0; IR (neat, cm -1 ): 3400-2700, 1736, 1707, 1438, 1416, 1367, 1259, 1199, 1175, 1143, 1080, 1016. MS (ESI, Neg) m/z (%): 159 (M-1) - .

实施例6:8-乙酰氧基辛酸的合成Example 6: Synthesis of 8-acetoxy octanoic acid

其他操作参考实施例1,所用原料为8-乙酰氧基辛醇(187.8mg,1.0mmol),反应时间为12小时,得到8-乙酰氧基辛酸(188.3mg,93%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ9.58(brs,1H,COOH),4.05(t,J=6.6Hz,2H,CH2),2.35(t,J=7.4Hz,2H,CH2),2.05(s,3H,CH3),1.69-1.57(m,4H,2×CH2),1.42-1.30(m,6H,3×CH2);13C NMR(100MHz,CDCl3)δ179.9,171.4,64.5,33.9,28.81,28.78,28.4,25.6,24.5,20.9;IR(neat,cm-1):3600-2400,1706,1464,1413,1391,1366,1234,1100,1036;MS(EI)m/z(%):202(M+,2.51),55(100).Other operations refer to Example 1, the raw material used is 8-acetoxy octanol (187.8 mg, 1.0 mmol), and the reaction time is 12 hours to obtain 8-acetoxy octanoic acid (188.3 mg, 93%) (petroleum ether: acetic acid ethyl ester = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ9.58 (brs, 1H, COOH), 4.05 (t, J = 6.6Hz, 2H, CH 2 ), 2.35 (t, J = 7.4Hz, 2H, CH 2 ), 2.05(s,3H,CH 3 ),1.69-1.57(m,4H,2×CH 2 ),1.42-1.30(m,6H,3×CH 2 ); 13 C NMR(100MHz,CDCl 3 )δ179.9,171.4 ,64.5,33.9,28.81,28.78,28.4,25.6,24.5,20.9; IR(neat,cm -1 ):3600-2400,1706,1464,1413,1391,1366,1234,1100,1036; MS(EI) m/z(%):202(M + ,2.51),55(100).

实施例7:四氢呋喃-2-甲酸的合成Embodiment 7: the synthesis of tetrahydrofuran-2-carboxylic acid

其他操作参考实施例1,所用原料为四氢呋喃-2-甲醇(103.7mg,99%纯度,1.0mmol),反应时间为12小时,得到四氢呋喃-2-甲酸(82.0mg,70%)(石油醚:乙酸乙酯=5:1到2:1)。1HNMR(400MHz,CDCl3)δ9.82(brs,1H,COOH),4.52(dd,J1=8.6Hz,J2=5.4Hz,1H,CH),4.09-4.00(m,1H,one proton of CH2),3.99-3.90(m,1H,one proton of CH2),2.38-2.27(m,1H,one proton of CH2),2.16-2.06(m,1H,one proton of CH2);2.04-1.89(m,2H,CH2);13C NMR(100MHz,CDCl3)δ177.8,76.2,69.6,30.1,25.2;IR(neat,cm-1):3400-2600,1722,1449,1411,1351,1310,1203,1176,1072,1037;MS(EI)m/z(%):116(M+,1.09),71(100).Other operations refer to Example 1, the raw material used is tetrahydrofuran-2-methanol (103.7 mg, 99% purity, 1.0 mmol), and the reaction time is 12 hours to obtain tetrahydrofuran-2-carboxylic acid (82.0 mg, 70%) (petroleum ether: Ethyl acetate = 5:1 to 2:1). 1 HNMR (400MHz, CDCl 3 ) δ9.82 (brs, 1H, COOH), 4.52 (dd, J 1 = 8.6Hz, J 2 = 5.4Hz, 1H, CH), 4.09-4.00 (m, 1H, one proton of CH 2 ),3.99-3.90(m,1H,one proton of CH 2 ),2.38-2.27(m,1H,one proton of CH 2 ),2.16-2.06(m,1H,one proton of CH 2 ); 2.04-1.89 (m, 2H, CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ177.8, 76.2, 69.6, 30.1, 25.2; IR (neat, cm -1 ): 3400-2600, 1722, 1449, 1411, 1351, 1310, 1203, 1176, 1072, 1037; MS (EI) m/z (%): 116 (M + , 1.09), 71 (100).

实施例8:噻吩-2-乙酸的合成Embodiment 8: the synthesis of thiophene-2-acetic acid

其他操作参考实施例1,所用原料为噻吩-2-乙醇(130.7mg,98%纯度,1.0mmol),反应时间为12小时,得到噻吩-2-乙酸(120.1mg,85%)(石油醚:乙酸乙酯=5:1到2:1)(132.0mg,1.0mmol),反应时间为2.3小时,得到噻吩-2-乙酸(111.9mg,86%)。熔点:61.3-62.4℃(石油醚/乙酸乙酯重结晶)(文献值:61-62.5℃);1H NMR(400MHz,CDCl3)δ10.89(brs,1H,COOH),7.24-7.20(m,1H,Ar-H),6.98-6.94(m,2H,Ar-H),3.87(s,2H,CH2);13C NMR(100MHz,CDCl3)δ177.0,134.0,127.2 126.9,125.3,35.0;IR(neat,cm-1):3300-2300,1692,1438,1417,1399,1362,1331,1222,1188,1148,1128,1081,1040;MS(EI)m/z(%):142(M+,48.52),97(100).Other operations refer to Example 1, the raw material used is thiophene-2-ethanol (130.7 mg, 98% purity, 1.0 mmol), and the reaction time is 12 hours to obtain thiophene-2-acetic acid (120.1 mg, 85%) (petroleum ether: Ethyl acetate=5:1 to 2:1) (132.0 mg, 1.0 mmol), the reaction time was 2.3 hours to obtain thiophene-2-acetic acid (111.9 mg, 86%). Melting point: 61.3-62.4°C (petroleum ether/ethyl acetate recrystallization) (literature value: 61-62.5°C); 1 H NMR (400MHz, CDCl 3 ) δ10.89 (brs, 1H, COOH), 7.24-7.20 ( m,1H,Ar-H),6.98-6.94(m,2H,Ar-H),3.87(s,2H,CH 2 ); 13 C NMR(100MHz,CDCl 3 )δ177.0,134.0,127.2 126.9,125.3, 35.0; IR (neat, cm -1 ): 3300-2300, 1692, 1438, 1417, 1399, 1362, 1331, 1222, 1188, 1148, 1128, 1081, 1040; MS (EI) m/z (%): 142(M + ,48.52),97(100).

实施例9:9-溴-1-壬酸的合成Example 9: Synthesis of 9-bromo-1-nonanoic acid

其他操作参考实施例1,所用原料为9-溴-1-壬醇(228.0mg,98%纯度,1.0mmol),反应时间为12小时,得到9-溴-1-壬酸(232.6mg,98%)(石油醚:乙酸乙酯=5:1到3:1)。熔点:35.3-36.5℃(石油醚/乙酸乙酯重结晶)(文献值:35-36.5℃);1H NMR(400MHz,CDCl3)δ11.54(brs,1H,COOH),3.41(t,J=6.8Hz,2H,CH2),2.36(t,J=7.6Hz,2H,CH2),1.85(quint,J=7.2Hz,2H,CH2),1.63(quint,J=7.3Hz,2H,CH2),1.48-1.28(m,8H,4×CH2);13C NMR(100MHz,CDCl3)δ180.4,34.0,33.9,32.7,29.0,28.8,28.5,28.0,24.5;IR(neat,cm-1):3100-2500,1689,1468,1427,1406,1338,1303,1275,1241,1211,1188,1097,1043;MS(EI)m/z(%):238(M(81Br)+,1.16),236(M(79Br)+,1.16),60(100).Other operations refer to Example 1, the raw material used is 9-bromo-1-nonanol (228.0mg, 98% purity, 1.0mmol), and the reaction time is 12 hours to obtain 9-bromo-1-nonanoic acid (232.6mg, 98 %) (petroleum ether: ethyl acetate = 5:1 to 3:1). Melting point: 35.3-36.5°C (petroleum ether/ethyl acetate recrystallization) (literature value: 35-36.5°C); 1 H NMR (400MHz, CDCl 3 ) δ11.54(brs,1H,COOH),3.41(t, J=6.8Hz, 2H, CH 2 ), 2.36(t, J=7.6Hz, 2H, CH 2 ), 1.85(quint, J=7.2Hz, 2H, CH 2 ), 1.63(quint, J=7.3Hz, 2H, CH 2 ), 1.48-1.28 (m, 8H, 4×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ180.4, 34.0, 33.9, 32.7, 29.0, 28.8, 28.5, 28.0, 24.5; IR (neat,cm -1 ):3100-2500,1689,1468,1427,1406,1338,1303,1275,1241,1211,1188,1097,1043; MS(EI)m/z(%):238(M ( 81 Br) + ,1.16),236(M( 79 Br) + ,1.16),60(100).

实施例10:2-己氧基乙酸的合成Embodiment 10: the synthesis of 2-hexyloxyacetic acid

其他操作参考实施例1,所用原料为2-己氧基乙醇(149.8mg,98%纯度,1.0mmol),反应时间为12小时,得到2-己氧基乙酸(147.7mg,92%)(石油醚:乙酸乙酯=5:1到2:1)。1HNMR(400MHz,CDCl3)δ10.14(brs,1H,COOH),4.13(s,2H,CH2),3.56(t,J=6.8Hz,2H,CH2),1.67-1.59(m,2H,CH2),1.41-1.24(m,6H,3×CH2),0.88(t,J=7.0Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ175.6,72.1,67.6,31.5,29.3,25.5,22.5,13.9.IR(neat,cm-1):3600-2500,2930,2862,1729,1462,1431,1239,1126,298,807,727,676;MS(EI)m/z(%):160(M+,2.82),83(100).Other operations refer to Example 1, the raw material used is 2-hexyloxyethanol (149.8mg, 98% purity, 1.0mmol), and the reaction time is 12 hours to obtain 2-hexyloxyacetic acid (147.7mg, 92%) (petroleum ether:ethyl acetate=5:1 to 2:1). 1 HNMR (400MHz, CDCl 3 ) δ10.14 (brs, 1H, COOH), 4.13 (s, 2H, CH 2 ), 3.56 (t, J=6.8Hz, 2H, CH 2 ), 1.67-1.59 (m, 2H, CH 2 ), 1.41-1.24 (m, 6H, 3×CH 2 ), 0.88 (t, J=7.0Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ175.6, 72.1, 67.6,31.5,29.3,25.5,22.5,13.9.IR(neat,cm -1 ):3600-2500,2930,2862,1729,1462,1431,1239,1126,298,807,727,676; MS(EI)m/z(% ):160(M + ,2.82),83(100).

实施例11:7-辛炔酸的合成Example 11: Synthesis of 7-octynoic acid

其他操作参考实施例1,所用原料为7-炔-1-辛醇(126.0mg,1.0mmol),反应时间为12小时,得到7-辛炔酸(111.7mg,80%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ11.41(brs,1H,COOH),2.38(t,J=7.4Hz,2H,CH2),2.20(td,J1=6.9Hz,J2=2.5Hz,2H,≡CCH2),1.95(t,J=2.6Hz,2H,≡CH),1.71-1.61(m,2H,CH2),1.60-1.42(m,4H,2×CH2);13C NMR(100MHz,CDCl3)δ180.3,84.2,68.4,33.9,28.02,27.98,24.1,18.2.Other operations refer to Example 1, the raw material used is 7-alkyne-1-octanol (126.0mg, 1.0mmol), and the reaction time is 12 hours to obtain 7-octynoic acid (111.7mg, 80%) (petroleum ether: acetic acid ethyl ester = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ11.41 (brs, 1H, COOH), 2.38 (t, J = 7.4Hz, 2H, CH 2 ), 2.20 (td, J 1 = 6.9Hz, J 2 = 2.5Hz ,2H,≡CCH 2 ), 1.95(t,J=2.6Hz,2H,≡CH),1.71-1.61(m,2H,CH 2 ),1.60-1.42(m,4H,2×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ180.3, 84.2, 68.4, 33.9, 28.02, 27.98, 24.1, 18.2.

实施例12:4-戊炔酸的合成Example 12: Synthesis of 4-pentynoic acid

其他操作参考实施例1,所用原料为4-戊炔-1-醇(89.3mg,95%纯度,1.0mmol),反应时间为12小时,得到4-戊炔酸(59.3mg,60%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ11.29(brs,1H,COOH),2.66-2.60(m,2H,CH2),2.56-2.48(m,2H,CH2),2.01(t,J=2.8Hz,1H,≡CH);13C NMR(100MHz,CDCl3)δ178.2,82.1,69.2,33.1,14.0.Other operations refer to Example 1, the raw material used is 4-pentyn-1-alcohol (89.3mg, 95% purity, 1.0mmol), and the reaction time is 12 hours to obtain 4-pentynoic acid (59.3mg, 60%) ( Petroleum ether: ethyl acetate = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ11.29 (brs, 1H, COOH), 2.66-2.60 (m, 2H, CH 2 ), 2.56-2.48 (m, 2H, CH 2 ), 2.01 (t, J= 2.8Hz, 1H, ≡CH); 13 C NMR (100MHz, CDCl 3 ) δ178.2, 82.1, 69.2, 33.1, 14.0.

实施例13:10-十一炔酸的合成Example 13: Synthesis of 10-undecynoic acid

其他操作参考实施例1,所用原料为10-十一炔-1-醇(182.6mg,1.0mmol),反应时间为12小时,得到10-十一炔酸(186.5mg,95%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ11.18(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),2.15-2.08(m,2H,CH2),1.78(t,J=2.6Hz,3H,CH3),1.63(quint,J=7.3Hz,2H,CH2),1.46(quint,J=7.2Hz,2H,CH2),1.41-1.24(m,8H,4×CH2);13C NMR(100MHz,CDCl3)δ180.5,79.3,75.3,34.1,29.1,28.98,28.95,28.91,28.8,24.6,18.7,3.4.Other operations refer to Example 1, the raw material used is 10-undecyn-1-alcohol (182.6mg, 1.0mmol), and the reaction time is 12 hours to obtain 10-undecynoic acid (186.5mg, 95%) (petroleum ether :ethyl acetate=5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ11.18 (brs, 1H, COOH), 2.35 (t, J=7.6Hz, 2H, CH 2 ), 2.15-2.08 (m, 2H, CH 2 ), 1.78 (t , J=2.6Hz, 3H, CH 3 ), 1.63 (quint, J=7.3Hz, 2H, CH 2 ), 1.46 (quint, J=7.2Hz, 2H, CH 2 ), 1.41-1.24 (m, 8H, 4×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ180.5, 79.3, 75.3, 34.1, 29.1, 28.98, 28.95, 28.91, 28.8, 24.6, 18.7, 3.4.

实施例14:3-三甲基硅基丙炔酸的合成Example 14: Synthesis of 3-trimethylsilylpropiolic acid

其他操作参考实施例1,所用原料为3-三甲基硅基丙炔醇(128.8mg,1.0mmol),反应时间为36小时,得到3-三甲基硅基丙炔酸(93.7mg,66%)(石油醚:乙酸乙酯=5:1)。1HNMR(400MHz,CDCl3)δ9.91(brs,1H,COOH),0.26(s,9H,3×CH3);13C NMR(100MHz,CDCl3)δ157.6,97.4,93.8,-1.0;IR(neat,cm-1):3600-2500,2964,2176,1687,1400,1252,913,840,760;MS(EI)m/z(%):142(M+,12.82),75(100).Other operations refer to Example 1, the raw material used is 3-trimethylsilyl propynol (128.8 mg, 1.0 mmol), and the reaction time is 36 hours to obtain 3-trimethylsilyl propiolic acid (93.7 mg, 66 %) (petroleum ether: ethyl acetate=5:1). 1 HNMR (400MHz, CDCl 3 ) δ9.91 (brs, 1H, COOH), 0.26 (s, 9H, 3×CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ 157.6, 97.4, 93.8, -1.0 ; IR (neat, cm -1 ): 3600-2500, 2964, 2176, 1687, 1400, 1252, 913, 840, 760; MS (EI) m/z (%): 142 (M + , 12.82), 75 (100).

实施例15:环己-3-烯-1-甲酸的合成Example 15: Synthesis of cyclohex-3-ene-1-carboxylic acid

其他操作参考实施例1,所用原料为环己-3-烯-1-甲醇(114.7mg,98%纯度,1.0mmol),反应时间为48小时,得到环己-3-烯-1-甲酸(102.5mg,81%)(石油醚:乙酸乙酯=5:1)。1H NMR(400MHz,CDCl3)δ11.01(brs,1H,COOH),5.74-5.64(m,2H,CH=CH),2.65-2.56(m,1H,CH),2.35-2.25(m,2H,CH2),2.20-1.99(m,3H,CH2),1.78-1.65(m,1H,CH2);13CNMR(100MHz,CDCl3)δ182.5,126.6,124.8,39.0,27.0,24.7,24.2.MS(EI)m/z(%):126(M+,27.78),79(100).Other operations refer to Example 1, the raw material used is cyclohex-3-ene-1-methanol (114.7mg, 98% purity, 1.0mmol), and the reaction time is 48 hours to obtain cyclohex-3-ene-1-carboxylic acid ( 102.5mg, 81%) (petroleum ether: ethyl acetate = 5:1). 1 H NMR (400MHz, CDCl 3 ) δ11.01 (brs, 1H, COOH), 5.74-5.64 (m, 2H, CH=CH), 2.65-2.56 (m, 1H, CH), 2.35-2.25 (m, 2H,CH 2 ),2.20-1.99(m,3H,CH 2 ),1.78-1.65(m,1H,CH 2 ); 13 CNMR(100MHz,CDCl 3 )δ182.5,126.6,124.8,39.0,27.0,24.7, 24.2. MS (EI) m/z (%): 126 (M + , 27.78), 79 (100).

实施例16:辛二酸的合成Example 16: Synthesis of suberic acid

其他操作参考实施例1,所用原料为辛二醇(149.8mg,98%纯度,1.0mmol),反应时间为48小时,得到辛二酸(150.8mg,86%)(乙酸乙酯/正己烷重结晶)。熔点:138.6-139.7℃(文献值:144℃);1H NMR(400MHz,DMSO-d6)δ12.00(s,3H,CH3),2.19(t,J=7.2Hz,4H,2×CH2),1.54-1.42(m,4H,2×CH2),1.31-1.20(m,4H,2×CH2);13C NMR(100MHz,d6-DMSO)δ174.5,33.6,28.3,24.4.IR(neat,cm-1):3500-2200,1688,1466,1408,1332,1252,1190,1065,1011.MS(EI)m/z(%):174(M+,0.23),138(100).Other operations refer to Example 1, the raw material used is octane glycol (149.8mg, 98% purity, 1.0mmol), the reaction time is 48 hours, obtain suberic acid (150.8mg, 86%) (ethyl acetate/n-hexane weight crystallization). Melting point: 138.6-139.7°C (literature value: 144°C); 1 H NMR (400MHz, DMSO-d 6 ) δ12.00(s, 3H, CH 3 ), 2.19(t, J=7.2Hz, 4H, 2× CH 2 ), 1.54-1.42 (m, 4H, 2×CH 2 ), 1.31-1.20 (m, 4H, 2×CH 2 ); 13 C NMR (100MHz, d 6 -DMSO) δ174.5, 33.6, 28.3 ,24.4.IR(neat,cm -1 ):3500-2200,1688,1466,1408,1332,1252,1190,1065,1011.MS(EI)m/z(%):174(M + ,0.23) ,138(100).

实施例17:(+)-香紫苏内酯的合成Example 17: Synthesis of (+)-sclereolactone

其他操作参考实施例1,所用原料为香紫苏二醇(254.4mg,1.0mmol),反应时间为12小时,得到(+)-香紫苏内酯(230.1mg,92%)(石油醚:乙酸乙酯=20:1到5:1)。熔点:123.7-124.5℃(石油醚/乙酸乙酯重结晶)(文献值:121-124℃);比旋光[α]D 28.7=47.9(c=1.01,CHCl3)(文献值:[α]D 20=47(c=1.01,CHCl3));1H NMR(400MHz,CDCl3)δ2.41(dd,J1=16.0Hz,J2=14.8Hz,1H,one proton of CH2),2.23(dd,J1=16.4Hz,J2=6.4Hz,1H,CH2),2.08(dt,J1=11.6Hz,J2=3.2Hz,1H),1.97(dd,J1=14.8Hz,J2=6.6Hz,1H,CH2),1.92-1.84(m,1H,CH2),1.74-1.60(m,2H,CH2),1.50-1.31(m,7H),1.20(dt,J1=14.0Hz,J2=4.0Hz,1H,CH2),1.10-1.00(m,2H),0.91(s,3H,CH3),0.89(s,3H,CH3),0.84(s,3H,CH3);13C NMR(100MHz,CDCl3)δ176.8,86.3,59.0,56.5,42.0,39.3,38.6,35.9,33.05,32.99,28.6,21.4,20.8,20.4,18.0,14.9;IR(neat,cm-1):2928,2897,2869,1766,1460,1390,1223,1178,1122,1017;MS(EI)m/z(%):250(M+,3.96),123(100).Other operations refer to Example 1, the raw material used is sclarediol (254.4 mg, 1.0 mmol), and the reaction time is 12 hours to obtain (+)-sclera lactone (230.1 mg, 92%) (petroleum ether: ethyl acetate = 20:1 to 5:1). Melting point: 123.7-124.5°C (petroleum ether/ethyl acetate recrystallization) (literature value: 121-124°C); specific optical rotation [α] D 28.7 = 47.9 (c=1.01, CHCl 3 ) (literature value: [α] D 20 =47 (c=1.01, CHCl 3 )); 1 H NMR (400MHz, CDCl 3 ) δ2.41 (dd, J 1 =16.0Hz, J 2 =14.8Hz, 1H, one proton of CH 2 ), 2.23 (dd, J 1 =16.4Hz, J 2 =6.4Hz, 1H, CH 2 ), 2.08 (dt, J 1 =11.6Hz, J 2 =3.2Hz, 1H), 1.97 (dd, J 1 =14.8Hz ,J 2 =6.6Hz,1H,CH 2 ),1.92-1.84(m,1H,CH 2 ),1.74-1.60(m,2H,CH 2 ),1.50-1.31(m,7H),1.20(dt, J 1 =14.0Hz, J 2 =4.0Hz, 1H, CH 2 ), 1.10-1.00(m, 2H), 0.91(s, 3H, CH 3 ), 0.89(s, 3H, CH 3 ), 0.84(s , 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ176.8, 86.3, 59.0, 56.5, 42.0, 39.3, 38.6, 35.9, 33.05, 32.99, 28.6, 21.4, 20.8, 20.4, 18.0, 14.9; IR (neat, cm -1 ): 2928, 2897, 2869, 1766, 1460, 1390, 1223, 1178, 1122, 1017; MS (EI) m/z (%): 250 (M + , 3.96), 123 ( 100).

实施例18:3-羰基-5β-胆烷酸的合成Example 18: Synthesis of 3-oxo-5β-cholanic acid

其他操作参考实施例1,所用原料为(3α,5β)-3,24-胆二醇(362.6mg,1.0mmol),反应时间为24小时,得到3-羰基-5β-胆烷酸(272.4mg,73%)(石油醚:乙酸乙酯=2:1)。熔点:139.9-142.1℃(石油醚/乙酸乙酯重结晶)(文献值:137.7℃);比旋光[α]D 25.3=28.7(c=1.02,CHCl3)(文献值:[α]D 25.3=28.1(c=0.01,CHCl3));1H NMR(400MHz,CDCl3)δ11.45(brs,1H,COOH),2.70(t,J=14.2Hz,1H,CH2),2.46-2.22(m,3H),2.21-2.13(m,1H),2.08-1.98(m,3H),1.94-1.76(m,4H),1.65-1.55(m,1H),1.55-1.04(m,15H),1.02(s,3H,CH3),0.93(d,J=6.4Hz,3H,CH3),0.69(s,3H,CH3);13C NMR(100MHz,CDCl3)δ213.9,180.4,56.3,55.8,44.2,42.7,42.2,40.5,39.9,37.1,36.9,35.4,35.2,34.8,31.0,30.6,28.1,26.5,25.7,24.1,22.6,21.1,18.2,12.0.IR(neat,cm-1):3400-2500,1699,1448,1412,1380,1304,1262,1225,1182,1099.MS(EI)m/z(%):374(M+,12.22),55(100).Other operations refer to Example 1, the raw material used is (3α,5β)-3,24-cholanediol (362.6mg, 1.0mmol), and the reaction time is 24 hours to obtain 3-carbonyl-5β-cholanic acid (272.4mg ,73%) (petroleum ether: ethyl acetate = 2:1). Melting point: 139.9-142.1°C (petroleum ether/ethyl acetate recrystallization) (literature value: 137.7°C); specific optical rotation [α] D 25.3 = 28.7 (c=1.02, CHCl 3 ) (literature value: [α] D 25.3 =28.1 (c=0.01, CHCl 3 )); 1 H NMR (400MHz, CDCl 3 ) δ11.45 (brs, 1H, COOH), 2.70 (t, J=14.2Hz, 1H, CH 2 ), 2.46-2.22 (m,3H),2.21-2.13(m,1H),2.08-1.98(m,3H),1.94-1.76(m,4H),1.65-1.55(m,1H),1.55-1.04(m,15H) ,1.02(s,3H,CH 3 ),0.93(d,J=6.4Hz,3H,CH 3 ),0.69(s,3H,CH 3 ); 13 C NMR(100MHz,CDCl 3 )δ213.9,180.4,56.3 , 55.8,44.2,42.7,42.2,40.5,39.9,37.1,36.9,35.4,35.2,34.8,31.0,30.6,28.1,26.5,25.7,24.1,22.6,21.1,18.2,12.0 . ):3400-2500,1699,1448,1412,1380,1304,1262,1225,1182,1099. MS(EI) m/z(%):374(M + ,12.22),55(100).

实施例19:苯酞的合成Embodiment 19: Synthesis of phthalide

其他操作参考实施例1,所用原料为邻苯二醇(141.3mg,98%纯度,1.0mmol),反应时间为12小时,得到苯酞(82.7mg,62%)(石油醚:乙酸乙酯=15:1到10:1)。熔点:72.0-73.4℃(石油醚/乙酸乙酯重结晶)(文献值:72-74℃).1H NMR(400MHz,CDCl3)δ7.94(d,J=7.6Hz,1H,Ar-H),7.70(td,J1=7.6Hz,J2=0.8Hz,1H,Ar-H),7.57-7.48(m,2H,Ar-H),5.34(s,2H,CH2);13C NMR(100MHz,CDCl3)δ171.0,146.5,133.9,128.9,125.6,125.6,122.1,69.6;IR(neat,cm-1):2944,2924,1745,1615,1593,1466,1436,1364,1317,1286,1191,1108,1047;MS(EI)m/z(%):134(M+,46.06),105(100).Other operations refer to Example 1, the raw material used is phthalic glycol (141.3mg, 98% purity, 1.0mmol), and the reaction time is 12 hours to obtain phthalide (82.7mg, 62%) (petroleum ether: ethyl acetate = 15:1 to 10:1). Melting point: 72.0-73.4°C (petroleum ether/ethyl acetate recrystallization) (literature value: 72-74°C). 1 H NMR (400MHz, CDCl 3 ) δ7.94 (d, J=7.6Hz, 1H, Ar- 13 _ _ _ C NMR (100MHz, CDCl 3 ) δ171.0, 146.5, 133.9, 128.9, 125.6, 125.6, 122.1, 69.6; IR (neat, cm -1 ): 2944, 2924, 1745, 1615, 1593, 1466, 1436, 1364, 1317 ,1286,1191,1108,1047; MS (EI) m/z (%): 134 (M + ,46.06), 105 (100).

实施例20:十二酸的合成(空气氧化)Example 20: Synthesis of Dodecanoic Acid (Air Oxidation)

在100mL圆底瓶中加入Fe(NO3)3·9H2O(40.5mg,0.1mmol)和DCE(4.0mL),接着加入TEMPO(15.7mg,0.1mmol),KCl(7.8mg,0.1mmol),十二醇(189.3mg,98%纯度,1.0mmol)和DCE(1.0mL)。圆底瓶通过抽气阀与空气气球相连。反应在室温下搅拌16小时,直到TLC监测反应完成(石油醚:乙酸乙酯=5:1)。反应混合物经过粗硅胶短柱过滤,乙醚(75mL)淋洗.真空旋干溶剂后,硅胶柱层析(石油醚:乙酸乙酯=5:1)纯化得到十二酸(189.7mg,95%)。1HNMR(400MHz,CDCl3)δ11.68(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),1.63(quint,J=7.3Hz,2H,CH2),1.39-1.21(m,16H,8×CH2),0.88(t,J=6.8Hz,3H,CH3);13CNMR(100MHz,CDCl3)δ180.7,34.1,31.9,29.6,29.4,29.3,29.2,29.0,24.6,22.7,14.1.IR(neat,cm-1):3400-2500,1694,1466,1429,1351,1301,1278,1247,1218,1192;MS(EI)m/z(%):200(M+,21.87),73(100).Fe(NO 3 ) 3 9H 2 O (40.5 mg, 0.1 mmol) and DCE (4.0 mL) were added to a 100 mL round bottom flask, followed by TEMPO (15.7 mg, 0.1 mmol), KCl (7.8 mg, 0.1 mmol) , dodecyl alcohol (189.3 mg, 98% purity, 1.0 mmol) and DCE (1.0 mL). The round bottom bottle is connected to an air balloon through a pumping valve. The reaction was stirred at room temperature for 16 hours until the reaction was completed as monitored by TLC (petroleum ether:ethyl acetate=5:1). The reaction mixture was filtered through a short column of crude silica gel, rinsed with diethyl ether (75mL). After the solvent was spin-dried in vacuo, silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) was purified to obtain dodecanoic acid (189.7mg, 95%) . 1 HNMR (400MHz, CDCl 3 ) δ11.68 (brs, 1H, COOH), 2.35 (t, J=7.6Hz, 2H, CH 2 ), 1.63 (quint, J=7.3Hz, 2H, CH 2 ), 1.39 -1.21(m,16H,8×CH 2 ),0.88(t,J=6.8Hz,3H,CH 3 ); 13 CNMR(100MHz,CDCl 3 )δ180.7,34.1,31.9,29.6,29.4,29.3, 29.2, 29.0, 24.6, 22.7, 14.1. IR (neat, cm -1 ): 3400-2500, 1694, 1466, 1429, 1351, 1301, 1278, 1247, 1218, 1192; MS (EI) m/z (% ):200(M + ,21.87),73(100).

实施例21:辛酸的合成(空气氧化)Example 21: Synthesis of octanoic acid (air oxidation)

其他操作参考实施例20,所用原料为辛醇(132.0mg,99%纯度,1.0mmol),反应时间为16小时,得到辛酸(128.6mg,89%)(石油醚:乙酸乙酯=5:1)。1H NMR(400MHz,CDCl3)δ10.26(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),1.63(quint,J=7.4Hz,2H,CH2),1.39-1.22(m,8H,4×CH2),0.88(t,J=6.8Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.5,34.1,31.6,29.0,28.9,24.6,22.6,14.0;IR(neat,cm-1):2925,2857,1707,1462,1413,1277,1231,1203,1109,933,725;MS(EI)m/z(%):144(M+,3.74),60(100).Other operations refer to Example 20, the raw material used is octanol (132.0 mg, 99% purity, 1.0 mmol), and the reaction time is 16 hours to obtain octanoic acid (128.6 mg, 89%) (petroleum ether: ethyl acetate=5:1 ). 1 H NMR (400MHz, CDCl 3 ) δ10.26 (brs, 1H, COOH), 2.35 (t, J=7.6Hz, 2H, CH 2 ), 1.63 (quint, J=7.4Hz, 2H, CH 2 ), 1.39-1.22 (m, 8H, 4×CH 2 ), 0.88 (t, J=6.8Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ180.5, 34.1, 31.6, 29.0, 28.9, 24.6, 22.6, 14.0; IR (neat, cm -1 ): 2925, 2857, 1707, 1462, 1413, 1277, 1231, 1203, 1109, 933, 725; MS (EI) m/z (%): 144 (M + ,3.74),60(100).

实施例22:苯丙酸的合成Embodiment 22: the synthesis of phenylpropionic acid

其他操作参考实施例20,所用原料为苯丙醇(138.6mg,98%纯度,1.0mmol),反应时间为16小时,得到苯丙酸(149.0mg,99%)(石油醚:乙酸乙酯=5:1到2:1)。熔点:46.6-47.6℃(石油醚/乙酸乙酯重结晶);1H NMR(400MHz,CDCl3)δ10.35(brs,1H,COOH),7.33-7.16(m,5H,Ar-H),2.95(t,J=7.8Hz,2H,CH2),2.68(t,J=7.8Hz,2H,CH2);13C NMR(100MHz,CDCl3)δ179.4,140.1,128.5,128.2,126.3,35.6,30.5;IR(neat,cm-1):3400-2400,1693,1448,1427,1300,1216,928,785,753,723,698;MS(EI)m/z(%):150(M+,38),91(100).Other operations refer to Example 20, the raw material used is phenylpropanol (138.6mg, 98% purity, 1.0mmol), and the reaction time is 16 hours to obtain phenylpropionic acid (149.0mg, 99%) (petroleum ether: ethyl acetate = 5:1 to 2:1). Melting point: 46.6-47.6°C (petroleum ether/ethyl acetate recrystallization); 1 H NMR (400MHz, CDCl 3 ) δ10.35 (brs, 1H, COOH), 7.33-7.16 (m, 5H, Ar-H), 2.95 (t, J=7.8Hz, 2H, CH 2 ), 2.68 (t, J=7.8Hz, 2H, CH 2 ); 13 C NMR (100 MHz, CDCl 3 ) δ179.4, 140.1, 128.5, 128.2, 126.3, 35.6 ,30.5; IR(neat,cm -1 ):3400-2400,1693,1448,1427,1300,1216,928,785,753,723,698; MS(EI)m/z(%):150(M + ,38),91(100 ).

实施例23:十六烷基酸的合成Example 23: Synthesis of Hexadecanoic Acid

其他操作参考实施例20,所用原料为十六烷基醇(247.0mg,98%纯度,1.0mmol),反应时间为16小时,得到十六烷基酸(250.5mg,98%)。1H NMR(400MHz,CDCl3)δ11.43(brs,1H,COOH),2.35(t,J=7.4Hz,2H,CH2),1.63(quint,J=7.4Hz,2H,CH2),1.36-1.21(m,24H,12×CH2),0.88(t,J=6.8Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.6,34.1,31.9,29.70,29.68,29.66,29.65,29.60,29.44,29.37,29.2,29.1,24.7,22.7,14.1.Other operations refer to Example 20, the raw material used is cetyl alcohol (247.0 mg, 98% purity, 1.0 mmol), and the reaction time is 16 hours to obtain cetyl acid (250.5 mg, 98%). 1 H NMR (400MHz, CDCl 3 ) δ11.43 (brs, 1H, COOH), 2.35 (t, J=7.4Hz, 2H, CH 2 ), 1.63 (quint, J=7.4Hz, 2H, CH 2 ), 1.36-1.21 (m, 24H, 12×CH 2 ), 0.88 (t, J=6.8Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ180.6, 34.1, 31.9, 29.70, 29.68, 29.66, 29.65, 29.60, 29.44, 29.37, 29.2, 29.1, 24.7, 22.7, 14.1.

实施例24:6-甲氧基-6-羰基己酸的合成Example 24: Synthesis of 6-methoxy-6-oxohexanoic acid

其他操作参考实施例20,所用原料为6-羟基己酸甲酯(146.5mg,1.0mmol),反应时间为16小时,得到6-甲氧基-6-羰基己酸(138.2mg,86%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ9.10(brs,1H,COOH),3.68(s,3H,CH3),2.43-2.30(m,4H,2×CH2),1.75-1.62(m,4H,2×CH2);13C NMR(100MHz,CDCl3)δ179.3,173.8,51.6,33.6,24.2,24.0.Other operations refer to Example 20, the raw material used is methyl 6-hydroxyhexanoate (146.5 mg, 1.0 mmol), and the reaction time is 16 hours to obtain 6-methoxy-6-oxohexanoic acid (138.2 mg, 86%) (petroleum ether: ethyl acetate = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ9.10 (brs, 1H, COOH), 3.68 (s, 3H, CH 3 ), 2.43-2.30 (m, 4H, 2×CH 2 ), 1.75-1.62 (m, 4H, 2×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ179.3, 173.8, 51.6, 33.6, 24.2, 24.0.

实施例25:8-乙酰氧基辛酸的合成Example 25: Synthesis of 8-acetoxyoctanoic acid

其他操作参考实施例20,所用原料为8-乙酰氧基辛醇(187.7mg,1.0mmol),反应时间为16小时,得到8-乙酰氧基辛酸(188.9mg,93%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ10.62(brs,1H,COOH),4.05(t,J=6.6Hz,2H,CH2),2.35(t,J=7.6Hz,2H,CH2),2.05(s,3H,CH3),1.69-1.57(m,4H,2×CH2),1.42-1.30(m,6H,3×CH2);13C NMR(100MHz,CDCl3)δ180.0,171.4,64.5,33.9,28.82,28.78,28.4,25.6,24.5,20.9.Other operations refer to Example 20, the raw material used is 8-acetoxyoctanol (187.7mg, 1.0mmol), and the reaction time is 16 hours to obtain 8-acetoxyoctanoic acid (188.9mg, 93%) (petroleum ether: acetic acid ethyl ester = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ10.62 (brs, 1H, COOH), 4.05 (t, J = 6.6Hz, 2H, CH 2 ), 2.35 (t, J = 7.6Hz, 2H, CH 2 ), 2.05(s,3H,CH 3 ),1.69-1.57(m,4H,2×CH 2 ),1.42-1.30(m,6H,3×CH 2 ); 13 C NMR(100MHz,CDCl 3 )δ180.0,171.4 ,64.5,33.9,28.82,28.78,28.4,25.6,24.5,20.9.

实施例26:四氢呋喃-2-甲酸的合成Example 26: Synthesis of tetrahydrofuran-2-carboxylic acid

其他操作参考实施例20,所用原料为四氢呋喃-2-甲醇(103.0mg,99%纯度,1.0mmol),反应时间为16小时,得到四氢呋喃-2-甲酸(85.0mg,73%)(石油醚:乙酸乙酯=5:1到2:1)。1HNMR(400MHz,CDCl3)δ9.74(brs,1H,COOH),4.51(dd,J1=8.6Hz,J2=5.4Hz,1H,CH),4.09-4.01(m,1H,one proton of CH2),3.99-3.91(m,1H,one proton of CH2),2.38-2.27(m,1H,one proton of CH2),2.17-2.06(m,1H,one proton of CH2);2.04-1.89(m,2H,CH2);13C NMR(100MHz,CDCl3)δ177.8,76.3,69.6,30.1,25.2.Other operations refer to Example 20, the raw material used is tetrahydrofuran-2-methanol (103.0 mg, 99% purity, 1.0 mmol), and the reaction time is 16 hours to obtain tetrahydrofuran-2-carboxylic acid (85.0 mg, 73%) (petroleum ether: Ethyl acetate = 5:1 to 2:1). 1 HNMR (400MHz, CDCl 3 ) δ9.74 (brs, 1H, COOH), 4.51 (dd, J 1 = 8.6Hz, J 2 = 5.4Hz, 1H, CH), 4.09-4.01 (m, 1H, one proton of CH 2 ),3.99-3.91(m,1H,one proton of CH 2 ),2.38-2.27(m,1H,one proton of CH 2 ),2.17-2.06(m,1H,one proton of CH 2 ); 2.04-1.89 (m, 2H, CH 2 ); 13 C NMR (100 MHz, CDCl 3 ) δ 177.8, 76.3, 69.6, 30.1, 25.2.

实施例27:噻吩-2-乙酸的合成Example 27: Synthesis of thiophene-2-acetic acid

其他操作参考实施例20,所用原料为噻吩-2-乙醇(130.5mg,98%纯度,1.0mmol),反应时间为16小时,得到噻吩-2-乙酸(114.7mg,81%)(石油醚:乙酸乙酯=5:1到2:1)(132.0mg,1.0mmol)。1H NMR(400MHz,CDCl3)δ10.90(brs,1H,COOH),7.25-7.21(m,1H,Ar-H),6.98-6.93(m,2H,Ar-H),3.87(s,2H,CH2);13C NMR(100MHz,CDCl3)δ177.0,133.9,127.2126.9,125.3,35.0.Other operations refer to Example 20, the raw material used is thiophene-2-ethanol (130.5 mg, 98% purity, 1.0 mmol), and the reaction time is 16 hours to obtain thiophene-2-acetic acid (114.7 mg, 81%) (petroleum ether: Ethyl acetate = 5:1 to 2:1) (132.0 mg, 1.0 mmol). 1 H NMR (400MHz, CDCl 3 )δ10.90(brs,1H,COOH),7.25-7.21(m,1H,Ar-H),6.98-6.93(m,2H,Ar-H),3.87(s, 2H, CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ177.0, 133.9, 127.2126.9, 125.3, 35.0.

实施例28:9-溴-1-壬酸的合成Example 28: Synthesis of 9-bromo-1-nonanoic acid

其他操作参考实施例20,所用原料为9-溴-1-壬醇(228.0mg,98%纯度,1.0mmol),反应时间为16小时,得到9-溴-1-壬酸(233.5mg,98%)(石油醚:乙酸乙酯=5:1到3:1)。1HNMR(400MHz,CDCl3)δ11.59(brs,1H,COOH),3.41(t,J=6.8Hz,2H,CH2),2.35(t,J=7.4Hz,2H,CH2),1.85(quint,J=7.2Hz,2H,CH2),1.63(quint,J=7.3Hz,2H,CH2),1.48-1.27(m,8H,4×CH2);13C NMR(100MHz,CDCl3)δ180.5,34.0,33.9,32.7,29.0,28.9,28.5,28.0,24.5.Other operations refer to Example 20, the raw material used is 9-bromo-1-nonanol (228.0mg, 98% purity, 1.0mmol), and the reaction time is 16 hours to obtain 9-bromo-1-nonanoic acid (233.5mg, 98 %) (petroleum ether: ethyl acetate = 5:1 to 3:1). 1 HNMR (400MHz, CDCl 3 ) δ11.59 (brs, 1H, COOH), 3.41 (t, J = 6.8Hz, 2H, CH 2 ), 2.35 (t, J = 7.4Hz, 2H, CH 2 ), 1.85 (quint, J=7.2Hz, 2H, CH 2 ), 1.63 (quint, J=7.3Hz, 2H, CH 2 ), 1.48-1.27 (m, 8H, 4×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ180.5, 34.0, 33.9, 32.7, 29.0, 28.9, 28.5, 28.0, 24.5.

实施例29:2-己氧基乙酸的合成Example 29: Synthesis of 2-hexyloxyacetic acid

其他操作参考实施例20,所用原料为2-己氧基乙醇(148.5mg,98%纯度,1.0mmol),反应时间为16小时,得到2-己氧基乙酸(147.7mg,84%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ8.83(brs,1H,COOH),4.12(s,2H,CH2),3.56(t,J=6.6Hz,2H,CH2),1.68-1.58(m,2H,CH2),1.41-1.24(m,6H,3×CH2),0.88(t,J=6.8Hz,3H,CH3);13CNMR(100MHz,CDCl3)δ175.7,72.1,67.6,31.5,29.3,25.5,22.5,13.9.Other operations refer to Example 20, the raw material used is 2-hexyloxyethanol (148.5mg, 98% purity, 1.0mmol), and the reaction time is 16 hours to obtain 2-hexyloxyacetic acid (147.7mg, 84%) (petroleum ether:ethyl acetate=5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ8.83 (brs, 1H, COOH), 4.12 (s, 2H, CH 2 ), 3.56 (t, J=6.6Hz, 2H, CH 2 ), 1.68-1.58 (m ,2H,CH 2 ),1.41-1.24(m,6H,3×CH 2 ),0.88(t,J=6.8Hz,3H,CH 3 ); 13 CNMR(100MHz,CDCl 3 )δ175.7,72.1, 67.6, 31.5, 29.3, 25.5, 22.5, 13.9.

实施例30:7-辛炔酸的合成Example 30: Synthesis of 7-octynoic acid

其他操作参考实施例20,所用原料为7-炔-1-辛醇(126.2mg,1.0mmol),反应时间为16小时,得到7-辛炔酸(112.2mg,80%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ11.01(brs,1H,COOH),2.38(t,J=7.6Hz,2H,CH2),2.21(td,J1=6.9Hz,J2=2.5Hz,2H,≡CCH2),1.95(t,J=2.6Hz,1H,≡CH),1.71-1.62(m,2H,CH2),1.61-1.42(m,4H,2×CH2);13C NMR(100MHz,CDCl3)δ180.1,84.2,68.4,33.9,28.04,27.99,24.1,18.2.IR(neat)ν(cm-1)3298,2940,2864,2117,1707,1461,1413,1278,1225,1141,1085;MS(ESI,Neg)m/z(%):139(M-1)-.Other operations refer to Example 20, the raw material used is 7-alkyne-1-octanol (126.2 mg, 1.0 mmol), and the reaction time is 16 hours to obtain 7-octynoic acid (112.2 mg, 80%) (petroleum ether: acetic acid ethyl ester = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 ) δ11.01 (brs, 1H, COOH), 2.38 (t, J = 7.6Hz, 2H, CH 2 ), 2.21 (td, J 1 = 6.9Hz, J 2 = 2.5Hz ,2H,≡CCH 2 ), 1.95(t,J=2.6Hz,1H,≡CH),1.71-1.62(m,2H,CH 2 ),1.61-1.42(m,4H,2×CH 2 ); 13 C NMR(100MHz, CDCl 3 )δ180.1,84.2,68.4,33.9,28.04,27.99,24.1,18.2. IR(neat)ν(cm -1 )3298,2940,2864,2117,1707,1461,1413, 1278, 1225, 1141, 1085; MS (ESI, Neg) m/z (%): 139 (M-1) - .

实施例31:4-戊炔酸的合成Example 31: Synthesis of 4-pentynoic acid

其他操作参考实施例20,所用原料为4-戊炔-1-醇(89.1mg,95%纯度,1.0mmol),反应时间为16小时,得到4-戊炔酸(67.0mg,68%)(石油醚:乙酸乙酯=5:1到2:1)。熔点:55.9-57.0℃(石油醚/乙酸乙酯重结晶);1H NMR(400MHz,CDCl3)δ11.37(brs,1H,COOH),2.66-2.60(m,2H,CH2),2.56-2.49(m,2H,CH2),2.01(t,J=2.6Hz,1H,≡CH);13C NMR(100MHz,CDCl3)δ178.3,82.0,69.2,33.1,14.0.IR(neat)ν(cm-1)3500-2000,3276,2927,2627,2119,1694,1426,1353,1299,1217,1024,890.MS(EI)m/z(%):98(M+,3.7),70(100)Other operations refer to Example 20, the raw material used is 4-pentyn-1-ol (89.1mg, 95% purity, 1.0mmol), and the reaction time is 16 hours to obtain 4-pentynoic acid (67.0mg, 68%) ( Petroleum ether: ethyl acetate = 5:1 to 2:1). Melting point: 55.9-57.0°C (petroleum ether/ethyl acetate recrystallization); 1 H NMR (400MHz, CDCl 3 ) δ11.37 (brs, 1H, COOH), 2.66-2.60 (m, 2H, CH 2 ), 2.56 -2.49(m,2H,CH 2 ),2.01(t,J=2.6Hz,1H,≡CH); 13 C NMR(100MHz,CDCl 3 )δ178.3,82.0,69.2,33.1,14.0.IR(neat )ν(cm -1 )3500-2000,3276,2927,2627,2119,1694,1426,1353,1299,1217,1024,890.MS(EI)m/z(%):98(M + ,3.7 ),70(100)

实施例32:10-十一炔酸的合成Example 32: Synthesis of 10-undecynoic acid

其他操作参考实施例20,所用原料为10-十一炔-1-醇(182.8mg,1.0mmol),反应时间为16小时,得到10-十一炔酸(176.2mg,90%)(石油醚:乙酸乙酯=5:1到2:1)。熔点:51.3-52.2℃(石油醚/乙酸乙酯重结晶);1H NMR(400MHz,CDCl3)δ9.57(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),2.15-2.08(m,2H,CH2),1.78(t,J=2.6Hz,3H,CH3),1.63(quint,J=7.3Hz,2H,CH2),1.46(quint,J=7.1Hz,2H,CH2),1.41-1.24(m,8H,4×CH2);13C NMR(100MHz,CDCl3)δ180.4,79.3,75.3,34.1,29.1,28.98,28.96,28.91,28.8,24.6,18.7,3.4.IR(neat)ν(cm-1)3500-2400,1693,1464,1434,1410,1347,1321,1293,1260,1226,1193.MS(EI)m/z(%):196(M+,0.57),68(100).Other operations refer to Example 20, the raw material used is 10-undecyn-1-alcohol (182.8 mg, 1.0 mmol), and the reaction time is 16 hours to obtain 10-undecynoic acid (176.2 mg, 90%) (petroleum ether :ethyl acetate=5:1 to 2:1). Melting point: 51.3-52.2°C (petroleum ether/ethyl acetate recrystallization); 1 H NMR (400MHz, CDCl 3 ) δ9.57 (brs, 1H, COOH), 2.35 (t, J = 7.6Hz, 2H, CH 2 ), 2.15-2.08 (m, 2H, CH 2 ), 1.78 (t, J = 2.6Hz, 3H, CH 3 ), 1.63 (quint, J = 7.3Hz, 2H, CH 2 ), 1.46 (quint, J = 7.1Hz, 2H, CH 2 ), 1.41-1.24 (m, 8H, 4×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ180.4, 79.3, 75.3, 34.1, 29.1, 28.98, 28.96, 28.91, ( %): 196(M + , 0.57), 68(100).

实施例33:3-三甲基硅基丙炔酸的合成Example 33: Synthesis of 3-trimethylsilylpropiolic acid

其他操作参考实施例20,所用原料为3-三甲基硅基丙炔醇(128.6mg,1.0mmol),反应时间为48小时,得到3-三甲基硅基丙炔酸(92.9mg,65%)(石油醚:乙酸乙酯=5:1)。1HNMR(400MHz,CDCl3)δ6.78(brs,1H,COOH),0.26(s,9H,3×CH3);13C NMR(100MHz,CDCl3)δ157.4,97.4,93.7,-1.0.Other operations refer to Example 20, the raw material used is 3-trimethylsilyl propynyl alcohol (128.6 mg, 1.0 mmol), and the reaction time is 48 hours to obtain 3-trimethylsilyl propiolic acid (92.9 mg, 65 %) (petroleum ether: ethyl acetate=5:1). 1 HNMR (400MHz, CDCl 3 ) δ6.78 (brs, 1H, COOH), 0.26 (s, 9H, 3×CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ 157.4, 97.4, 93.7, -1.0 .

实施例34:环己-3-烯-1-甲酸的合成Example 34: Synthesis of cyclohex-3-ene-1-carboxylic acid

其他操作参考实施例20,所用原料为环己-3-烯-1-甲醇(115.9mg,98%纯度,1.0mmol),反应时间为48小时,得到环己-3-烯-1-甲酸(89.9mg,70%)(石油醚:乙酸乙酯=5:1)。1H NMR(400MHz,CDCl3)δ11.63(brs,1H,COOH),5.75-5.60(m,2H,CH2),2.68-2.55(m,1H,CH),2.36-2.00(m,5H,CH2),1.78-1.65(m,1H,CH2);13C NMR(100MHz,CDCl3)δ182.7,126.7,124.9,39.1,27.1,24.8,24.3.Other operations refer to Example 20, the raw material used is cyclohex-3-ene-1-methanol (115.9 mg, 98% purity, 1.0 mmol), and the reaction time is 48 hours to obtain cyclohex-3-ene-1-carboxylic acid ( 89.9 mg, 70%) (petroleum ether: ethyl acetate = 5:1). 1 H NMR (400MHz, CDCl 3 ) δ11.63 (brs, 1H, COOH), 5.75-5.60 (m, 2H, CH 2 ), 2.68-2.55 (m, 1H, CH), 2.36-2.00 (m, 5H , CH 2 ), 1.78-1.65 (m, 1H, CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ182.7, 126.7, 124.9, 39.1, 27.1, 24.8, 24.3.

实施例35:辛二酸的合成Example 35: Synthesis of suberic acid

其他操作参考实施例20,所用原料为辛二醇(148.8mg,98%纯度,1.0mmol),反应时间为48小时,得到辛二酸(144.4mg,83%)(乙酸乙酯/正己烷重结晶)。1H NMR(400MHz,DMSO-d6)δ12.00(s,3H,CH3),2.19(t,J=7.4Hz,4H,2×CH2),1.54-1.41(m,4H,2×CH2),1.31-1.21(m,4H,2×CH2);13C NMR(100MHz,d6-DMSO)δ174.5,33.6,28.3,24.4.Other operations refer to Example 20, the raw material used is octane diol (148.8mg, 98% purity, 1.0mmol), and the reaction time is 48 hours to obtain suberic acid (144.4mg, 83%) (ethyl acetate/n-hexane weight crystallization). 1 H NMR (400MHz, DMSO-d 6 ) δ12.00(s, 3H, CH 3 ), 2.19(t, J=7.4Hz, 4H, 2×CH 2 ), 1.54-1.41(m, 4H, 2× CH 2 ), 1.31-1.21 (m, 4H, 2×CH 2 ); 13 C NMR (100MHz, d 6 -DMSO) δ174.5, 33.6, 28.3, 24.4.

实施例35:(+)-香紫苏内酯的合成Example 35: Synthesis of (+)-sclereolactone

其他操作参考实施例20,所用原料为香紫苏二醇(254.8mg,1.0mmol),反应时间为16小时,得到(+)-香紫苏内酯(233.5mg,93%)(石油醚:乙酸乙酯=20:1到5:1)。比旋光[α]D 28.7=46.9(c=1.00,CHCl3)(文献值:[α]D 20=47(c=1.01,CHCl3));1H NMR(400MHz,CDCl3)δ2.41(dd,J1=15.6Hz,J2=15.6Hz,1H,CH2),2.23(dd,J1=15.0Hz,J2=6.4Hz,1H,CH2),2.08(dt,J1=11.6Hz,J2=3.3Hz,1H),1.97(dd,J1=14.8Hz,J2=6.6Hz,1H,CH2),1.92-1.84(m,1H,CH2),1.74-1.63(m,2H,CH2),1.50-1.31(m,7H),1.20(dt,J1=13.5Hz,J2=4.3Hz,1H,CH2),1.10-1.00(m,2H),0.91(s,3H,CH3),0.89(s,3H,CH3),0.84(s,3H,CH3);13C NMR(100MHz,CDCl3)δ176.7,86.2,59.0,56.5,42.0,39.4,38.6,35.9,33.05,32.99,28.6,21.5,20.8,20.4,18.0,14.9.Other operations refer to Example 20, the raw material used is sclarediol (254.8 mg, 1.0 mmol), and the reaction time is 16 hours to obtain (+)-sclera lactone (233.5 mg, 93%) (petroleum ether: ethyl acetate = 20:1 to 5:1). Specific rotation [α] D 28.7 = 46.9 (c = 1.00, CHCl 3 ) (literature value: [α] D 20 = 47 (c = 1.01, CHCl 3 )); 1 H NMR (400MHz, CDCl 3 ) δ2.41 (dd, J 1 =15.6Hz, J 2 =15.6Hz, 1H, CH 2 ), 2.23(dd, J 1 =15.0Hz, J 2 =6.4Hz, 1H, CH 2 ), 2.08(dt, J 1 = ( _ _ _ _ m,2H,CH 2 ),1.50-1.31(m,7H),1.20(dt,J 1 =13.5Hz,J 2 =4.3Hz,1H,CH 2 ),1.10-1.00(m,2H),0.91( s,3H,CH 3 ),0.89(s,3H,CH 3 ),0.84(s,3H,CH 3 ); 13 C NMR(100MHz,CDCl 3 )δ176.7,86.2,59.0,56.5,42.0,39.4 ,38.6,35.9,33.05,32.99,28.6,21.5,20.8,20.4,18.0,14.9.

实施例36:苯酞的合成Example 36: Synthesis of phthalide

其他操作参考实施例20,所用原料为邻苯二醇(141.3mg,98%纯度,1.0mmol),反应时间为16小时,得到苯酞(88.3mg,66%)(石油醚:乙酸乙酯=15:1到10:1)。1H NMR(400MHz,CDCl3)δ7.92(d,J=7.6Hz,1H,Ar-H),7.70(td,J1=7.6Hz,J2=1.2Hz,1H,Ar-H),7.58-7.49(m,2H,Ar-H),5.34(s,2H,CH2);13C NMR(100MHz,CDCl3)δ171.1,146.5,134.0,129.0,125.62,125.57,122.1,69.6.Other operations refer to Example 20, the raw material used is phthalic glycol (141.3 mg, 98% purity, 1.0 mmol), and the reaction time is 16 hours to obtain phthalide (88.3 mg, 66%) (petroleum ether: ethyl acetate = 15:1 to 10:1). 1 H NMR (400MHz, CDCl 3 ) δ7.92 (d, J=7.6Hz, 1H, Ar-H), 7.70 (td, J 1 =7.6Hz, J 2 =1.2Hz, 1H, Ar-H), 7.58-7.49 (m, 2H, Ar-H), 5.34 (s, 2H, CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ171.1, 146.5, 134.0, 129.0, 125.62, 125.57, 122.1, 69.6.

实施例37:7-辛炔酸的合成Example 37: Synthesis of 7-octynoic acid

氧气氛围下(氧气球),向Schlenk管中依次加入Fe(NO3)3·9H2O(202.8mg,0.5mmol),TEMPO(78.3mg,4.0mmol),NaCl(29.3mg,0.5mmol),7-辛炔-1-醇(631.4mg,5.0mmol)和1,2-二氯乙烷(DCE,20.0mL)。反应在室温下搅拌20小时,TLC监测(石油醚:乙酸乙酯=5:1)直至反应完成。反应混合物经过粗硅胶短柱过滤,乙醚(3×40mL)淋洗。真空旋干溶剂,硅胶柱层析(石油醚:乙酸乙酯=5:1到2:1)得到产品7-辛炔酸(599.1mg,85%)。1HNMR(400MHz,CDCl3)δ11.29(brs,1H,COOH),2.38(t,J=7.6Hz,2H,CH2),2.20(td,J1=7.0Hz,J2=2.8Hz,2H,C≡CCH2),1.95(t,J=2.8Hz,1H,C≡CH),1.71-1.61(m,2H,CH2),1.60-1.41(m,4H,2×CH2);13C NMR(100MHz,CDCl3)δ180.3,84.2,68.4,33.9,28.02,27.99,24.1,18.2.Under oxygen atmosphere (oxygen balloon), Fe(NO 3 ) 3 9H 2 O (202.8mg, 0.5mmol), TEMPO (78.3mg, 4.0mmol), NaCl (29.3mg, 0.5mmol), NaCl (29.3mg, 0.5mmol), 7-octyn-1-ol (631.4 mg, 5.0 mmol) and 1,2-dichloroethane (DCE, 20.0 mL). The reaction was stirred at room temperature for 20 hours, monitored by TLC (petroleum ether:ethyl acetate=5:1) until the reaction was complete. The reaction mixture was filtered through a short column of crude silica gel, rinsed with diethyl ether (3×40 mL). The solvent was spin-dried in vacuo, and the product 7-octynoic acid (599.1 mg, 85%) was obtained by silica gel column chromatography (petroleum ether: ethyl acetate = 5:1 to 2:1). 1 HNMR (400MHz, CDCl 3 ) δ11.29 (brs, 1H, COOH), 2.38 (t, J = 7.6Hz, 2H, CH 2 ), 2.20 (td, J 1 = 7.0Hz, J 2 = 2.8Hz, 2H, C≡CCH 2 ), 1.95 (t, J=2.8Hz, 1H, C≡CH), 1.71-1.61 (m, 2H, CH 2 ), 1.60-1.41 (m, 4H, 2×CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ180.3, 84.2, 68.4, 33.9, 28.02, 27.99, 24.1, 18.2.

实施例38:十六烷基酸的合成(氧气)Example 38: Synthesis of Hexadecanoic Acid (Oxygen)

氧气氛围下(氧气球),向500mL三口瓶中依次加入Fe(NO3)3·9H2O(1.6164g,4.0mmol),TEMPO(625.3mg,4.0mmol),KCl(298.4mg,4.0mmol)和DCE(4.0mL)。接着,加入十六烷基醇(9.8191g,98%纯度,40.0mmol)。反应在室温下搅拌16小时,TLC监测(石油醚:乙酸乙酯=5:1)直至反应完成。反应混合物经过粗硅胶短柱过滤,乙醚(4×120mL)淋洗.真空旋干溶剂后,粗产品重结晶纯化(第一次石油醚:乙酸乙酯=10:1重结晶得8.5404g产品,滤液旋干后石油醚:乙酸乙酯=18:1重结晶得1.1413g产品)得到十六烷基酸(9.6817g,94%)。1HNMR(400MHz,DMSO-d6)δ11.99(brs,1H,COOH),2.18(t,J=7.4Hz,2H,CH2),1.53-1.42(m,2H,CH2),1.32-1.16(m,24H,12×CH2),0.85(t,J=6.6Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.8,34.1,31.9,29.69,29.67,29.66,29.59,29.43,29.37,29.2,29.0,24.6,22.7,14.1.Under an oxygen atmosphere (oxygen balloon), add Fe(NO 3 ) 3 9H 2 O (1.6164g, 4.0mmol), TEMPO (625.3mg, 4.0mmol), KCl (298.4mg, 4.0mmol) into a 500mL three-necked flask in sequence and DCE (4.0 mL). Next, cetyl alcohol (9.8191 g, 98% purity, 40.0 mmol) was added. The reaction was stirred at room temperature for 16 hours, monitored by TLC (petroleum ether:ethyl acetate=5:1) until the reaction was complete. The reaction mixture was filtered through a short column of thick silica gel, and rinsed with diethyl ether (4×120mL). After the solvent was spin-dried in vacuo, the crude product was recrystallized and purified (the first recrystallization of petroleum ether: ethyl acetate = 10:1 gave 8.5404g of product, After the filtrate was spin-dried, petroleum ether:ethyl acetate=18:1 was recrystallized to obtain 1.1413g product) to obtain hexadecanoic acid (9.6817g, 94%). 1 HNMR (400MHz, DMSO-d 6 ) δ11.99 (brs, 1H, COOH), 2.18 (t, J=7.4Hz, 2H, CH 2 ), 1.53-1.42 (m, 2H, CH 2 ), 1.32- 1.16 (m, 24H, 12×CH 2 ), 0.85 (t, J=6.6Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ180.8, 34.1, 31.9, 29.69, 29.67, 29.66, 29.59, 29.43, 29.37, 29.2, 29.0, 24.6, 22.7, 14.1.

实施例39:十六烷基酸的合成(空气+氧气)Example 39: Synthesis of palmitic acid (air+oxygen)

向一1L三口瓶中依次加入Fe(NO3)3·9H2O(1.6162g,4.0mmol),DCE(120mL),TEMPO(625.3mg,4.0mmol),KCl(298.6mg,4.0mmol)和十六烷基醇(9.8968g,98%纯度,40.0mmol)。接着,三口瓶通过抽气阀与一70L空气袋相连。室温下搅拌1.5h后,另一口通过抽气阀与一2L氧气球相连作为氧气补充。反应在室温下继续搅拌,TLC监测(石油醚:乙酸乙酯=5:1)直至反应完成,共经过21.5小时。反应混合物经过粗硅胶短柱过滤,乙醚(4×120mL)淋洗.真空旋干溶剂后,粗产品重结晶(石油醚:乙酸乙酯=15:1)纯化得到十六烷基酸(9.0540g,88%)。1H NMR(400MHz,DMSO-d6)δ11.99(brs,1H,COOH),2.18(t,J=7.4Hz,2H,CH2),1.52-1.43(m,2H,CH2),1.30-1.19(m,24H,12×CH2),0.85(t,J=6.8Hz,3H,CH3);13CNMR(100MHz,CDCl3)δ180.6,34.1,31.9,29.70,29.69,29.67,29.66,29.65,29.59,29.44,29.37,29.24,29.1,24.7,22.7,14.1.Fe(NO 3 ) 3 9H 2 O (1.6162g, 4.0mmol), DCE (120mL), TEMPO (625.3mg, 4.0mmol), KCl (298.6mg, 4.0mmol) and ten Hexaalkyl alcohol (9.8968 g, 98% purity, 40.0 mmol). Then, the three-necked bottle is connected with a 70L air bag through an air extraction valve. After stirring at room temperature for 1.5 hours, the other port was connected to a 2L oxygen balloon through the exhaust valve as oxygen supplement. The reaction continued to stir at room temperature and was monitored by TLC (petroleum ether: ethyl acetate = 5:1) until the reaction was complete, a total of 21.5 hours. The reaction mixture was filtered through a short column of thick silica gel, rinsed with diethyl ether (4×120mL). After the solvent was spin-dried in vacuo, the crude product was recrystallized (petroleum ether:ethyl acetate=15:1) and purified to obtain palmitic acid (9.0540g ,88%). 1 H NMR (400MHz, DMSO-d 6 ) δ11.99 (brs, 1H, COOH), 2.18 (t, J=7.4Hz, 2H, CH 2 ), 1.52-1.43 (m, 2H, CH 2 ), 1.30 -1.19(m,24H,12×CH 2 ),0.85(t,J=6.8Hz,3H,CH 3 ); 13 CNMR(100MHz,CDCl 3 )δ180.6,34.1,31.9,29.70,29.69,29.67, 29.66, 29.65, 29.59, 29.44, 29.37, 29.24, 29.1, 24.7, 22.7, 14.1.

实施例40:十六烷基酸的合成(缓慢空气流)Example 40: Synthesis of palmitic acid (slow air flow)

向一2L三口瓶中依次加入Fe(NO3)3·9H2O(9.6952g,24.0mmol),TEMPO(3.7514g,24.0mmol),KCl(1.7885g,24.0mmol)和1,2-二氯乙烷(DCE,400mL)。室温搅拌10分钟后,加入十六烷基醇(59.3883g,98%纯度,40.0mmol)和DCE(100mL)。三口瓶通过抽气阀通入缓慢空气流,反应在室温下搅拌,TLC监测(石油醚:乙酸乙酯=5:1)直至24小时后反应完成。反应混合物经过粗硅胶短柱过滤,乙醚(3×500mL)淋洗.真空旋干溶剂后,粗产品重结晶(石油醚:乙酸乙酯=20:1)纯化得到十六烷基酸(55.0232g,89%)。1H NMR(400MHz,DMSO-d6)δ11.99(brs,1H,COOH),2.18(t,J=7.4Hz,2H,CH2),1.52-1.43(m,2H,CH2),1.31-1.18(m,24H,12×CH2),0.85(t,J=6.6Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.5,34.1,31.9,29.67,29.65,29.64,29.62,29.57,29.42,29.35,29.2,29.0,24.7,22.7,14.1.Add Fe(NO 3 ) 3 9H 2 O (9.6952g, 24.0mmol), TEMPO (3.7514g, 24.0mmol), KCl (1.7885g, 24.0mmol) and 1,2-dichloro Ethane (DCE, 400 mL). After stirring at room temperature for 10 minutes, cetyl alcohol (59.3883 g, 98% purity, 40.0 mmol) and DCE (100 mL) were added. The three-neck flask was fed with a slow air flow through the exhaust valve, and the reaction was stirred at room temperature, monitored by TLC (petroleum ether:ethyl acetate=5:1) until the reaction was complete after 24 hours. The reaction mixture was filtered through a short column of thick silica gel, rinsed with diethyl ether (3×500mL). After the solvent was spin-dried in vacuo, the crude product was recrystallized (petroleum ether:ethyl acetate=20:1) and purified to obtain palmitic acid (55.0232g ,89%). 1 H NMR (400MHz, DMSO-d 6 ) δ11.99 (brs, 1H, COOH), 2.18 (t, J=7.4Hz, 2H, CH 2 ), 1.52-1.43 (m, 2H, CH 2 ), 1.31 -1.18 (m, 24H, 12×CH 2 ), 0.85 (t, J=6.6Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ180.5, 34.1, 31.9, 29.67, 29.65, 29.64 ,29.62,29.57,29.42,29.35,29.2,29.0,24.7,22.7,14.1.

实施例41:十二酸的合成Example 41: Synthesis of dodecanoic acid

在氧气氛围(氧气球)下,将Fe(NO3)3·9H2O(40.4mg,0.10mmol),2,2,6,6-四甲基哌啶氮氧化物(TEMPO,15.5mg,0.10mmol),KCl(7.5mg,0.10mmol),十二醛(184.3mg,1.0mmol)和1,2-二氯乙烷(DCE,4mL)加入到Schlenk管中。室温搅拌12h,TLC监测直至反应完成。反应混合物经粗硅胶短柱过滤,乙醚(75mL)淋洗,浓缩得粗产品。该粗产品通过硅胶柱层析(石油醚:乙酸乙酯=5:1)得到相应的十二酸(187.9mg,94%)。熔点:43-44℃(石油醚/乙酸乙酯重结晶)(文献值:43-44℃);1H NMR(400MHz,CDCl3)δ=11.56(brs,1H,COOH),2.35(t,J=7.4Hz,2H,CH2),1.63(quint,J=7.1Hz,2H,CH2),1.40-1.18(m,16H,8×CH2),0.88(t,J=6.6Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ180.6,34.1,31.9,29.6,29.4,29.3,29.2,29.0,24.7,22.7,14.1;MS(EI)m/z(%):200(M+,20.99),73(100);IR(neat):v=2954,2916,2871,2848,1697,1470,1429,1411,1351,1328,1302,1277,1248,1220,1193,1084cm-1.Under an oxygen atmosphere (oxygen balloon), Fe(NO 3 ) 3 ·9H 2 O (40.4mg, 0.10mmol), 2,2,6,6-tetramethylpiperidine nitrogen oxide (TEMPO, 15.5mg, 0.10 mmol), KCl (7.5 mg, 0.10 mmol), dodecanal (184.3 mg, 1.0 mmol) and 1,2-dichloroethane (DCE, 4 mL) were added to a Schlenk tube. Stir at room temperature for 12 h, and monitor by TLC until the reaction is complete. The reaction mixture was filtered through a short column of crude silica gel, rinsed with diethyl ether (75 mL), and concentrated to obtain a crude product. The crude product was subjected to silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) to obtain the corresponding dodecanoic acid (187.9 mg, 94%). Melting point: 43-44°C (petroleum ether/ethyl acetate recrystallization) (literature value: 43-44°C); 1 H NMR (400MHz, CDCl 3 ) δ=11.56(brs,1H,COOH),2.35(t, J=7.4Hz, 2H, CH 2 ), 1.63(quint, J=7.1Hz, 2H, CH 2 ), 1.40-1.18(m, 16H, 8×CH 2 ), 0.88(t, J=6.6Hz, 3H , CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ180.6, 34.1, 31.9, 29.6, 29.4, 29.3, 29.2, 29.0, 24.7, 22.7, 14.1; MS (EI) m/z (%): 200 (M + ,20.99),73(100);IR(neat):v=2954,2916,2871,2848,1697,1470,1429,1411,1351,1328,1302,1277,1248,1220,1193,1084cm -1 .

实施例42:环己基甲酸的合成Example 42: Synthesis of cyclohexylcarboxylic acid

其他操作参考实施例41,所用原料为环己醛,反应时间为12小时,得到环己基甲酸(115.4mg,90%)(石油醚:乙酸乙酯=5:1)。1H NMR(400MHz,CDCl3)δ=11.43(brs,1H,COOH),2.33(tt,J=11.2,3.6Hz,1H,Ha),2.00-1.88(m,2H,Hb),1.84-1.70(m,2H,He),1.70-1.58(m,1H,Hf),1.55-1.38(m,2H,Hc),1.37-1.18(m,3H,Hd and Hg);13C NMR(100MHz,CDCl3)δ=182.9,42.9,28.7,25.6,25.3;MS(EI)m/z(%):128(M+,53.29),55(100);IR(neat):v=2930,2855,1698,1451,1417,1311,1295,1256,1212,1182,1136,1021cm-1.Other operations refer to Example 41, the raw material used is cyclohexanal, and the reaction time is 12 hours to obtain cyclohexylcarboxylic acid (115.4 mg, 90%) (petroleum ether: ethyl acetate = 5:1). 1 H NMR (400MHz, CDCl 3 ) δ=11.43(brs,1H,COOH),2.33(tt,J=11.2,3.6Hz,1H,H a ),2.00-1.88(m,2H,H b ),1.84 -1.70(m,2H,H e ),1.70-1.58(m,1H,H f ),1.55-1.38(m,2H,H c ),1.37-1.18(m,3H,H d and H g ); 13 C NMR (100MHz, CDCl 3 ) δ=182.9, 42.9, 28.7, 25.6, 25.3; MS (EI) m/z (%): 128 (M + ,53.29), 55 (100); IR (neat): v=2930,2855,1698,1451,1417,1311,1295,1256,1212,1182,1136,1021cm -1 .

实施例43:辛酸的合成Example 43: Synthesis of octanoic acid

其他操作参考实施例41,所用原料为辛醛(128.1mg),反应时间为12小时,得到辛酸(138.4mg,96%)(石油醚:乙酸乙酯=5:1)。1H NMR(400MHz,CDCl3)δ11.33(brs,1H,COOH),2.35(t,J=7.4Hz,2H,CH2),1.63(quint,J=7.3Hz,2H,CH2),1.38-1.22(m,8H,4×CH2),0.88(t,J=6.8Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ=180.6,34.1,31.6,29.0,28.9,24.6,22.6,14.0;MS(EI)m/z(%):144(M+,2.09),60(100);IR(neat,cm-1)=2956,2925,2857,1706,1459,1412,1379,1275,1230,1203,1108cm-1.Refer to Example 41 for other operations, the raw material used was octanal (128.1 mg), and the reaction time was 12 hours to obtain octanoic acid (138.4 mg, 96%) (petroleum ether: ethyl acetate = 5:1). 1 H NMR (400MHz, CDCl 3 ) δ11.33 (brs, 1H, COOH), 2.35 (t, J=7.4Hz, 2H, CH 2 ), 1.63 (quint, J=7.3Hz, 2H, CH 2 ), 1.38-1.22 (m, 8H, 4×CH 2 ), 0.88 (t, J=6.8Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ=180.6, 34.1, 31.6, 29.0, 28.9, 24.6, 22.6, 14.0; MS (EI) m/z (%): 144 (M + , 2.09), 60 (100); IR (neat, cm -1 ) = 2956, 2925, 2857, 1706, 1459, 1412 ,1379,1275,1230,1203,1108cm -1 .

实施例44:苯丙酸的合成Example 44: Synthesis of Phenylpropionic Acid

其他操作参考实施例41,所用原料为苯丙醛(141.3mg,98%纯度,1.0mmol),反应时间为12小时,得到苯丙酸(144.9mg,96%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ11.56(brs,1H,COOH),7.32-7.25(m,2H,Ar-H),7.23-7.16(m,2H,Ar-H),2.95(t,J=7.8Hz,2H,CH2),2.67(t,J=7.8Hz,2H,CH2);13C NMR(100MHz,CDCl3)δ179.6,140.1,128.5,128.2,126.3,35.6,30.5;MS(EI)m/z(%):150(M+,50.1),91(100);IR(neat,cm-1)3030-2620,1693,1602,1497,1448,1427,1407,1358,1300,1216,1158,1082cm-1.Other operations refer to Example 41, the raw material used is phenylpropanal (141.3mg, 98% purity, 1.0mmol), and the reaction time is 12 hours to obtain phenylpropionic acid (144.9mg, 96%) (petroleum ether: ethyl acetate = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 )δ11.56(brs,1H,COOH),7.32-7.25(m,2H,Ar-H),7.23-7.16(m,2H,Ar-H),2.95(t, J=7.8Hz, 2H, CH 2 ), 2.67 (t, J=7.8Hz, 2H, CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ179.6, 140.1, 128.5, 128.2, 126.3, 35.6, 30.5; MS (EI) m/z (%): 150 (M + , 50.1), 91 (100); IR (neat, cm -1 ) 3030-2620, 1693, 1602, 1497, 1448, 1427, 1407, 1358, 1300 ,1216,1158,1082cm -1 .

实施例45:十二酸的合成Example 45: Synthesis of dodecanoic acid

在100mL圆底瓶中加入Fe(NO3)3·9H2O(40.5mg,0.1mmol)和DCE(4.0mL),接着加入TEMPO(15.6mg,0.1mmol),KCl(7.5mg,0.1mmol),十二醛(183.8mg,1.0mmol)和DCE(1.0mL)。圆底瓶通过抽气阀与空气气球相连。反应在室温下搅拌16小时,直到TLC监测反应完成(石油醚:乙酸乙酯=5:1)。反应混合物经过粗硅胶短柱过滤,乙醚(75mL)淋洗.真空旋干溶剂后,硅胶柱层析(石油醚:乙酸乙酯=5:1)纯化得到十二酸(176.5mg,88%)。1H NMR(400MHz,CDCl3)δ11.49(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),1.63(quint,J=7.3Hz,2H,CH2),1.40-1.18(m,16H,8×CH2),0.88(t,J=6.8Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ=180.5,34.1,31.9,29.6,29.4,29.3,29.2,29.0,24.6,22.7,14.1.Fe(NO 3 ) 3 9H 2 O (40.5 mg, 0.1 mmol) and DCE (4.0 mL) were added to a 100 mL round bottom flask, followed by TEMPO (15.6 mg, 0.1 mmol), KCl (7.5 mg, 0.1 mmol) , dodecanal (183.8 mg, 1.0 mmol) and DCE (1.0 mL). The round bottom bottle is connected to an air balloon through a pumping valve. The reaction was stirred at room temperature for 16 hours until the reaction was completed as monitored by TLC (petroleum ether:ethyl acetate=5:1). The reaction mixture was filtered through a short column of crude silica gel and rinsed with diethyl ether (75mL). After the solvent was spin-dried in vacuo, silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) was purified to obtain dodecanoic acid (176.5mg, 88%) . 1 H NMR (400MHz, CDCl 3 ) δ11.49 (brs, 1H, COOH), 2.35 (t, J=7.6Hz, 2H, CH 2 ), 1.63 (quint, J=7.3Hz, 2H, CH 2 ), 1.40-1.18 (m, 16H, 8×CH 2 ), 0.88 (t, J=6.8Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ=180.5, 34.1, 31.9, 29.6, 29.4, 29.3, 29.2, 29.0, 24.6, 22.7, 14.1.

实施例46:环己基甲酸的合成Example 46: Synthesis of cyclohexylcarboxylic acid

其他操作参考实施例45,所用原料为环己基甲醛(112.7mg,1.0mmol),反应时间为16小时,得到环己基甲酸(106.4mg,83%)(石油醚:乙酸乙酯=5:1)。1H NMR(400MHz,CDCl3)δ=11.42(brs,1H,COOH),2.33(tt,J=11.2,3.6Hz,1H,Ha),2.00-1.88(m,2H,Hb),1.84-1.70(m,2H,He),1.70-1.60(m,1H,Hf),1.55-1.38(m,2H,Hc),1.37-1.18(m,3H,Hd and Hg);13CNMR(100MHz,CDCl3)δ=182.9,42.9,28.7,25.6,25.3.Other operations refer to Example 45, the raw material used is cyclohexylformaldehyde (112.7mg, 1.0mmol), and the reaction time is 16 hours to obtain cyclohexylcarboxylic acid (106.4mg, 83%) (petroleum ether: ethyl acetate = 5:1) . 1 H NMR (400MHz, CDCl 3 ) δ=11.42(brs,1H,COOH),2.33(tt,J=11.2,3.6Hz,1H,H a ),2.00-1.88(m,2H,H b ),1.84 -1.70(m,2H,H e ),1.70-1.60(m,1H,H f ),1.55-1.38(m,2H,H c ),1.37-1.18(m,3H,H d and H g ); 13 CNMR (100MHz, CDCl 3 ) δ=182.9, 42.9, 28.7, 25.6, 25.3.

实施例47:辛酸的合成Example 47: Synthesis of octanoic acid

其他操作参考实施例45,所用原料为辛醛(128.7mg,1.0mmol),反应时间为16小时,得到辛酸(139.7mg,97%)(石油醚:乙酸乙酯=5:1)。1H NMR(400MHz,CDCl3)δ=11.02(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),1.63(quint,J=7.4Hz,2H,CH2),1.38-1.18(m,8H,4×CH2),0.88(t,J=6.8Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ=180.6,34.1,31.6,29.0,28.9,24.6,22.6,14.0.Refer to Example 45 for other operations. The raw material used was octanal (128.7 mg, 1.0 mmol), and the reaction time was 16 hours to obtain octanoic acid (139.7 mg, 97%) (petroleum ether: ethyl acetate = 5:1). 1 H NMR (400MHz, CDCl 3 ) δ = 11.02 (brs, 1H, COOH), 2.35 (t, J = 7.6Hz, 2H, CH 2 ), 1.63 (quint, J = 7.4Hz, 2H, CH 2 ), 1.38-1.18 (m, 8H, 4×CH 2 ), 0.88 (t, J=6.8Hz, 3H, CH 3 ); 13 C NMR (100MHz, CDCl 3 ) δ=180.6, 34.1, 31.6, 29.0, 28.9, 24.6, 22.6, 14.0.

实施例48:苯丙酸的合成Example 48: Synthesis of Phenylpropionic Acid

其他操作参考实施例45,所用原料为苯丙醛(141.5mg,98%纯度,1.0mmol),反应时间为16小时,得到苯丙酸(147.7mg,98%)(石油醚:乙酸乙酯=5:1到2:1)。1H NMR(400MHz,CDCl3)δ11.09(brs,1H,COOH),7.32-7.25(m,2H,Ar-H),7.24-7.17(m,2H,Ar-H),2.95(t,J=7.8Hz,2H,CH2),2.67(t,J=7.8Hz,2H,CH2);13C NMR(100MHz,CDCl3)δ179.5,140.1,128.5,128.2,126.3,35.6,30.5.Other operations refer to Example 45, the raw material used is phenylpropanal (141.5mg, 98% purity, 1.0mmol), and the reaction time is 16 hours to obtain phenylpropionic acid (147.7mg, 98%) (petroleum ether: ethyl acetate = 5:1 to 2:1). 1 H NMR (400MHz, CDCl 3 )δ11.09(brs,1H,COOH),7.32-7.25(m,2H,Ar-H),7.24-7.17(m,2H,Ar-H),2.95(t, J=7.8Hz, 2H, CH 2 ), 2.67 (t, J=7.8Hz, 2H, CH 2 ); 13 C NMR (100MHz, CDCl 3 ) δ179.5, 140.1, 128.5, 128.2, 126.3, 35.6, 30.5.

实施例49:(Ra)-7,8-二十联烯酸(天然产物phlomic acid)的合成Example 49: Synthesis of (Ra)-7,8-eicosenoic acid (natural product phlomic acid)

7-辛炔酸合成参考实施例30。The synthesis of 7-octynoic acid refers to Example 30.

7-辛炔酸甲酯的合成Synthesis of 7-octynoic acid methyl ester

向一圆底瓶中加入底物7-辛炔酸(981.7mg,7.0mmol)和Et2O/MeOH混合溶剂(4/1,35mL)。体系降至0℃,滴加TMSCHN2(2.0M,5.25mL),自然恢复至室温搅拌。TLC显示2小时后反应完全。旋去溶剂。硅胶柱层析纯化(石油醚/乙醚=30/1)得到7-辛炔酸甲酯(898.3mg,83%):1H NMR(400MHz,CDCl3)δ3.67(s,3H,OMe),2.33(t,J=7.4Hz,2H,CH2),2.20(td,J1=6.9Hz,J2=2.5Hz,2H,≡CCH2),1.95(t,J=2.6Hz,1H,≡CH),1.70-1.60(m,2H,CH2),1.60-1.50(m,2H,CH2),1.49-1.39(m,2H,CH2);13C NMR(100MHz,CDCl3)δ174.0,84.2,68.3,51.4,33.8,28.1,28.0,24.3,18.1;IR(neat)ν(cm-1)3296,2943,2863,2117,1738,1460,1436,1364,1325,1263,1205,1174,1145,1087,1071,1008.MS(ESI)m/z(%):155.1(M+1)-.Into a round bottom flask was added the substrate 7-octynoic acid (981.7 mg, 7.0 mmol) and Et 2 O/MeOH mixed solvent (4/1, 35 mL). The system was lowered to 0°C, TMSCHN 2 (2.0M, 5.25mL) was added dropwise, returned to room temperature naturally and stirred. TLC showed the reaction was complete after 2 hours. Spin off the solvent. Purification by silica gel column chromatography (petroleum ether/diethyl ether=30/1) gave 7-octynoic acid methyl ester (898.3 mg, 83%): 1 H NMR (400MHz, CDCl 3 ) δ3.67 (s, 3H, OMe) ,2.33(t,J=7.4Hz,2H,CH 2 ),2.20(td,J 1 =6.9Hz,J 2 =2.5Hz,2H,≡CCH 2 ),1.95(t,J=2.6Hz,1H, ≡CH),1.70-1.60(m,2H,CH 2 ),1.60-1.50(m,2H,CH 2 ),1.49-1.39(m,2H,CH 2 ); 13 C NMR(100MHz,CDCl 3 )δ174 .0, 84.2, 68.3, 51.4, 33.8, 28.1, 28.0, 24.3 , 18.1; ,1174,1145,1087,1071,1008.MS(ESI)m/z(%):155.1(M+1) - .

(Ra)-7,8-二十联烯酸甲酯的合成:Synthesis of (R a )-7,8-eicosenoic acid methyl ester:

氩气氛下,在烘干的封管中依次加入CuBr2(134.1mg,0.6mmol),(S)-二甲基脯氨醇(387.2mg,3.0mmol),7-辛炔酸甲酯(694.2mg,4.5mmol)/dioxane(4.5mL)和十二醛(830.1mg,4.5mmol)/dioxane(4.5mL).将封管用聚四氟乙烯塞子封紧,置于预先加热好的130℃油浴中搅拌12小时。TLC点板监测(石油醚/乙醚=5/1)。所得的混合物用90mL Et2O稀释,用60mL 3M的盐酸溶液洗涤。分液,水相用30×3mL Et2O萃取。有机相合并,饱和NaCl溶液洗涤,无水NaSO4干燥。过滤、旋干,硅胶柱层析(石油醚/乙醚=100/1)分离得到(Ra)-7,8-二十联烯酸甲酯(565.2mg,58%)。95%ee(HPLC conditions:Chiralcel PA-H column,hexane/i-PrOH=100/0,1.0mL/min,λ=214nm,tR(major)=17.2min,tR(minor)=22.1min);[α]D 30.6=-36.8(c=1.015,CHCl3);1H NMR(400MHz,CDCl3)δ5.11-5.00(m,2H,CH=C=CH),3.66(s,3H,CH3),2.30(t,J=7.6Hz,2H,CH2),2.02-1.93(m,4H,2×CH2),1.63(quint,J=7.5Hz,2H,CH2),1.46-1.20(m,22H,11×CH2),0.88(t,J=6.8Hz,3H,CH3);13CNMR(100MHz,CDCl3)δ203.8,174.2,91.1,90.5,51.4,34.0,31.9,29.65,29.63,29.62,29.5,29.3,29.2,29.1,29.0,28.73,28.71,28.6,24.8,22.7,14.1;IR(neat)ν(cm-1)2923,2853,1962,1742,1462,1437,1362,1255,1199,1170,1087,1012;MS(EI)m/z(%)322(M+,6.73),150(100);HRMS calcd.for C21H38O2(M+):322.2872;Found:322.2876.Under argon atmosphere, CuBr 2 (134.1mg, 0.6mmol), (S)-dimethylprolinol (387.2mg, 3.0mmol), methyl 7-octynoate (694.2 mg, 4.5mmol)/dioxane (4.5mL) and dodecanal (830.1mg, 4.5mmol)/dioxane (4.5mL). Seal the sealed tube tightly with a polytetrafluoroethylene stopper and place it in a preheated 130°C oil bath Stir for 12 hours. TLC plate monitoring (petroleum ether/diethyl ether=5/1). The resulting mixture was diluted with 90 mL of Et2O and washed with 60 mL of 3M hydrochloric acid solution. The layers were separated, and the aqueous phase was extracted with 30×3 mL Et 2 O. The organic phases were combined, washed with saturated NaCl solution, and dried over anhydrous NaSO 4 . After filtration and spin-drying, silica gel column chromatography (petroleum ether/diethyl ether=100/1) separated to obtain (R a )-7,8-eicosenoic acid methyl ester (565.2 mg, 58%). 95%ee(HPLC conditions: Chiralcel PA-H column, hexane/i-PrOH=100/0, 1.0mL/min, λ=214nm, t R (major)=17.2min, t R (minor)=22.1min) ; [α] D 30.6 = -36.8 (c = 1.015, CHCl 3 ); 1 H NMR (400MHz, CDCl 3 ) δ 5.11-5.00 (m, 2H, CH = C = CH), 3.66 (s, 3H, CH 3 ), 2.30(t, J=7.6Hz, 2H, CH 2 ), 2.02-1.93(m, 4H, 2×CH 2 ), 1.63(quint, J=7.5Hz, 2H, CH 2 ), 1.46- 1.20(m,22H,11×CH 2 ),0.88(t,J=6.8Hz,3H,CH 3 ); 13 CNMR(100MHz,CDCl 3 )δ203.8,174.2,91.1,90.5,51.4,34.0,31.9,29.65 ,29.63,29.62,29.5,29.3,29.2,29.1,29.0,28.73,28.71,28.6,24.8,22.7,14.1; IR(neat)ν(cm -1 )2923,2853,1962,1742,1462,1437,1362 , 1255, 1199, 1170, 1087, 1012; MS (EI) m/z (%) 322 (M + ,6.73), 150 (100); HRMS calcd.for C 21 H 38 O 2 (M + ): 322.2872 ;Found: 322.2876.

产物(Ra)-7,8-二十联烯酸(phlomic acid)的合成:Synthesis of product (R a )-7,8-eicosenoic acid (phlomic acid):

在圆底瓶中依次加入KOH(141.0mg,2.5mmol),混合溶剂(5mL,MeOH/H2O=4/1),和(Ra)-7,8-二十联烯酸甲酯(322.0mg,1mmol)/混合溶剂(5mL,MeOH/H2O=4/1)。体系在60℃下搅拌,TLC监测,2h后反应完全。体系置于冰浴中,滴加3M HCl(ca.1mL)。旋去MeOH,加入30mL CH2Cl2和25mL水。分液,有机相分离,水相用CH2Cl2(15mL×3)萃取。合并有机相,饱和NaCl溶液洗涤,无水NaSO4干燥。过滤、旋干,硅胶柱层析(石油醚/乙醚=10/1到2/1)分离得到天然产物phlomic acid(283.6mg,92%)。1H NMR(400MHz,CDCl3)δ11.7(brs,1H,COOH),5.11-5.01(m,2H,CH=C=CH),2.35(t,J=7.6Hz,2H,CH2),2.02-1.93(m,4H,2×CH2),1.65(quint,J=7.5Hz,2H,CH2),1.49-1.20(m,22H,11×CH2),0.88(t,J=6.8Hz,3H,CH3);13CNMR(100MHz,CDCl3)δ203.8,180.5,91.1,90.5,34.1,31.9,29.67,29.66,29.64,29.5,29.4,29.2,29.1,29.0,28.71,28.69,28.5,24.5,22.7,14.1;IR(neat)ν(cm-1)2915,2849,1964,1708,1683,1458,1415,1331,1285,1246,1200.MS(EI)m/z(%):308(M+,5.91),168(100);HRMS calcd.for C20H36O2(M+):308.2715;Found:308.2717.KOH (141.0 mg, 2.5 mmol), mixed solvent (5 mL, MeOH/H 2 O = 4/1), and (R a )-7,8-eicosenoic acid methyl ester ( 322.0 mg, 1 mmol)/mixed solvent (5 mL, MeOH/H 2 O=4/1). The system was stirred at 60°C, monitored by TLC, and the reaction was complete after 2 hours. The system was placed in an ice bath, and 3M HCl (ca. 1 mL) was added dropwise. The MeOH was swirled off and 30 mL of CH2Cl2 and 25 mL of water were added. The liquid was separated, the organic phase was separated, and the aqueous phase was extracted with CH 2 Cl 2 (15 mL×3). The organic phases were combined, washed with saturated NaCl solution, and dried over anhydrous NaSO4. Filtration, spin-drying, and silica gel column chromatography (petroleum ether/diethyl ether=10/1 to 2/1) separated the natural product phlomic acid (283.6 mg, 92%). 1 H NMR (400MHz, CDCl 3 ) δ11.7 (brs, 1H, COOH), 5.11-5.01 (m, 2H, CH=C=CH), 2.35 (t, J=7.6Hz, 2H, CH 2 ), 2.02-1.93(m, 4H, 2×CH 2 ), 1.65(quint, J=7.5Hz, 2H, CH 2 ), 1.49-1.20(m, 22H, 11×CH 2 ), 0.88(t, J=6.8 Hz,3H,CH 3 ); 13 CNMR(100MHz,CDCl 3 )δ203.8,180.5,91.1,90.5,34.1,31.9,29.67,29.66,29.64,29.5,29.4,29.2,29.1,29.0,28.71,28.69,28.5, 24.5, 22.7, 14.1; IR (neat) ν (cm -1 ) 2915, 2849, 1964, 1708, 1683, 1458, 1415, 1331, 1285, 1246, 1200. MS (EI) m/z (%): 308 (M + ,5.91), 168(100); HRMS calcd. for C 20 H 36 O 2 (M + ):308.2715; Found: 308.2717.

甲酯化衍生测定产物(Ra)-7,8-二十联烯酸(phlomic acid)的ee值:The ee value of the product (R a )-7,8-eicosenoic acid (phlomic acid) was determined by methyl esterification derivation:

向一圆底瓶中加入天然产物phlomic acid(55.9mg,0.2mmol)和混合溶剂(5mL,Et2O/MeOH=4/1)。体系降温至0℃后,滴加0.2mL TMSCHN2(2M in hexane,0.4mmol)。撤去冰浴,反应混合物自然恢复室温。TLC监测反应,2.5h后反应完全。旋去溶剂,硅胶柱层析(石油醚/乙醚=100/1)分离得到液体(Ra)-7,8-二十联烯酸甲酯(63.1mg,97%)。96%ee(HPLCconditions:Chiralcel PA-H column,hexane/i-PrOH=100/0,1.0mL/min,λ=214nm,tR(major)=23.7min,tR(minor)=32.3min);[α]D 30.5=-39.9(c=0.99,CHCl3);1H NMR(400MHz,CDCl3)δ5.11-5.01(m,2H,CH=C=CH),3.67(s,3H,CH3),2.36(t,J=7.6Hz,2H,CH2),2.03-1.92(m,4H,2×CH2),1.63(quint,J=7.5Hz,2H,CH2),1.46-1.20(m,22H,11×CH2),0.88(t,J=6.8Hz,3H,CH3);13C NMR(100MHz,CDCl3)δ203.8,174.2,91.1,90.6,51.4,34.0,31.9,29.66,29.63,29.5,29.3,29.2,29.1,29.0,28.73,28.71,28.6,24.8,22.7,14.1.The natural product phlomic acid (55.9 mg, 0.2 mmol) and mixed solvent (5 mL, Et 2 O/MeOH=4/1) were added to a round bottom flask. After the system was cooled to 0°C, 0.2 mL of TMSCHN 2 (2M in hexane, 0.4 mmol) was added dropwise. The ice bath was removed, and the reaction mixture returned to room temperature naturally. The reaction was monitored by TLC, and the reaction was complete after 2.5 h. The solvent was spun off, and the liquid (R a )-7,8-eicosenoic acid methyl ester (63.1 mg, 97%) was separated by silica gel column chromatography (petroleum ether/diethyl ether=100/1). 96%ee (HPLCconditions:Chiralcel PA-H column, hexane/i-PrOH=100/0, 1.0mL/min, λ=214nm, t R (major)=23.7min, t R (minor)=32.3min); [α] D 30.5 = -39.9 (c = 0.99, CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ) δ 5.11-5.01 (m, 2H, CH = C = CH), 3.67 (s, 3H, CH 3 ), 2.36(t, J=7.6Hz, 2H, CH 2 ), 2.03-1.92(m, 4H, 2×CH 2 ), 1.63(quint, J=7.5Hz, 2H, CH 2 ), 1.46-1.20 (m,22H,11×CH 2 ),0.88(t,J=6.8Hz,3H,CH 3 ); 13 C NMR (100MHz,CDCl 3 )δ203.8,174.2,91.1,90.6,51.4,34.0,31.9,29.66 ,29.63,29.5,29.3,29.2,29.1,29.0,28.73,28.71,28.6,24.8,22.7,14.1.

实施例50:十二酸(十二过氧酸)的合成Example 50: Synthesis of Dodecanoic Acid (Dodecanoic Acid)

在氧气氛围(氧气球)下,将Fe(NO3)3·9H2O(40.7mg,0.10mmol),十二醛(184.2mg,1.0mmol)和1,2-二氯乙烷(DCE,4mL)加入到Schlenk管中。室温搅拌12h,TLC监测直至反应完成。反应混合物经粗硅胶短柱过滤,乙醚(75mL)淋洗,浓缩得粗产品。加入二溴甲烷35μL作内标,核磁定量氢谱(1H NMR)测得十二酸的产率为78%,十二过氧酸的产率为11%。该粗产品通过硅胶柱层析(石油醚:乙酸乙酯=20:1到5:1)得到十二酸和十二过氧酸。十二酸:1H NMR(400MHz,CDCl3)δ11.49(brs,1H,COOH),2.35(t,J=7.6Hz,2H,CH2),1.63(quint,J=7.2Hz,2H,CH2),1.38-1.21(m,16H,8×CH2),0.88(t,J=6.6Hz,3H,CH3);13CNMR(100MHz,CDCl3)δ=180.6,34.1,31.9,29.6,29.4,29.3,29.2,29.0,24.6,22.7,14.1.十二过氧酸:1HNMR(400MHz,CDCl3)δ11.38(brs,1H,CO3H),2.42(t,J=7.6Hz,2H,CH2),1.70(quint,J=7.3Hz,2H,CH2),1.39-1.19(m,16H,8×CH2),0.88(t,J=6.8Hz,3H,CH3);13CNMR(100MHz,CDCl3)δ=174.7,31.9,30.4,29.54,29.51,29.32,29.29,29.0,28.9,24.6,22.7,14.1.Under an oxygen atmosphere (oxygen balloon), Fe(NO 3 ) 3 9H 2 O (40.7mg, 0.10mmol), dodecanal (184.2mg, 1.0mmol) and 1,2-dichloroethane (DCE, 4 mL) into the Schlenk tube. Stir at room temperature for 12 h, and monitor by TLC until the reaction is complete. The reaction mixture was filtered through a short column of crude silica gel, rinsed with diethyl ether (75 mL), and concentrated to obtain a crude product. 35 μL of dibromomethane was added as an internal standard, and the yield of dodecanoic acid was 78% and that of dodecanoic acid was 11% as measured by quantitative hydrogen nuclear magnetic spectrum ( 1 H NMR). The crude product was subjected to silica gel column chromatography (petroleum ether:ethyl acetate=20:1 to 5:1) to obtain dodecanoic acid and dodecanoic acid. Dodecanoic acid: 1 H NMR (400MHz, CDCl 3 ) δ11.49 (brs, 1H, COOH), 2.35 (t, J = 7.6Hz, 2H, CH 2 ), 1.63 (quint, J = 7.2Hz, 2H, CH 2 ), 1.38-1.21(m, 16H, 8×CH 2 ), 0.88(t, J=6.6Hz, 3H, CH 3 ); 13 CNMR(100MHz, CDCl 3 )δ=180.6, 34.1, 31.9, 29.6 , 29.4, 29.3, 29.2, 29.0, 24.6, 22.7, 14.1. Dodecanoic acid: 1 HNMR (400MHz, CDCl 3 ) δ11.38 (brs, 1H, CO 3 H), 2.42 (t, J=7.6Hz ,2H,CH 2 ), 1.70(quint,J=7.3Hz,2H,CH 2 ),1.39-1.19(m,16H,8×CH 2 ),0.88(t,J=6.8Hz,3H,CH 3 ) ; 13 CNMR (100MHz, CDCl 3 ) δ=174.7, 31.9, 30.4, 29.54, 29.51, 29.32, 29.29, 29.0, 28.9, 24.6, 22.7, 14.1.

Claims (14)

1. A method for oxidizing alcohol or aldehyde by oxygen is characterized in that at room temperature, in an organic solvent, oxygen is used as an oxidizing agent, alcohol, diol or aldehyde is used as a raw material, ferric nitrate, 2,6, 6-tetramethylpiperidine oxynitride and inorganic halide are used as catalysts, the reaction is carried out under neutral conditions, the alcohol or aldehyde is oxidized to generate acid, and the diol is oxidized to generate lactone or diacid; wherein,
the starting alcohol is R1CH2OH;R1Comprises a carbon chain of C1-C16, a carbocyclic or heterocyclic ring of C3-C8, and a fluorine-, chlorine-, bromine-, iodine-, aryl-, hetero-ringThe structure of ring, ester group, ether bond, alkynyl, alkyl, terpenoid and steroid of double bond functional group;
the raw material diols include 1, 4-diol, 1, 5-diol and 1, 8-diol;
the starting aldehyde is R2CHO;R2Comprises C1-C16 carbon chain, C3-C8 carbocycle or heterocycle, and alkyl, terpenoid and steroid structure containing fluorine, chlorine, bromine, iodine, aryl, heterocycle, ester group, ether bond, alkynyl and double bond functional group.
2. A method for oxidizing alcohol or aldehyde by oxygen is characterized in that at room temperature, in an organic solvent, oxygen is used as an oxidizing agent, aldehyde is used as a raw material, ferric nitrate is used as a catalyst, and the aldehyde is oxidized to generate acid and peroxy acid under a neutral condition;
wherein the starting aldehyde is R2CHO;R2Comprises C1-C16 carbon chain, C3-C8 carbocycle or heterocycle, and alkyl, terpenoid and steroid structure containing fluorine, chlorine, bromine, iodine, aryl, heterocycle, ester group, ether bond, alkynyl and double bond functional group.
3. The method for the oxygen oxidation of an alcohol or aldehyde according to claim 1 or 2, wherein the aryl group is a phenyl group, an alkoxyphenyl group, a nitrophenyl group, a halophenyl group, a thienyl group, a furyl group, or a naphthyl group; the alkoxy phenyl is methoxyphenyl and ethoxyphenyl, and the halogenated phenyl is fluorophenyl, chlorophenyl, bromophenyl and iodophenyl;
the heterocyclic ring is furan ring or thiophene ring.
4. The method for oxidizing alcohol or aldehyde with oxygen according to claim 2, wherein the molar ratio of the raw material aldehyde to the raw material ferric nitrate is 100 to 10: 1.
5. The method for oxidizing alcohol or aldehyde with oxygen according to claim 1, wherein the molar ratio of the raw material, ferric nitrate, 2,6, 6-tetramethylpiperidine nitroxide, and inorganic halide is 100:1 to 10:1 to 20:1 to 10.
6. The method for oxidizing an alcohol or aldehyde with oxygen according to claim 5, wherein the molar ratio of the raw material, ferric nitrate, 2,6, 6-tetramethylpiperidine nitroxide, inorganic halide is 100:10:20: 10.
7. The method for the oxygen oxidation of an alcohol or aldehyde according to claim 1, wherein the inorganic halide is a lithium halide, a sodium halide, a potassium halide, a rubidium halide, a cesium halide, and the halogen atom is fluorine, chlorine, bromine, or iodine.
8. The method for the oxygen oxidation of an alcohol or aldehyde according to claim 7, wherein the inorganic halide is potassium chloride or sodium chloride.
9. The method for oxygen oxidizing an alcohol or aldehyde according to claim 1, wherein the reaction time is 1 to 48 hours.
10. The method for oxidizing an alcohol or aldehyde with oxygen according to claim 1, wherein the oxygen is pure oxygen or oxygen in air.
11. The method for oxygen oxidizing an alcohol or aldehyde according to claim 1, wherein the neutral condition is that no protic acid or base is added.
12. The method for the oxygen oxidation of an alcohol or aldehyde according to claim 1, wherein the organic solvent is one or more selected from the group consisting of ethyl acetate, dichloromethane, 1, 2-dichloroethane, 1-dichloroethane, 1, 2-dichloropropane, 1, 3-dichloropropane, nitromethane, ethylene glycol dimethyl ether, dioxane, tetrahydrofuran, acetonitrile, benzene, and toluene.
13. The method for oxidizing an alcohol or aldehyde with oxygen according to claim 1 or 2, wherein the oxygen may be oxygen in air;
wherein, the method adopted when introducing air is to take an air bag as a main source of oxygen, and an oxygen ball is added as supplement after reacting for 1.5 hours; or by a slow air flow method, allowing air to flow slowly through the reaction vessel.
14. Synthesis of (R)a) A method of producing (R) -7, 8-eicosenoic acid, wherein said (R) isa) The structure of the-7, 8-eicosenoic acid is shown in the formula (I), and the method comprises the following steps:
(1) taking 7-octyne-1-ol as a raw material, taking ferric nitrate, 2,6, 6-tetramethylpiperidine oxynitride and inorganic halide as catalysts, and carrying out oxidation reaction to obtain 7-octynoic acid;
(2) carrying out methylation reaction on the 7-octynoic acid prepared in the step (1) to obtain 7-octynoic acid methyl ester;
(3) catalyzing the 7-octynoic acid methyl ester prepared in the step (2) by copper bromide and dimethyl prolinol to perform EATA reaction to obtain dienoic acid methyl ester;
(4) hydrolyzing the methyl dienoate prepared in step (3) in a methanol/water system in the presence of potassium hydroxide to obtain the axial chiral dienoic acid (R)a) -7, 8-eicosenoic acid;
CN201610141434.2A 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde Active CN107176899B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610141434.2A CN107176899B (en) 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde
CN202110259272.3A CN113004108B (en) 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610141434.2A CN107176899B (en) 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110259272.3A Division CN113004108B (en) 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde

Publications (2)

Publication Number Publication Date
CN107176899A true CN107176899A (en) 2017-09-19
CN107176899B CN107176899B (en) 2021-04-13

Family

ID=59830619

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610141434.2A Active CN107176899B (en) 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde
CN202110259272.3A Active CN113004108B (en) 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110259272.3A Active CN113004108B (en) 2016-03-11 2016-03-11 A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde

Country Status (1)

Country Link
CN (2) CN107176899B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109092372A (en) * 2018-09-30 2018-12-28 湖北大学 A kind of catalyst and method of elective oxidation of primary alcohols
CN109320514A (en) * 2018-11-19 2019-02-12 石家庄学院 An immobilized multifunctional compound and its preparation and application
CN109761799A (en) * 2017-11-09 2019-05-17 中国科学院大连化学物理研究所 A kind of method for catalyzing the selective oxidation of glucose
CN110240560A (en) * 2018-03-08 2019-09-17 浙江省诸暨合力化学对外贸易有限公司 A kind of preparation method of the chloro- 2- pyrrole fluoroacetic acid derivative of 3,5- bis-
CN110240545A (en) * 2018-03-08 2019-09-17 浙江省诸暨合力化学对外贸易有限公司 A kind of fluoro- 2,4- 2,4-dinitrophenoxy of 2-(5-) acetic acid preparation method
CN110483273A (en) * 2019-08-26 2019-11-22 上海应用技术大学 A kind of method that secondary alcohol or primary alconol catalysis oxidation prepare ketone or carboxylic acid
CN110642700A (en) * 2019-10-16 2020-01-03 颜国和 Preparation method of 2-butynoic acid
CN110776412A (en) * 2019-11-12 2020-02-11 万华化学集团股份有限公司 Method for preparing isovaleric acid, ligand, complex and application thereof in catalytic system
WO2020119549A1 (en) * 2018-12-12 2020-06-18 复旦大学 Method for directly constructing tetra-substituted allenic acid compound having high optical activity
CN111393284A (en) * 2020-04-18 2020-07-10 云南正邦科技有限公司 Method for continuously preparing carboxylic acid by oxidizing primary alcohol
WO2021031756A1 (en) * 2019-08-22 2021-02-25 浙江大学 Method for synthesizing carboxylic acid or ketone compounds from alcohol or aldehyde using oxygen or oxygen in air as oxidant
CN112479860A (en) * 2019-09-12 2021-03-12 浙江大学 Novel method for co-production of carboxylic acid and epsilon-caprolactone based on oxygen oxidation
CN113121477A (en) * 2021-06-02 2021-07-16 宁波国生科技有限公司 Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid
CN113651684A (en) * 2021-08-16 2021-11-16 常州大学 Preparation method of 4-hydroxy-2-butynoic acid
CN114539046A (en) * 2022-03-07 2022-05-27 浙江新和成股份有限公司 Process for preparing caronic acid or its derivative and caronic anhydride or its derivative
WO2022206399A1 (en) * 2021-04-01 2022-10-06 复旦大学 Copper catalysis-based method for preparing carboxylic acid compound by means of alcohol oxidation using oxygen as oxidant
CN116253705A (en) * 2021-12-10 2023-06-13 浙江大学 A new method for synthesizing n-butylphthalide
WO2023232002A1 (en) * 2022-05-30 2023-12-07 复旦大学 Method for preparing carboxylate by means of iron-catalyzed oxidation and esterification of alcohol
WO2024187444A1 (en) * 2023-03-16 2024-09-19 Specialty Operations France Method for producing tetrahydrofuran-2-carboxylic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772082A (en) * 2010-07-26 2014-05-07 华东师范大学 Method for preparing aldehyde or ketone by oxidizing alcohol by using oxygen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544548B (en) * 2008-03-26 2013-05-01 中国科学院大连化学物理研究所 Method for preparing aldehydes or ketones by oxidizing alcohols with oxygen
CN104529957B (en) * 2014-12-26 2016-04-13 中国科学技术大学先进技术研究院 A kind of preparation method of FDCA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772082A (en) * 2010-07-26 2014-05-07 华东师范大学 Method for preparing aldehyde or ketone by oxidizing alcohol by using oxygen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAVEL CHESHEV,ET AL: "Synthesis and Affinity Evaluation of a Small Library of Bidentate Cholera Toxin Ligands: Towards Nonhydrolyzable Ganglioside Mimics", 《CHEM. EUR. J.》 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761799A (en) * 2017-11-09 2019-05-17 中国科学院大连化学物理研究所 A kind of method for catalyzing the selective oxidation of glucose
CN109761799B (en) * 2017-11-09 2021-08-06 中国科学院大连化学物理研究所 A kind of method for catalyzing the selective oxidation of glucose
CN110240560B (en) * 2018-03-08 2021-06-08 迈克斯(如东)化工有限公司 Preparation method of 3, 5-dichloro-2-pyritic acid derivative
CN110240560A (en) * 2018-03-08 2019-09-17 浙江省诸暨合力化学对外贸易有限公司 A kind of preparation method of the chloro- 2- pyrrole fluoroacetic acid derivative of 3,5- bis-
CN110240545A (en) * 2018-03-08 2019-09-17 浙江省诸暨合力化学对外贸易有限公司 A kind of fluoro- 2,4- 2,4-dinitrophenoxy of 2-(5-) acetic acid preparation method
CN109092372A (en) * 2018-09-30 2018-12-28 湖北大学 A kind of catalyst and method of elective oxidation of primary alcohols
CN109320514B (en) * 2018-11-19 2021-03-05 石家庄学院 Immobilized multifunctional compound and preparation and application thereof
CN109320514A (en) * 2018-11-19 2019-02-12 石家庄学院 An immobilized multifunctional compound and its preparation and application
WO2020119549A1 (en) * 2018-12-12 2020-06-18 复旦大学 Method for directly constructing tetra-substituted allenic acid compound having high optical activity
CN112409144B (en) * 2019-08-22 2022-10-28 浙江大学 Method for synthesizing carboxylic acid or ketone compound from alcohol or aldehyde by using oxygen or oxygen in air as oxidant
WO2021031756A1 (en) * 2019-08-22 2021-02-25 浙江大学 Method for synthesizing carboxylic acid or ketone compounds from alcohol or aldehyde using oxygen or oxygen in air as oxidant
CN112409144A (en) * 2019-08-22 2021-02-26 浙江大学 Method for synthesizing carboxylic acid or ketone compound from alcohol or aldehyde by using oxygen or oxygen in air as oxidant
CN110483273A (en) * 2019-08-26 2019-11-22 上海应用技术大学 A kind of method that secondary alcohol or primary alconol catalysis oxidation prepare ketone or carboxylic acid
CN112479860A (en) * 2019-09-12 2021-03-12 浙江大学 Novel method for co-production of carboxylic acid and epsilon-caprolactone based on oxygen oxidation
WO2021047292A1 (en) * 2019-09-12 2021-03-18 浙江大学 NOVEL METHOD FOR CO-PRODUCTION OF CARBOXYLIC ACID BASED ON OXYGEN OXIDATION AND ε-CAPROLACTONE
CN112479860B (en) * 2019-09-12 2022-10-04 浙江大学 Novel method for co-production of carboxylic acid and epsilon-caprolactone based on oxygen oxidation
CN110642700A (en) * 2019-10-16 2020-01-03 颜国和 Preparation method of 2-butynoic acid
CN110776412A (en) * 2019-11-12 2020-02-11 万华化学集团股份有限公司 Method for preparing isovaleric acid, ligand, complex and application thereof in catalytic system
CN110776412B (en) * 2019-11-12 2022-04-22 万华化学集团股份有限公司 Method for preparing isovaleric acid, ligand, complex and application thereof in catalytic system
CN111393284B (en) * 2020-04-18 2022-08-23 云南正邦科技有限公司 Method for continuously preparing carboxylic acid by oxidizing primary alcohol
CN111393284A (en) * 2020-04-18 2020-07-10 云南正邦科技有限公司 Method for continuously preparing carboxylic acid by oxidizing primary alcohol
CN115160123A (en) * 2021-04-01 2022-10-11 复旦大学 A copper-catalyzed method for preparing carboxylic acid compound by oxidizing alcohol with oxygen as oxidant
WO2022206399A1 (en) * 2021-04-01 2022-10-06 复旦大学 Copper catalysis-based method for preparing carboxylic acid compound by means of alcohol oxidation using oxygen as oxidant
CN113121477A (en) * 2021-06-02 2021-07-16 宁波国生科技有限公司 Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid
CN113651684A (en) * 2021-08-16 2021-11-16 常州大学 Preparation method of 4-hydroxy-2-butynoic acid
CN113651684B (en) * 2021-08-16 2023-01-17 常州大学 The preparation method of 4-hydroxy-2-butynoic acid
CN116253705A (en) * 2021-12-10 2023-06-13 浙江大学 A new method for synthesizing n-butylphthalide
CN114539046A (en) * 2022-03-07 2022-05-27 浙江新和成股份有限公司 Process for preparing caronic acid or its derivative and caronic anhydride or its derivative
CN114539046B (en) * 2022-03-07 2023-08-29 浙江新和成股份有限公司 Process for preparing caronic acid and caronic anhydride
WO2023232002A1 (en) * 2022-05-30 2023-12-07 复旦大学 Method for preparing carboxylate by means of iron-catalyzed oxidation and esterification of alcohol
WO2024187444A1 (en) * 2023-03-16 2024-09-19 Specialty Operations France Method for producing tetrahydrofuran-2-carboxylic acid

Also Published As

Publication number Publication date
CN113004108B (en) 2022-06-07
CN107176899B (en) 2021-04-13
CN113004108A (en) 2021-06-22

Similar Documents

Publication Publication Date Title
CN113004108B (en) A kind of method for preparing acid by oxygen oxidation of alcohol or aldehyde
CN101544548B (en) Method for preparing aldehydes or ketones by oxidizing alcohols with oxygen
CN110563571B (en) Synthetic method of benzoic acid compound
CN106892935A (en) A kind of immobilized copper catalysis of shitosan prepare method and the application of organoboron compound
CN104177319A (en) Method for preparing 2,5-furyldiformate
CN112409144B (en) Method for synthesizing carboxylic acid or ketone compound from alcohol or aldehyde by using oxygen or oxygen in air as oxidant
CN103304393B (en) A kind of synthetic method of benzil analog derivative
CN110590819A (en) Preparation method of organoboron compound and preparation method of β-hydroxy organoboron compound
CN104292106B (en) A kind of one kettle way prepares the method for organic carboxylic ester
CN113620918B (en) Method for synthesizing spiro compounds through Lewis acid catalyzed [3+2] cycloaddition reaction
CN113980028B (en) Preparation method of chiral spiro indolone compound
CN106905097A (en) Method for preparing aldehyde by oxidizing primary alcohol
CN107746392B (en) A kind of preparation method of oxazolidine compounds containing bridged ring structure
CN113214134B (en) Synthesis method of quaternary carbon oxoindole skeleton
CN103275027B (en) Synthesis method of alpha-keto amide compound
CN112457276B (en) Method for synthesizing butylphthalide
WO2022206399A1 (en) Copper catalysis-based method for preparing carboxylic acid compound by means of alcohol oxidation using oxygen as oxidant
CN118388328A (en) Method for synthesizing aldehyde ketone compound through catalyst-free photochemical decarboxylation
CN108144612B (en) A kind of cobalt-based catalyst for one-pot synthesis of carboxylate and its preparation and application
Zhu et al. Oxidant-dependent selective oxidation of alcohols utilizing multinuclear copper-triethanolamine complexes
CN102329222B (en) Method for oxidizing cyclohexane to prepare hexane diacid through one-step method and catalyst used by same
CN111892528A (en) A kind of preparation method of 7-amide indole compounds
CN114805461B (en) Method for oxidizing C-H bond at benzene ring benzyl position into ketone
CN102826979B (en) Method for selectively oxidizing benzyl alcohols into benzaldehyde and methyl benzoate compounds through using 1,3-dibromo-5,5-dimethylhydantoin (DBDMH)
CN114057569B (en) Method for synthesizing benzoic acid and methyl benzoate compounds by using TBADT as catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant