CN107064565B - Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof - Google Patents
Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof Download PDFInfo
- Publication number
- CN107064565B CN107064565B CN201710391075.0A CN201710391075A CN107064565B CN 107064565 B CN107064565 B CN 107064565B CN 201710391075 A CN201710391075 A CN 201710391075A CN 107064565 B CN107064565 B CN 107064565B
- Authority
- CN
- China
- Prior art keywords
- area
- sample
- magnetic
- thermal
- tip body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title abstract description 110
- 230000008878 coupling Effects 0.000 title abstract description 8
- 238000010168 coupling process Methods 0.000 title abstract description 8
- 238000005859 coupling reaction Methods 0.000 title abstract description 8
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 238000001514 detection method Methods 0.000 title description 12
- 230000005291 magnetic effect Effects 0.000 abstract description 31
- 238000011065 in-situ storage Methods 0.000 abstract description 7
- 239000008204 material by function Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 23
- 230000005294 ferromagnetic effect Effects 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000004621 scanning probe microscopy Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- KAGOZRSGIYZEKW-UHFFFAOYSA-N cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Co+3].[Co+3] KAGOZRSGIYZEKW-UHFFFAOYSA-N 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 238000002465 magnetic force microscopy Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004574 scanning tunneling microscopy Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- FSJWWSXPIWGYKC-UHFFFAOYSA-M silver;silver;sulfanide Chemical compound [SH-].[Ag].[Ag+] FSJWWSXPIWGYKC-UHFFFAOYSA-M 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/08—Probe characteristics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q30/00—Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
- G01Q30/02—Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/08—Probe characteristics
- G01Q70/14—Particular materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/16—Probe manufacture
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种扫描探针显微镜的探针,特别是涉及到一种磁-电-热多参量耦合显微镜探针、其制备方法与探测方法。The invention relates to a probe of a scanning probe microscope, in particular to a magnetic-electric-thermal multi-parameter coupling microscope probe, and a preparation method and a detection method thereof.
背景技术Background technique
随着信息技术的高速发展,集成电路的电子原器件趋于小型化和集成化方向发展,电子元器件的尺寸进入微/纳尺度,其发热与散热问题已经成为制约进一步高度集成的瓶颈问题。微/纳尺度下表征与热相关的物性,理解发热和散热的物理过程已经成为现代热科学中的一个崭新的分支—微/纳尺度热科学。在微/纳尺度下,材料的微观结构和畴结构(对于磁性、铁电材料)对热学性质的影响尤为重要,一个微裂纹、空穴、晶界、乃至一个畴壁都可能影响到材料的热学性质。以多铁材料为例,在外场驱动下的磁/电畴翻转(或畴壁移动)和漏电流都会引起微区发热。尽管人们已经发展多种技术手段来研究这些参量,只是到目前为止,还没有技术和设备能对这些参量进行原位-实时-同步综合表征,限制了对材料中发热与散热的物理机制的深入理解,从而无法找出解决材料在微/纳尺度的发热与散热问题。With the rapid development of information technology, the electronic components of integrated circuits tend to be miniaturized and integrated. The size of electronic components has entered the micro/nano scale, and the problem of heat generation and heat dissipation has become a bottleneck problem that restricts further high integration. Characterizing heat-related physical properties at the micro/nano scale and understanding the physical process of heat generation and heat dissipation has become a new branch of modern thermal science - micro/nanoscale thermal science. At the micro/nano scale, the influence of the microstructure and domain structure of the material (for magnetic and ferroelectric materials) on the thermal properties is particularly important. A microcrack, hole, grain boundary, or even a domain wall may affect the thermal properties of the material. Taking multiferroic materials as an example, magnetic/electric domain reversal (or domain wall movement) and leakage current driven by external fields will cause micro-region heating. Although people have developed a variety of technical means to study these parameters, so far, there is no technology and equipment that can perform in-situ, real-time, and synchronous comprehensive characterization of these parameters, which limits the in-depth understanding of the physical mechanism of heat generation and heat dissipation in materials, and thus it is impossible to find a solution to the problem of heat generation and heat dissipation of materials at the micro/nano scale.
原子力显微镜技术作为一种重要的研究纳米科学技术研究手段,得到了飞速发展。扫描探针显微镜技术是基于扫描隧道显微镜基础上发展而来的,具有空间分辨率高,可在真空、大气、甚至溶液等多种环境中变温工作等诸多优点,使其很快被广泛应用于物理学、化学、生物学、电子学等研究领域。人们通过探测探针与样品表面之间的各类相互作用力或者电流等物理量来探测样品的表面形貌以及其他物理特性,发展出了原子力显微镜、磁力显微镜、压电力显微镜、导电力显微镜等技术,可以用来探测样品表面形貌、畴结构、微区电导、等物理参量。As an important research method for nanoscience and technology, atomic force microscopy has developed rapidly. Scanning probe microscopy is developed based on scanning tunneling microscopy. It has many advantages such as high spatial resolution and the ability to work at variable temperatures in a variety of environments such as vacuum, atmosphere, and even solution. It has been widely used in research fields such as physics, chemistry, biology, and electronics. People detect the surface morphology and other physical properties of samples by detecting various interaction forces or physical quantities such as current between the probe and the sample surface. Atomic force microscopy, magnetic force microscopy, piezoelectric force microscopy, conductive force microscopy and other technologies have been developed to detect sample surface morphology, domain structure, micro-area conductivity, and other physical parameters.
近年来,新近发展了扫描热探针技术,将扫描探针显微镜技术拓展到热学研究领域,实现了对材料及器件表面微区温度及导热等热学性能的空间分布表征和研究。尽管人们已经发展了基于扫描探针显微镜的微区热成像技术,但是目前基于该技术只能够单一地获得热学信息,尚不能原位同步实时地同时获得磁畴结构、铁电/压电畴结构、导电畴结构等诸多信息,尤其对于期间的关联性人们还不清楚,无法进行磁-电-热耦合成像,限制了对材料中发热与散热的物理机制的深入理解,从而无法找出解决材料在微/纳尺度的发热与散热问题。In recent years, scanning thermal probe technology has been developed, which has expanded scanning probe microscopy technology to the field of thermal research, and has achieved the spatial distribution characterization and research of thermal properties such as temperature and thermal conductivity of micro-areas on the surface of materials and devices. Although people have developed micro-area thermal imaging technology based on scanning probe microscopy, at present, this technology can only obtain thermal information in a single way, and cannot simultaneously obtain a lot of information such as magnetic domain structure, ferroelectric/piezoelectric domain structure, and conductive domain structure in real time in situ. In particular, people are still unclear about the correlation between them, and it is impossible to perform magnetic-electric-thermal coupled imaging, which limits the in-depth understanding of the physical mechanism of heat generation and heat dissipation in materials, and thus it is impossible to find a solution to the heat generation and heat dissipation problems of materials at the micro/nano scale.
本发明提出一种新型纳米磁-电-热多参量耦合显微镜探针,将克服现有单一磁、电、热功能模块的局限性,开发出兼具磁-电-热特性探测的探针,配备相应的信号检测和处理系统,将能够实现原位表征磁畴、铁电畴、微区电导、微区发热性质的变化及其相互之间的关联。因此,在纳米测试技术领域,发展新型纳米表征技术,尤其是探针表征技术是目前相关研究领域的研究热点之一。The present invention proposes a novel nano-magnetic-electric-thermal multi-parameter coupled microscope probe, which will overcome the limitations of the existing single magnetic, electrical and thermal functional modules, develop a probe with both magnetic-electric-thermal property detection, and equip it with a corresponding signal detection and processing system, which will be able to achieve in-situ characterization of changes in magnetic domains, ferroelectric domains, micro-area conductivity, micro-area heating properties and their mutual correlation. Therefore, in the field of nano-testing technology, the development of novel nano-characterization technology, especially probe characterization technology, is one of the current research hotspots in related research fields.
发明内容Summary of the invention
针对上述技术现状,本发明提供了一种纳米磁-电-热多参量耦合显微镜探针,其结构简单,可原位、同步测量磁、电、热等多物理参量,实现磁畴、电畴对热学性质的影响规律研究。In view of the above technical status, the present invention provides a nanomagnetic-electric-thermal multi-parameter coupling microscope probe, which has a simple structure and can measure multiple physical parameters such as magnetism, electricity, and heat in situ and synchronously, so as to realize the study of the influence of magnetic domains and electric domains on thermal properties.
本发明的技术方案为:一种磁-电-热多参量耦合显微镜探针,包括探针臂,以及与探针臂相连的针尖本体,所述针尖本体的尖端用于与样品接触或者非接触,以测量样品信号;其特征是:自针尖本体表面向外,依次为热电偶层、导热绝缘层、磁性导电层;The technical solution of the present invention is: a magnetic-electric-thermal multi-parameter coupling microscope probe, comprising a probe arm and a needle tip body connected to the probe arm, wherein the tip of the needle tip body is used to contact or non-contact with a sample to measure a sample signal; the feature is that: from the surface of the needle tip body outward, there are a thermocouple layer, a heat-conducting insulating layer, and a magnetic conductive layer in sequence;
所述的热电偶层覆盖着针尖本体表面的区域A与区域B,针尖本体表面除了区域A与区域B之外的区域为剩余区域,区域A与区域B无重叠区域并且在针尖本体的尖端部位相连接;覆盖区域A的材料为材料A,覆盖区域B的材料为材料B,材料A与材料B不同,与外部电路构成热电回路;The thermocouple layer covers the area A and area B on the surface of the needle tip body, and the area on the surface of the needle tip body other than area A and area B is the remaining area, and area A and area B have no overlapping area and are connected at the tip of the needle tip body; the material covering area A is material A, and the material covering area B is material B, and material A is different from material B, and forms a thermoelectric loop with the external circuit;
所述的导热绝缘层覆盖着热电偶层以及针尖本体表面的剩余区域;The thermally conductive insulating layer covers the thermocouple layer and the remaining area of the needle tip body surface;
所述的磁性导电层位于导热绝缘层表面,至少覆盖着针尖本体的尖端部位,与样品、外部电路构成导电回路。The magnetic conductive layer is located on the surface of the heat-conducting insulating layer, covers at least the tip of the needle tip body, and forms a conductive loop with the sample and the external circuit.
所述的针尖本体的三维结构不限,可以是棱锥、圆锥、棱台、圆台等。The three-dimensional structure of the needle tip body is not limited, and can be a pyramid, a cone, a truncated cone, a frustum, or the like.
为了提高探测灵敏度,作为优选,所述的区域A与区域B除针尖尖端部位之外不相连接。In order to improve the detection sensitivity, preferably, the area A and the area B are not connected except at the tip of the needle.
作为优选,探针臂表面包括区域A’与区域B’,区域A’与区域B’无重叠区域,区域A’与区域A相连接,区域B’与区域B相连接;所述的外部电路包括覆盖着区域A’表面的材料A,覆盖着区域B’表面的材料B。Preferably, the probe arm surface includes region A’ and region B’, region A’ and region B’ have no overlapping area, region A’ is connected to region A, and region B’ is connected to region B; the external circuit includes material A covering the surface of region A’ and material B covering the surface of region B’.
所述的材料A与材料B具有导电性,二者相连接构成回路,连接点温度变化时,热电偶回路内产生电势差。所述的材料A不限,包括具有良好导电性能的金属和半导体中的一种材料或者两种以上的组合材料,例如钯、金、铋(Bi)、镍(Ni)、钴(Co)、钾(K)等金属以及其合金,石墨、石墨烯等半导体中的至少一种。所述的材料B不限,包括具有良好导电性能的金属和半导体中的一种材料或者两种以上的组合材料,例如钯、金、铋(Bi)、镍(Ni)、钴(Co)、钾(K)等金属以及其合金,石墨、石墨烯等半导体中的至少一种。The material A and the material B are conductive, and the two are connected to form a loop. When the temperature of the connection point changes, a potential difference is generated in the thermocouple loop. The material A is not limited, including one material or a combination of two or more metals and semiconductors with good electrical conductivity, such as palladium, gold, bismuth (Bi), nickel (Ni), cobalt (Co), potassium (K) and other metals and their alloys, and at least one of semiconductors such as graphite and graphene. The material B is not limited, including one material or a combination of two or more metals and semiconductors with good electrical conductivity, such as palladium, gold, bismuth (Bi), nickel (Ni), cobalt (Co), potassium (K) and other metals and their alloys, and at least one of semiconductors such as graphite and graphene.
所述的导热绝缘具有热传导性,同时具有电绝缘性,其材料不限,包括具有一定绝缘性能的半导体、无机材料或者有机材料,例如氧化锌(ZnO)、铁酸铋(BiFeO3)、钴酸锂(LiCoO2)、氧化镍(NiO)、氧化钴(Co2O3)、氧化铜(CuxO)、二氧化硅(SiO2)、氮化硅(SiNx)、二氧化钛(TiO2)、五氧化二钽(Ta2O5)、五氧化二铌(Nb2O5)、氧化钨(WOx)、二氧化铪(HfO2)、氧化铝(Al2O3)、氧化石墨烯、非晶碳、硫化铜(CuxS)、硫化银(Ag2S)、非晶硅、氮化钛(TiN)、聚酰亚胺(PI)、聚酰胺(PAI)、聚西弗碱(PA)、聚砜(PS)等中的至少一种。The thermally conductive insulation has thermal conductivity and electrical insulation, and its material is not limited, including semiconductors, inorganic materials or organic materials with certain insulation properties, such as zinc oxide (ZnO), bismuth ferrite (BiFeO 3 ), lithium cobalt oxide (LiCoO 2 ), nickel oxide (NiO), cobalt oxide (Co 2 O 3 ), copper oxide (Cu x O), silicon dioxide (SiO 2 ), silicon nitride (SiN x ), titanium dioxide (TiO 2 ), tantalum pentoxide (Ta 2 O 5 ), niobium pentoxide (Nb 2 O 5 ), tungsten oxide (WO x ), hafnium dioxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), graphene oxide, amorphous carbon, copper sulfide (Cu x S), silver sulfide (Ag 2 S), amorphous silicon, titanium nitride (TiN), polyimide (PI), polyamide (PAI), polyschiff base (PA), polysulfone (PS), etc. At least one of the following.
所述的磁性导电层具有磁性与导电性,其材料不限,包括铁磁性金属铁(Fe)、钴(Co)、镍(Ni)及磁性合金等。The magnetic conductive layer has magnetic properties and electrical conductivity, and its material is not limited, including ferromagnetic metals such as iron (Fe), cobalt (Co), nickel (Ni), and magnetic alloys.
为了便于连通外电路,所述的铁磁性导电层还可以覆盖针尖本体除尖端部位的其他部位。作为一种实现方式,工作状态时,铁磁性导电层与样品接触,样品接地,外电路连通该铁磁性导电层,即,外电路、铁磁性导电层连、样品以及大地构成电回路,用于测量样品的电信号。In order to facilitate the connection with the external circuit, the ferromagnetic conductive layer can also cover other parts of the needle tip body except the tip. As an implementation method, in the working state, the ferromagnetic conductive layer is in contact with the sample, the sample is grounded, and the external circuit is connected to the ferromagnetic conductive layer, that is, the external circuit, the ferromagnetic conductive layer, the sample and the ground form an electrical circuit for measuring the electrical signal of the sample.
本发明还提供了一种制备上述磁-电-热多参量耦合显微镜探针的方法,包括以下步骤:The present invention also provides a method for preparing the above-mentioned magnetic-electric-thermal multi-parameter coupling microscope probe, comprising the following steps:
步骤1:利用磁控溅射技术在针尖本体的区域A表面沉积材料A,在区域B表面沉积材料B,得到热电偶层;Step 1: using magnetron sputtering technology to deposit material A on the surface of area A of the needle tip body and material B on the surface of area B to obtain a thermocouple layer;
步骤2:利用磁控溅射技术或者脉冲激光技术在热电偶层的表面,以及针尖本体表面的除区域A与区域B之外的剩余区域表面沉积导热绝缘层;Step 2: Depositing a thermally conductive insulating layer on the surface of the thermocouple layer and the remaining area of the tip body except area A and area B by using magnetron sputtering technology or pulsed laser technology;
步骤3:利用磁控溅射技术在导热绝缘层表面沉积磁性导电层。Step 3: Deposit a magnetic conductive layer on the surface of the thermal conductive insulating layer using magnetron sputtering technology.
利用本发明的磁-电-热多参量耦合显微镜探针能够探测样品的形貌、磁信号、电信号以及热信号,其探测方法如下:The magnetic-electric-thermal multi-parameter coupling microscope probe of the present invention can detect the morphology, magnetic signal, electrical signal and thermal signal of the sample, and the detection method is as follows:
(1)样品的表面形貌与磁信号探测(1) Surface morphology and magnetic signal detection of samples
采用接触模式。Use contact mode.
即,探针驱动单元驱动探针,使其针尖本体的尖端位移至样品表面某初始位置,探针自该初始位置对样品表面进行定向扫描,扫描过程中控制针尖本体的尖端与样品表面点接触或振动点接触,采集针尖本体的位移信号或振动信号,经分析得到样品的形貌信号;That is, the probe driving unit drives the probe so that the tip of the needle tip body is displaced to a certain initial position on the sample surface, and the probe performs a direction scan on the sample surface from the initial position. During the scanning process, the tip of the needle tip body is controlled to be in point contact or vibration point contact with the sample surface, and the displacement signal or vibration signal of the needle tip body is collected, and the topography signal of the sample is obtained through analysis;
探针返回至所述的初始位置并且向上抬高一定距离,然后按照所述的定向对样品表面进行扫描,扫描过程中控制针尖本体的尖端沿所述的形貌图像进行位移或者振动,采集针尖本体的位移信号或振动信号,经分析得到样品的磁信号图像。The probe returns to the initial position and is lifted up a certain distance, and then scans the sample surface according to the orientation. During the scanning process, the tip of the needle tip body is controlled to displace or vibrate along the topographic image, and the displacement signal or vibration signal of the needle tip body is collected, and the magnetic signal image of the sample is obtained after analysis.
(2)样品的热信号探测(2) Thermal signal detection of samples
外部电路与探针的热电偶层形成闭合的热电回路,连接点温度变化时,热电偶回路内产生电势差变化。当针尖本体的尖端与样品表面相接触时,通过尖端的各覆盖层针尖本体与样品进行热交换,使热学回路中的电势差发生变化,经采集、分析,得到样品的热信号图像。The external circuit and the thermocouple layer of the probe form a closed thermoelectric loop. When the temperature of the connection point changes, the potential difference changes in the thermocouple loop. When the tip of the needle body contacts the sample surface, the tip body and the sample exchange heat through the covering layers of the tip, causing the potential difference in the thermal loop to change. After collection and analysis, the thermal signal image of the sample is obtained.
(3)样品的电信号探测(3) Detection of electrical signals of samples
针尖本体的尖端与样品表面相接触,外部电路、探针的磁性导电层,以及样品形成闭合的电学回路,即,电信号流入探针的磁性导电层以及样品,形成电压信号,经采集,分析,得到样品的电信号图像。The tip of the needle body contacts the sample surface, and the external circuit, the magnetic conductive layer of the probe, and the sample form a closed electrical circuit, that is, the electrical signal flows into the magnetic conductive layer of the probe and the sample to form a voltage signal, which is collected and analyzed to obtain an electrical signal image of the sample.
与现有技术相比,本发明采用热电偶结构,热电偶层与外电源独立构成热电回路,待测样品、磁性导电层与外电源独立构成电回路,并且导热绝缘层位于热电阻层与磁性导电层之间,有效阻隔了热电回路与电回路之间的信号干扰,能够对磁电功能材料的磁信号、电信号和热信号原位微区探测,包括在微米、纳米尺度下的磁信号、电信号和热信号的原位微区探测。Compared with the prior art, the present invention adopts a thermocouple structure, in which the thermocouple layer and the external power source independently constitute a thermoelectric circuit, the sample to be tested, the magnetic conductive layer and the external power source independently constitute an electric circuit, and the thermal conductive insulation layer is located between the thermal resistor layer and the magnetic conductive layer, which effectively blocks the signal interference between the thermoelectric circuit and the electric circuit, and can perform in-situ micro-area detection of magnetic signals, electric signals and thermal signals of magnetoelectric functional materials, including in-situ micro-area detection of magnetic signals, electric signals and thermal signals at micron and nanometer scales.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例1中的磁-电-热多参量耦合显微镜探针的探针臂与针尖本体的正面结构示意图;1 is a schematic diagram of the front structure of the probe arm and the needle tip body of the magnetic-electric-thermal multi-parameter coupling microscope probe in Example 1 of the present invention;
图2是图1的侧面结构示意图;FIG2 is a schematic diagram of the side structure of FIG1;
图3是图1所示针尖本体表面的热电偶层放大示意图;FIG3 is an enlarged schematic diagram of the thermocouple layer on the surface of the needle tip body shown in FIG1 ;
图4是图3所示热电偶层与部分外电路的结构示意图;FIG4 is a schematic diagram of the structure of the thermocouple layer and part of the external circuit shown in FIG3 ;
图5是图4所示探针表面覆盖导热绝缘层的结构示意图;FIG5 is a schematic diagram of the structure of the probe surface covered with a thermally conductive insulating layer as shown in FIG4 ;
图6和7是图5所示探针表面覆盖磁性导电层的结构示意图。6 and 7 are schematic diagrams of the structure in which the surface of the probe shown in FIG. 5 is covered with a magnetic conductive layer.
其中:1探针臂、2针尖本体、3针尖本体的一个侧面、4针尖本体的另一个侧面、5针尖本体的正面、6针尖本体的背面、7导热绝缘层、8磁性导电层。Among them: 1 probe arm, 2 needle tip body, 3 one side of the needle tip body, 4 another side of the needle tip body, 5 the front side of the needle tip body, 6 the back side of the needle tip body, 7 thermal insulation layer, 8 magnetic conductive layer.
具体实施方式Detailed ways
以下结合实施例对本发明作进一步详细描述,需要指出的是以下所述实施例旨在便于对本发明的理解,不以任何方式限制本发明。The present invention is further described in detail below in conjunction with examples. It should be pointed out that the following examples are intended to facilitate the understanding of the present invention and are not intended to limit the present invention in any way.
实施例1:Embodiment 1:
本实施例中,选用市售的无涂层Si探针,其结构如图1所示,包括探针臂1以及与探针臂1相连的针尖本体2。如图1、2所示,针尖本体2呈四面体棱锥结构,由正面5,与正面相对的背面6,以及两个侧面3与4构成。In this embodiment, a commercially available uncoated Si probe is selected, and its structure is shown in Figure 1, including a probe arm 1 and a needle tip body 2 connected to the probe arm 1. As shown in Figures 1 and 2, the needle tip body 2 is a tetrahedral pyramid structure, consisting of a front side 5, a back side 6 opposite to the front side, and two side surfaces 3 and 4.
如图3所示,针尖本体的表面分为区域A、区域B,以及除了区域A与区域B之外的区域为剩余区域。图3中针尖本体的表面中线条填充的区域为区域A(即,针尖本体的一个侧面3),矩形填充的区域为区域B(即,针尖本体的另一个侧面4),区域A与区域B无重叠区域并且仅在针尖本体的尖端部位相连接。As shown in FIG3 , the surface of the needle tip body is divided into region A, region B, and the region other than region A and region B is the remaining region. In FIG3 , the region filled with lines on the surface of the needle tip body is region A (i.e., one side surface 3 of the needle tip body), and the region filled with rectangles is region B (i.e., the other side surface 4 of the needle tip body). Region A and region B have no overlapping area and are connected only at the tip of the needle tip body.
如图4所示,探针臂表面包括区域A’与区域B’,图4中探针臂表面线条填充的区域为A’,矩形填充的区域为B’,区域A’与区域B’无重叠区域并且不相连接,区域A’与区域A相连接,区域B’与区域B相连接。As shown in Figure 4, the probe arm surface includes area A’ and area B’. The area filled with lines on the probe arm surface in Figure 4 is A’, and the area filled with rectangles is B’. Area A’ and area B’ have no overlapping area and are not connected. Area A’ is connected to area A, and area B’ is connected to area B.
在该探针表面制备如下覆盖层。The following covering layer was prepared on the probe surface.
(1)用50000Hz的超声波清洗该无涂层Si探针,清洗时间为5min。(1) The uncoated Si probe was cleaned with 50,000 Hz ultrasonic wave for 5 min.
(2)如图3所示,设计特定形状和尺寸的掩膜板,利用磁控溅射技术或者脉冲激光技术,在区域A的表面蒸镀铂,在区域B的表面蒸镀金,形成热电偶层。并且,如图4所示,在区域A’的表面蒸镀铂,在区域B’的表面蒸镀金,构成外电路的一部分。热电偶层与外电路构成热电回路,用于测量样品的热信号。(2) As shown in FIG3 , a mask plate of a specific shape and size is designed, and platinum is evaporated on the surface of region A and gold is evaporated on the surface of region B by using magnetron sputtering technology or pulsed laser technology to form a thermocouple layer. Furthermore, as shown in FIG4 , platinum is evaporated on the surface of region A’ and gold is evaporated on the surface of region B’ to form a part of the external circuit. The thermocouple layer and the external circuit form a thermoelectric loop for measuring the thermal signal of the sample.
(3)如图5所示,利用磁控溅射技术或者脉冲激光技术在热电偶层的表面,以及针尖本体表面的除区域A与区域B之外的剩余区域(即,针尖本体的正面5与背面6)的表面沉积二氧化硅,得到导热绝缘层7,如图5中的横向线条填充所示;(3) As shown in FIG5 , silicon dioxide is deposited on the surface of the thermocouple layer and the surface of the remaining area of the needle tip body (i.e., the front side 5 and the back side 6 of the needle tip body) except area A and area B by using magnetron sputtering technology or pulsed laser technology to obtain a thermally conductive insulating layer 7, as shown by the horizontal line filling in FIG5 ;
(4)如图6所示,利用磁控溅射技术或者脉冲激光技术在热电偶层的表面,在导热绝缘层表面沉积铁基磁性导电层8,如图6中网格线条填充所示。该铁磁性导电层连通外电路,工作状态时,该铁磁性导电层与样品接触,样品接地,外电路连通该铁磁性导电层,即,外电路、铁磁性导电层连、样品以及大地构成电回路,用于测量样品的电信号。(4) As shown in FIG6 , an iron-based magnetic conductive layer 8 is deposited on the surface of the thermocouple layer and the surface of the thermal conductive insulating layer by magnetron sputtering technology or pulsed laser technology, as shown by the grid lines filled in FIG6 . The ferromagnetic conductive layer is connected to an external circuit. In the working state, the ferromagnetic conductive layer is in contact with the sample, the sample is grounded, and the external circuit is connected to the ferromagnetic conductive layer, that is, the external circuit, the ferromagnetic conductive layer, the sample and the ground form an electrical circuit for measuring the electrical signal of the sample.
当采用上述制得的探针探测样品的形貌与磁信号、热信号以及电信号时,其探测方法如下:When the probe prepared above is used to detect the morphology and magnetic signal, thermal signal and electrical signal of the sample, the detection method is as follows:
(1)用于探测样品的表面形貌与磁信号(1) Used to detect the surface morphology and magnetic signals of samples
探针驱动单元驱动探针,使其针尖本体的尖端位移至样品表面某初始位置,探针自该初始位置沿横向对样品表面进行定向扫描,扫描过程中控制针尖本体的尖端与样品表面点接触或振动点接触,采集针尖本体的纵向位移信号或振动信号,经分析得到样品的形貌信号;The probe driving unit drives the probe so that the tip of the needle tip body is displaced to a certain initial position on the sample surface. The probe performs a directional scan on the sample surface in a transverse direction from the initial position. During the scanning process, the tip of the needle tip body is controlled to be in point contact or vibration point contact with the sample surface, and a longitudinal displacement signal or vibration signal of the needle tip body is collected, and a topographic signal of the sample is obtained through analysis.
探针返回至所述的初始位置并且向上抬高一定距离,然后按照所述的横向定向对样品表面进行扫描,扫描过程中控制针尖本体的尖端沿所述的形貌图像进行纵向位移或者振动,采集针尖本体的纵向位移信号或振动信号,经分析得到样品的磁信号图像;The probe returns to the initial position and is lifted upward for a certain distance, and then scans the sample surface according to the transverse orientation. During the scanning process, the tip of the needle tip body is controlled to longitudinally displace or vibrate along the topographic image, and the longitudinal displacement signal or vibration signal of the needle tip body is collected, and the magnetic signal image of the sample is obtained through analysis;
(2)用于探测样品的热信号(2) Used to detect the thermal signal of the sample
外部电路与探针的热电偶层形成闭合的热学回路,针尖尖端的连接点温度变化时,热电偶回路内产生电势差变化;探针驱动单元驱动探针位移至样品表面某位置,使针尖本体的尖端与样品表面相接触,针尖本体通过各覆盖层与样品进行热交换,使热学回路中的电势信号发生变化,经采集、分析,得到样品的热信号图像;The external circuit and the thermocouple layer of the probe form a closed thermal loop. When the temperature of the connection point at the tip of the needle changes, the potential difference changes in the thermocouple loop. The probe driving unit drives the probe to move to a certain position on the sample surface, so that the tip of the needle body contacts the sample surface. The needle body exchanges heat with the sample through each covering layer, so that the potential signal in the thermal loop changes. After collection and analysis, a thermal signal image of the sample is obtained.
(3)用于探测样品的电信号(3) Used to detect the electrical signal of the sample
探针驱动单元驱动探针位移至样品表面某位置,使针尖本体的尖端与样品表面相接触,外部电路、探针的磁性导电层,以及样品形成闭合的电学回路,即,电信号流入探针的磁性导电层以及样品,形成电压信号,经采集,分析,得到样品的电信号图像。The probe driving unit drives the probe to move to a certain position on the sample surface, so that the tip of the needle body contacts the sample surface, and the external circuit, the magnetic conductive layer of the probe, and the sample form a closed electrical circuit, that is, the electrical signal flows into the magnetic conductive layer of the probe and the sample to form a voltage signal. After collection and analysis, an electrical signal image of the sample is obtained.
实施例2:Embodiment 2:
本实施例中,探针结构与实施例1中的Si探针结构基本相同,唯一不同的是所述的步骤(4)如下:In this embodiment, the probe structure is substantially the same as the Si probe structure in Embodiment 1, the only difference being that the step (4) is as follows:
如图7所示,利用磁控溅射技术或者脉冲激光技术在热电偶层的表面,在导热绝缘层表面沉积铁基磁性导电层8,如图7中网格线条填充所示。即,与图6相比,图7中的铁基磁性导电层8包覆探针针尖的整个正面并且包覆探针本体前端,该结构便于磁性导电层连通外电路。工作状态时,该铁磁性导电层与样品接触,样品接地,外电路连通该铁磁性导电层,即,外电路、铁磁性导电层连、样品以及大地构成电回路,用于测量样品的电信号。As shown in FIG7 , an iron-based magnetic conductive layer 8 is deposited on the surface of the thermocouple layer and the surface of the thermally conductive insulating layer by magnetron sputtering technology or pulsed laser technology, as shown by the grid lines filled in FIG7 . That is, compared with FIG6 , the iron-based magnetic conductive layer 8 in FIG7 covers the entire front surface of the probe needle tip and the front end of the probe body, and this structure facilitates the magnetic conductive layer to connect to the external circuit. In the working state, the ferromagnetic conductive layer contacts the sample, the sample is grounded, and the external circuit is connected to the ferromagnetic conductive layer, that is, the external circuit, the ferromagnetic conductive layer, the sample and the ground form an electrical circuit for measuring the electrical signal of the sample.
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。The embodiments described above provide a detailed description of the technical solutions of the present invention. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, supplements or similar substitutions made within the scope of the principles of the present invention should be included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710391075.0A CN107064565B (en) | 2017-05-27 | 2017-05-27 | Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710391075.0A CN107064565B (en) | 2017-05-27 | 2017-05-27 | Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107064565A CN107064565A (en) | 2017-08-18 |
CN107064565B true CN107064565B (en) | 2024-04-23 |
Family
ID=59616209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710391075.0A Active CN107064565B (en) | 2017-05-27 | 2017-05-27 | Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107064565B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108658037B (en) * | 2018-04-27 | 2019-11-22 | 国家纳米科学中心 | A kind of graphene functionalized nano needle tip and preparation method thereof |
CN110146726B (en) * | 2019-05-22 | 2022-06-14 | 季华实验室 | Method for controlling probe temperature |
CN110333372A (en) * | 2019-07-18 | 2019-10-15 | 中国科学院宁波材料技术与工程研究所 | A kind of magnetic scanning microscope probe and preparation method thereof |
CN113504394B (en) * | 2021-07-12 | 2024-01-23 | 中国科学院半导体研究所 | Wafer level preparation method of coating probe and coating probe |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5224775A (en) * | 1992-03-02 | 1993-07-06 | Ta Instruments, Inc. | Method and apparatus for modulated differential analysis |
US5772325A (en) * | 1995-11-20 | 1998-06-30 | Motorola, Inc. | Apparatus for providing surface images and method for making the apparatus |
JP2005083853A (en) * | 2003-09-08 | 2005-03-31 | Jeol Ltd | Scanning probe microscope |
JP2006266794A (en) * | 2005-03-23 | 2006-10-05 | Osaka Prefecture | Magnetic force microscope probe |
CN1937094A (en) * | 2005-09-22 | 2007-03-28 | 清华大学 | Scanning thermal microscope probe |
KR20070056863A (en) * | 2005-11-30 | 2007-06-04 | 고려대학교 산학협력단 | Local thermophysical measuring device and measuring method by spot heating point measurement |
KR20090115427A (en) * | 2008-05-02 | 2009-11-05 | 고려대학교 산학협력단 | Thermoelectric probe of scanning probe thermal microscope and its manufacturing method |
CN104808017A (en) * | 2014-01-26 | 2015-07-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | Probe for near-field optical microscopes and preparation method thereof |
CN105510638A (en) * | 2014-09-24 | 2016-04-20 | 中国科学院宁波材料技术与工程研究所 | Probe for scanning probe microscope, preparation method of the probe, and detection method of the probe |
CN106597026A (en) * | 2016-12-09 | 2017-04-26 | 中国科学院宁波材料技术与工程研究所 | Magneto-electro-thermo multi-parameter coupling microscope probe, and preparation method and detection method thereof |
CN206848304U (en) * | 2017-05-27 | 2018-01-05 | 中国科学院宁波材料技术与工程研究所 | The hot many reference amounts coupling microscope probe of magnetoelectricity |
-
2017
- 2017-05-27 CN CN201710391075.0A patent/CN107064565B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5224775A (en) * | 1992-03-02 | 1993-07-06 | Ta Instruments, Inc. | Method and apparatus for modulated differential analysis |
US5224775B1 (en) * | 1992-03-02 | 1994-07-19 | Ta Instr Inc | Method and apparatus for modulated differential analysis |
US5224775C2 (en) * | 1992-03-02 | 2002-04-23 | Ta Instr Inc | Method and apparatus for modulated differential analysis |
US5772325A (en) * | 1995-11-20 | 1998-06-30 | Motorola, Inc. | Apparatus for providing surface images and method for making the apparatus |
JP2005083853A (en) * | 2003-09-08 | 2005-03-31 | Jeol Ltd | Scanning probe microscope |
JP2006266794A (en) * | 2005-03-23 | 2006-10-05 | Osaka Prefecture | Magnetic force microscope probe |
CN1937094A (en) * | 2005-09-22 | 2007-03-28 | 清华大学 | Scanning thermal microscope probe |
KR20070056863A (en) * | 2005-11-30 | 2007-06-04 | 고려대학교 산학협력단 | Local thermophysical measuring device and measuring method by spot heating point measurement |
KR20090115427A (en) * | 2008-05-02 | 2009-11-05 | 고려대학교 산학협력단 | Thermoelectric probe of scanning probe thermal microscope and its manufacturing method |
CN104808017A (en) * | 2014-01-26 | 2015-07-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | Probe for near-field optical microscopes and preparation method thereof |
CN105510638A (en) * | 2014-09-24 | 2016-04-20 | 中国科学院宁波材料技术与工程研究所 | Probe for scanning probe microscope, preparation method of the probe, and detection method of the probe |
CN106597026A (en) * | 2016-12-09 | 2017-04-26 | 中国科学院宁波材料技术与工程研究所 | Magneto-electro-thermo multi-parameter coupling microscope probe, and preparation method and detection method thereof |
CN206848304U (en) * | 2017-05-27 | 2018-01-05 | 中国科学院宁波材料技术与工程研究所 | The hot many reference amounts coupling microscope probe of magnetoelectricity |
Non-Patent Citations (3)
Title |
---|
Novel probes for scanning probe microscopy;E. Oesterschulze;《Applied Physics A》;19981231;第66卷;第S3-S9页 * |
原子力显微镜探针批量制备工艺分析;李加东;苗斌;张轲;吴东岷;;微纳电子技术;20160215(02);第119-123页 * |
金属基复合材料界面导热性能的扫描热探针测试;吉元等;《材料工程》;20001231(第12期);第29-31、41页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107064565A (en) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107064565B (en) | Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof | |
Collomb et al. | Frontiers of graphene-based Hall-effect sensors | |
CN106597026B (en) | Magnetic-electric-thermal multi-parameter coupling microscope probe, its preparation method and detection method | |
Petersen et al. | Scanning microscopic four-point conductivity probes | |
Li et al. | Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems | |
CN105510636B (en) | A kind of nano magnetic-electric-thermal many reference amounts coupling in-situ detecting system and its detection method | |
CN105510638B (en) | Probe, preparation method and detection method in a kind of scanning probe microscopy | |
CN206848304U (en) | The hot many reference amounts coupling microscope probe of magnetoelectricity | |
CN105510639B (en) | Probe, preparation method and detection method in a kind of scanning probe microscopy | |
Bian et al. | Mechanical-induced polarization switching in relaxor ferroelectric single crystals | |
CN105510642B (en) | Nano magnetic heating in-situ detector and detection method based on scanning probe microscopy | |
Pan et al. | Improving spatial resolution of scanning SQUID microscopy with an on-chip design | |
Sharma et al. | Specific conductivity of a ferroelectric domain wall | |
Rani et al. | Room temperature magnetoelectric properties of [Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3]/Ni0. 8Zn0. 2Fe2O4 bilayer thin films deposited by laser ablation | |
CN203644726U (en) | A transmission electron microscope sample stage for in-situ measurement of nano-devices | |
Orlov et al. | Shape memory effect nanotools for nano-creation: Examples of nanowire-based devices with charge density waves | |
Zhang et al. | Perspective: nanoscale electric sensing and imaging based on quantum sensors | |
Lu et al. | Characterization of local electric properties of oxide materials using scanning probe microscopy techniques: A review | |
CN105510637B (en) | Micro-/ nano thermoelectricity in-situ detector based on scanning probe microscopy and detection method | |
CN107782918A (en) | A kind of magnetics atomic force microscope probe using magnetic nanometer | |
CN107782919A (en) | A kind of electricity atomic force microscope probe using conducting nanowires | |
Tang et al. | An interchangeable scanning Hall probe/scanning SQUID microscope | |
CN110646640B (en) | Material micro/nano scale magnetocaloric signal detection method based on scanning probe microscope | |
Liu et al. | Nanorobotic manipulation inside scanning electron microscope for the electrical and mechanical characterization of ZnO nanowires | |
Zhang et al. | Spatial modeling for refining and predicting surface potential mapping with enhanced resolution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |