CN106565647A - Method for preparing 2, 5-furandicarboxylic acid by conducting catalytic oxidation on 5-hydroxymethylfurfural - Google Patents
Method for preparing 2, 5-furandicarboxylic acid by conducting catalytic oxidation on 5-hydroxymethylfurfural Download PDFInfo
- Publication number
- CN106565647A CN106565647A CN201610924322.4A CN201610924322A CN106565647A CN 106565647 A CN106565647 A CN 106565647A CN 201610924322 A CN201610924322 A CN 201610924322A CN 106565647 A CN106565647 A CN 106565647A
- Authority
- CN
- China
- Prior art keywords
- hmf
- cerium
- fdca
- composite oxide
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 title claims abstract description 63
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 title claims abstract description 60
- CHTHALBTIRVDBM-UHFFFAOYSA-N furan-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000003647 oxidation Effects 0.000 title claims description 13
- 238000007254 oxidation reaction Methods 0.000 title claims description 13
- 230000003197 catalytic effect Effects 0.000 title claims description 5
- 239000003054 catalyst Substances 0.000 claims abstract description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- 239000002131 composite material Substances 0.000 claims abstract description 33
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 20
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 15
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000007800 oxidant agent Substances 0.000 claims abstract description 8
- 239000003570 air Substances 0.000 claims abstract 2
- 238000006243 chemical reaction Methods 0.000 claims description 68
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 20
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 20
- 239000007864 aqueous solution Substances 0.000 claims description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 9
- 238000000975 co-precipitation Methods 0.000 claims description 9
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 238000003980 solgel method Methods 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000011736 potassium bicarbonate Substances 0.000 claims description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 3
- 235000011181 potassium carbonates Nutrition 0.000 claims description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 2
- 239000000920 calcium hydroxide Substances 0.000 claims description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 239000000706 filtrate Substances 0.000 claims description 2
- 150000007529 inorganic bases Chemical class 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 150000007530 organic bases Chemical class 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 2
- 235000017550 sodium carbonate Nutrition 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 abstract description 6
- 239000002028 Biomass Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 2
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 229910001220 stainless steel Inorganic materials 0.000 description 16
- 239000010935 stainless steel Substances 0.000 description 16
- 238000004128 high performance liquid chromatography Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 238000003756 stirring Methods 0.000 description 11
- GSVIBLVMWGSPRZ-UHFFFAOYSA-N cerium iron Chemical compound [Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Ce].[Ce] GSVIBLVMWGSPRZ-UHFFFAOYSA-N 0.000 description 6
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 6
- YOSLGHBNHHKHST-UHFFFAOYSA-N cerium manganese Chemical compound [Mn].[Mn].[Mn].[Mn].[Mn].[Ce] YOSLGHBNHHKHST-UHFFFAOYSA-N 0.000 description 5
- -1 furan compound Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- GACQBOJYMXJNSQ-UHFFFAOYSA-N [Ce].[Cr] Chemical compound [Ce].[Cr] GACQBOJYMXJNSQ-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- 239000002815 homogeneous catalyst Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- PYYOVHDVHBAKAP-UHFFFAOYSA-N 4,5-dichlorofuran-2,3-dicarboxylic acid Chemical compound ClC1=C(C(=C(O1)C(=O)O)C(=O)O)Cl PYYOVHDVHBAKAP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- NEGBOTVLELAPNE-UHFFFAOYSA-N [Ti].[Ce] Chemical compound [Ti].[Ce] NEGBOTVLELAPNE-UHFFFAOYSA-N 0.000 description 1
- SKAXWKNRKROCKK-UHFFFAOYSA-N [V].[Ce] Chemical compound [V].[Ce] SKAXWKNRKROCKK-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- KFVLFWWLSIOANK-UHFFFAOYSA-N cerium cobalt Chemical compound [Co].[Co].[Co].[Co].[Co].[Ce] KFVLFWWLSIOANK-UHFFFAOYSA-N 0.000 description 1
- SKEYZPJKRDZMJG-UHFFFAOYSA-N cerium copper Chemical compound [Cu].[Ce] SKEYZPJKRDZMJG-UHFFFAOYSA-N 0.000 description 1
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229920006238 degradable plastic Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- FXJUUMGKLWHCNZ-UHFFFAOYSA-N dimethyl furan-2,3-dicarboxylate Chemical compound COC(=O)C=1C=COC=1C(=O)OC FXJUUMGKLWHCNZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010812 external standard method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N tert-butyl alcohol Substances CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/56—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/68—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/26—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及一种催化氧化生物质衍生物——5‑羟甲基糠醛(HMF)制备2,5‑呋喃二甲酸(FDCA)的方法,属于利用生物质及衍生物合成可再生化学品制备领域。该方法包括:利用非贵金属铈基复合氧化物为催化剂,以氧气或空气为氧化剂,有效催化氧化5‑羟甲基糠醛合成2,5‑呋喃二甲酸。该方法操作简单,条件温和,2,5‑呋喃二甲酸的收率最高可达到86.7%,并且催化剂易于分离和回收,重复使用性好,具有良好的工业化应用前景。The invention relates to a method for preparing 2,5-furandicarboxylic acid (FDCA) by catalytically oxidizing a biomass derivative——5-hydroxymethylfurfural (HMF), and belongs to the field of synthesizing renewable chemicals from biomass and derivatives . The method comprises: using non-noble metal cerium-based composite oxide as a catalyst and oxygen or air as an oxidant to effectively catalyze and oxidize 5-hydroxymethylfurfural to synthesize 2,5-furandicarboxylic acid. The method is simple in operation, mild in conditions, and the yield of 2,5-furandicarboxylic acid can reach up to 86.7%. The catalyst is easy to separate and recover, has good reusability, and has good industrial application prospects.
Description
技术领域technical field
本发明涉及一种制备2, 5-呋喃二甲酸(FDCA)的方法,属于利用生物质及衍生物合成可再生化学品制备领域。更具体的说是涉及一种由5-羟甲基糠醛氧化制备2, 5-呋喃二甲酸的方法。The invention relates to a method for preparing 2, 5-furandicarboxylic acid (FDCA), which belongs to the field of synthesis of renewable chemicals from biomass and derivatives. More specifically, it relates to a method for preparing 2,5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural.
背景技术Background technique
2,5-呋喃二甲酸(FDCA)作为可由生物质制备得到的呋喃类化合物,2004年被美国能源部确定为12个“平台化合物”之一。其具有呋喃环和两个羧基,在聚酯工业中有望替代石油基单体对苯二甲酸,合成绿色可降解塑料;亦可替代邻苯二甲酸,合成绿色无毒塑化剂。将生物质的利用引入到聚酯工业中,可以降低聚酯工业对石油能源的依赖,减少对环境的污染。此外,从2, 5-呋喃二甲酸出发,还可以合成如琥珀酸、二氯呋喃二甲酸和呋喃二甲酸二甲酯等具有杀菌、麻醉功能的衍生物。2,5-Furandicarboxylic acid (FDCA), as a furan compound that can be prepared from biomass, was identified as one of the 12 "platform compounds" by the US Department of Energy in 2004. It has a furan ring and two carboxyl groups, and is expected to replace petroleum-based monomer terephthalic acid in the polyester industry to synthesize green degradable plastics; it can also replace phthalic acid to synthesize green non-toxic plasticizers. Introducing the utilization of biomass into the polyester industry can reduce the dependence of the polyester industry on petroleum energy and reduce environmental pollution. In addition, starting from 2, 5-furandicarboxylic acid, derivatives with bactericidal and anesthetic functions such as succinic acid, dichlorofurandicarboxylic acid and dimethyl furandicarboxylate can also be synthesized.
目前2, 5-呋喃二甲酸主要由5-羟甲基糠醛(HMF)氧化制备,一般需要加入催化剂,而催化剂分为多相催化剂和均相催化剂。均相催化剂主要为Co,Mn等过渡金属盐,例如Grushin课题组采用钴盐均相催化氧化HMF,HMF初始浓度约为8%,在7MPa空气,125 oC下,Co/Mn/Br/Zr 催化反应3小时,得到FDCA产率为60%(W. Partenheimer, V. V. Grushin,Adv. Synth. Catal., 2001, 343:102-111)。日本佳能株式会社在其专利中(专利号:201010516208.0),在溴和金属催化剂的存在下,在有机酸溶剂中使HMF与氧化剂反应,制备了高纯度的FDCA。这些均相催化反应体系存在产率低,金属盐分离难、溴环境污染严重等缺点。相比之下,多相催化法具有选择性高,环保、产物易于分离等优势。对于HMF氧化,主要有贵金属催化剂和非贵金属催化剂两大类。贵金属催化剂包括Pt,Au,Pd等,例如苗真真等人以CeBi复合氧化物负载的贵金属Au作为催化剂催化氧化HMF,在室温下,可以实现HMF的高效转化(Zhenzhen Miao, Yibo Zhang, Catal. Sci. Technol., 2015, 5:1314-1322)。韩学旺等以碳-氧化镁作为碱性载体,负载贵金属Pt,在无碱条件下,取得优异效果,FDCA收率可达到95%(Xuewang Han, Liang Geng, Green Chemistry, 2015,14: 4-17)。马红等在其专利(专利号: 201210390203.7)中利用贵金属(Au,Ag,Pd,Pt,Ru)负载到碱性载体上,催化氧化HMF,选择性可以达到99%。林鹿等在其专利中(专利号:201010228459)用Pt、Au、Pd负载的C或CuO-Ag2O作为催化剂在碱性溶液催化氧化HMF制备FDCA,得到较高的FDCA 收率。这些贵金属催化剂虽然催化选择性好,稳定性高,但是贵金属价格昂贵,不适合工业化大规模生产。而现有的非贵金属多相催化剂在氧气或空气条件下,普遍存在选择性低,稳定性差的问题,例如张泽惠课题组用纳米的Fe3O4-CoOx催化氧化HMF 制备FDCA,用过氧化叔丁醇为氧化剂,FDCA收率可以达到68.6%,但如果用氧气做氧化剂,FDCA收率仅4.2%(Shuguo Wang,Zehui Zhang, ACS Sustainable Chem. Eng., 2015, 3: 406-412)。用氯甲基树脂负载的卟啉钴催化剂,同样可以在过氧化叔丁醇为氧化剂条件下,得到较高的FDCA收率,但以氧气为氧化剂,FDCA收率很低(Langchang Gao, Kejian Deng, Zehui Zhang, ChemicalEngineering Journal, 2015, 270: 444-449)。因此,迫切需要寻找一种稳定高效的非贵金属催化剂用于HMF的氧气或空气氧化制备FDCA。At present, 2, 5-furandicarboxylic acid is mainly prepared by oxidation of 5-hydroxymethylfurfural (HMF), which generally requires the addition of catalysts, and catalysts are divided into heterogeneous catalysts and homogeneous catalysts. Homogeneous catalysts are mainly transition metal salts such as Co and Mn. For example, Grushin ’s research group used cobalt salts to catalyze the oxidation of HMF. The initial concentration of HMF is about 8%. The catalytic reaction was carried out for 3 hours, and the yield of FDCA was 60% (W. Partenheimer, VV Grushin, Adv. Synth. Catal., 2001, 343:102-111). In its patent (patent number: 201010516208.0), Canon Corporation of Japan prepared high-purity FDCA by reacting HMF with an oxidizing agent in an organic acid solvent in the presence of bromine and metal catalysts. These homogeneous catalytic reaction systems have disadvantages such as low yield, difficult separation of metal salts, and serious environmental pollution of bromine. In contrast, the heterogeneous catalytic method has the advantages of high selectivity, environmental protection, and easy separation of products. For HMF oxidation, there are mainly two categories of noble metal catalysts and non-noble metal catalysts. Noble metal catalysts include Pt, Au, Pd, etc. For example, Miao Zhenzhen et al. used the noble metal Au supported by CeBi composite oxide as a catalyst to catalyze the oxidation of HMF. At room temperature, the efficient conversion of HMF can be achieved (Zhenzhen Miao, Yibo Zhang, Catal. Sci. Technol., 2015, 5:1314-1322). Han Xuewang et al. used carbon-magnesia as the basic carrier to support the precious metal Pt, and achieved excellent results under alkali-free conditions, and the FDCA yield could reach 95% (Xuewang Han, Liang Geng, Green Chemistry, 2015,14: 4-17 ). In their patent (Patent No.: 201210390203.7), Ma Hong et al. use noble metals (Au, Ag, Pd, Pt, Ru) to load on the basic carrier to catalyze the oxidation of HMF, and the selectivity can reach 99%. In their patent (patent number: 201010228459), Lin Lu et al. used Pt, Au, Pd supported C or CuO-Ag 2 O as a catalyst to catalyze the oxidation of HMF in alkaline solution to prepare FDCA, and obtained a higher yield of FDCA. Although these noble metal catalysts have good catalytic selectivity and high stability, the noble metals are expensive and not suitable for large-scale industrial production. However, the existing non - noble metal heterogeneous catalysts generally have the problems of low selectivity and poor stability under the condition of oxygen or air. With butanol as the oxidant, the FDCA yield can reach 68.6%, but if oxygen is used as the oxidant, the FDCA yield is only 4.2% (Shuguo Wang, Zehui Zhang, ACS Sustainable Chem. Eng., 2015, 3: 406-412). The porphyrin cobalt catalyst supported by chloromethyl resin can also obtain higher FDCA yield under the condition of tert-butanol peroxide as oxidant, but the FDCA yield is very low when oxygen is used as oxidant (Langchang Gao, Kejian Deng , Zehui Zhang, Chemical Engineering Journal, 2015, 270: 444-449). Therefore, it is urgent to find a stable and efficient non-precious metal catalyst for the oxidation of HMF to FDCA by oxygen or air.
与已有报道相比,本发明以非贵金属铈基复合氧化物作为催化剂,具有以下优点:(1)反应条件温和,HMF的转化率高,FDCA收率可达到86.7%。(2)使用非贵金属作为活性组分,催化剂成本低。(3)本发明制备并使用的催化剂重复使用性好。本发明提供的2, 5-呋喃二甲酸合成方法具有创新性和较强的推广应用价值。Compared with the existing reports, the present invention uses non-noble metal cerium-based composite oxide as the catalyst, which has the following advantages: (1) The reaction conditions are mild, the conversion rate of HMF is high, and the yield of FDCA can reach 86.7%. (2) Using non-precious metals as active components, the catalyst cost is low. (3) The catalyst prepared and used in the present invention has good reusability. The method for synthesizing 2,5-furandicarboxylic acid provided by the present invention is innovative and has strong application value.
发明内容Contents of the invention
本发明针对现有技术的缺点,提出一种反应条件温和,低成本高产率的FDCA制备方法。Aiming at the shortcomings of the prior art, the present invention proposes a FDCA preparation method with mild reaction conditions, low cost and high yield.
为了达到上述目的,本发明的具体技术方案如下:In order to achieve the above object, the concrete technical scheme of the present invention is as follows:
将包含5-羟甲基糠醛(HMF)的水溶液与非贵金属铈基复合氧化物催化剂混合,在碱性添加剂的存在下,与氧气反应制备2, 5-呋喃二甲酸(FDCA),过滤反应混合液分离出催化剂,所得滤液经过酸化,析出晶体,所得晶体即为2, 5-呋喃二甲酸(FDCA),催化剂经洗涤干燥后可循环使用。Mix an aqueous solution containing 5-hydroxymethylfurfural (HMF) with a non-precious metal cerium-based composite oxide catalyst, react with oxygen in the presence of a basic additive to prepare 2, 5-furandicarboxylic acid (FDCA), and filter the reaction mixture The catalyst is separated from the liquid, and the obtained filtrate is acidified to precipitate crystals, which are 2, 5-furandicarboxylic acid (FDCA). The catalyst can be recycled after being washed and dried.
所述非贵金属铈基复合氧化物包含铈和锰,铁,钴,铜,钛,锆,锌,铬,钒,镍中的一种或两种,其中氧化铈的质量百分含量为1%-90%,优选为10%-50%。The non-noble metal cerium-based composite oxide contains one or two of cerium and manganese, iron, cobalt, copper, titanium, zirconium, zinc, chromium, vanadium, nickel, wherein the mass percentage of cerium oxide is 1% -90%, preferably 10%-50%.
所述非贵金属铈基复合氧化物,可以通过水热法,溶胶凝胶法,共沉淀法等方法制备。共沉淀法:称取硝酸铈和另一种金属盐,并加入去离子水溶解。水浴条件下,将碱溶液滴加到混合溶液中。滴加完毕后,过滤洗涤得到沉淀,烘干后研磨煅烧,即得非贵金属铈基复合氧化物。水热法:称取硝酸铈和另一种金属盐,并加入去离子水溶解,得到混合液。滴加氨水至沉淀完全。连续搅拌均匀后转移至带聚四氟乙烯衬里的不锈钢压力釜内,晶化得到固体。烘干后研磨煅烧,即得非贵金属铈基复合氧化物。溶胶凝胶法:将称取硝酸铈和另一种金属盐,并加入去离子水和柠檬酸使其完全溶解。将混合溶液在80℃磁力搅拌下蒸发至透明凝胶状,烘干过夜。烘干后研磨煅烧,即得非贵金属铈基复合氧化物。The non-noble metal cerium-based composite oxide can be prepared by hydrothermal method, sol-gel method, co-precipitation method and other methods. Co-precipitation method: weigh cerium nitrate and another metal salt, and add deionized water to dissolve. Under the condition of water bath, the alkali solution was added dropwise to the mixed solution. After the dropwise addition is completed, the precipitate is obtained by filtering and washing, dried and then ground and calcined to obtain the non-noble metal cerium-based composite oxide. Hydrothermal method: Weigh cerium nitrate and another metal salt, and add deionized water to dissolve to obtain a mixed solution. Ammonia water was added dropwise until the precipitation was complete. After continuous stirring, it was transferred to a stainless steel autoclave lined with polytetrafluoroethylene, and crystallized to obtain a solid. Grinding and calcining after drying to obtain non-noble metal cerium-based composite oxides. Sol-gel method: Weigh cerium nitrate and another metal salt, and add deionized water and citric acid to dissolve them completely. The mixed solution was evaporated to a transparent gel under magnetic stirring at 80°C, and dried overnight. Grinding and calcining after drying to obtain non-noble metal cerium-based composite oxides.
所述HMF可以是纯的HMF,也可以是由六碳糖脱水后得到的HMF。The HMF can be pure HMF, or HMF obtained by dehydration of six-carbon sugar.
所述氧化剂为分子氧或空气,反应压力为0.1MPa-6.0MPa,优选为0.5-3.0MPa。The oxidizing agent is molecular oxygen or air, and the reaction pressure is 0.1MPa-6.0MPa, preferably 0.5-3.0MPa.
所述碱性添加剂包括氢氧化钠,氢氧化钾,氢氧化钙等碱,尿素,吡啶,三乙胺,乙二胺等有机碱,碳酸钠,碳酸钾,碳酸氢钾,碳酸氢钠等无机盐中的一种或几种。The alkaline additives include alkalis such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, organic bases such as urea, pyridine, triethylamine, and ethylenediamine, and inorganic bases such as sodium carbonate, potassium carbonate, potassium bicarbonate, and sodium bicarbonate. One or more types of salt.
所述碱性添加剂与HMF的摩尔比为0-20,优选为0.5-8.0。The molar ratio of the basic additive to HMF is 0-20, preferably 0.5-8.0.
所述铈基复合氧化物与HMF的质量比为0.1-50,优选为0.5-10。The mass ratio of the cerium-based composite oxide to HMF is 0.1-50, preferably 0.5-10.
所述反应温度为10-200℃,优选为70-150℃;The reaction temperature is 10-200°C, preferably 70-150°C;
所述反应时间为1-48小时,优选为6-12小时。The reaction time is 1-48 hours, preferably 6-12 hours.
本发明反应条件温和,HMF的转化率高,FDCA收率和选择性高;使用非贵金属作为催化剂活性组分,成本低,且催化剂重复使用性好。The invention has mild reaction conditions, high conversion rate of HMF, high FDCA yield and selectivity; non-noble metal is used as the catalyst active component, the cost is low, and the catalyst has good reusability.
反应液用高效液相色谱进行分析,色谱柱采用 AminexHPX-87H(Biorad),流动相采用 0.004mol/L硫酸水溶液,色谱柱温度恒定为55℃,检测器采用紫外检测器,采集波长260nm 处信号。The reaction solution was analyzed by high performance liquid chromatography, the chromatographic column was AminexHPX-87H (Biorad), the mobile phase was 0.004mol/L sulfuric acid aqueous solution, the temperature of the chromatographic column was constant at 55°C, the detector was an ultraviolet detector, and the signal at the wavelength of 260nm was collected .
产物定量分析采用外标法。配制上述各产物标准样不同浓度的标准溶液,测定其液相色谱峰面积,以浓度和峰面积的关系做标准曲线。Quantitative analysis of products was carried out by external standard method. Prepare standard solutions with different concentrations of the above-mentioned standard samples of each product, measure their liquid chromatography peak areas, and make a standard curve with the relationship between concentration and peak area.
附图说明Description of drawings
附图1为实施例1制备的铈铬复合氧化物催化剂(氧化铈的质量百分含量为50%)的XRD谱图。Accompanying drawing 1 is the XRD spectrogram of the cerium-chromium composite oxide catalyst prepared in Example 1 (the mass percentage of cerium oxide is 50%).
附图2为实施例2制备的铈锰复合氧化物催化剂的(氧化铈的质量百分含量为20%)H-TPR谱图Accompanying drawing 2 is the (mass percentage composition of cerium oxide is 20%) H-TPR spectrogram of the cerium-manganese composite oxide catalyst prepared in embodiment 2
附图3为实施例10铈铁复合氧化物催化剂(氧化铈的质量百分含量为20%)用于5-HMF氧化制备FDCA反应的循环稳定性图。Accompanying drawing 3 is the cycle stability diagram of the cerium-iron composite oxide catalyst (the mass percentage of cerium oxide is 20%) used in the reaction of preparing FDCA by oxidation of 5-HMF in Example 10.
具体实施方式detailed description
为了便于理解本发明,本发明列举实施例如下,但所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。In order to facilitate the understanding of the present invention, the present invention enumerates the following examples, but the examples are only used to help understand the present invention, and should not be regarded as specific limitations to the present invention.
实施例1Example 1
将600mg共沉淀法制备的铈铬复合氧化物催化剂(氧化铈的质量百分含量为50%),10mL 0.05mol/L HMF水溶液,0.424g碳酸钠,加入不锈钢高压反应釜,充入3MPa的氧气作为氧源,磁力搅拌的同时在150℃下反应12小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为97.7%,FDCA收率为86.7%。Put 600mg of cerium-chromium composite oxide catalyst prepared by co-precipitation method (the mass percentage of cerium oxide is 50%), 10mL of 0.05mol/L HMF aqueous solution, 0.424g of sodium carbonate, into a stainless steel autoclave, and fill it with 3MPa oxygen As an oxygen source, it was reacted at 150° C. for 12 hours while being magnetically stirred. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 97.7%, and the yield of FDCA was 86.7%.
实施例2Example 2
将100mg水热法制备的铈锰复合氧化物催化剂(氧化铈的质量百分含量为30%),10mL0.05mol/L HMF水溶液,0.08g氢氧化钠,加入不锈钢高压反应釜,充入2MPa的氧气作为氧源,磁力搅拌的同时在110℃下反应8小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为98.5%,FDCA收率为81.8%。Put 100mg of cerium-manganese composite oxide catalyst prepared by hydrothermal method (the mass percentage of cerium oxide is 30%), 10mL of 0.05mol/L HMF aqueous solution, 0.08g of sodium hydroxide, into a stainless steel autoclave, and fill it with a 2MPa Oxygen was used as an oxygen source, and the reaction was carried out at 110° C. for 8 hours while magnetically stirring. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 98.5%, and the yield of FDCA was 81.8%.
实施例3Example 3
将30mg溶胶凝胶法制备的铈铁复合氧化物催化剂(氧化铈的质量百分含量为10%),10mL 0.05mol/L HMF水溶液,0.015g乙二胺,加入不锈钢高压反应釜,充入0.5MPa的氧气作为氧源,磁力搅拌的同时在70℃下反应6小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为98.6%,FDCA收率为84.8%。Add 30mg of cerium-iron composite oxide catalyst prepared by sol-gel method (the mass percentage of cerium oxide is 10%), 10mL of 0.05mol/L HMF aqueous solution, 0.015g of ethylenediamine, into a stainless steel autoclave, and fill it with 0.5 MPa oxygen was used as an oxygen source, and the reaction was carried out at 70° C. for 6 hours while magnetically stirring. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 98.6%, and the yield of FDCA was 84.8%.
实施例4Example 4
将100mg共沉淀法制备的铈铜复合氧化物催化剂(氧化铈的质量百分含量为50%),10mL0.05mol/L HMF水溶液,0.106g碳酸钠,加入不锈钢高压反应釜,充入1MPa的氧气作为氧源,磁力搅拌的同时在110℃下反应10小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为84.5%,FDCA收率为27.0%。Put 100mg of cerium-copper composite oxide catalyst prepared by co-precipitation method (the mass percentage of cerium oxide is 50%), 10mL of 0.05mol/L HMF aqueous solution, 0.106g of sodium carbonate, into a stainless steel autoclave, and fill it with 1MPa oxygen As an oxygen source, it was reacted at 110° C. for 10 hours while being magnetically stirred. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 84.5%, and the yield of FDCA was 27.0%.
实施例5Example 5
将200mg水热法制备的铈锰复合氧化物催化剂(氧化铈的质量百分含量为60%),10mL0.05mol/L HMF水溶液,0.212g碳酸钠,加入不锈钢高压反应釜,充入5MPa的氧气作为氧源,磁力搅拌的同时在90℃下反应10小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为99.3%,FDCA收率为40.1%。Put 200mg of cerium-manganese composite oxide catalyst prepared by hydrothermal method (the mass percentage of cerium oxide is 60%), 10mL of 0.05mol/L HMF aqueous solution, 0.212g of sodium carbonate, into a stainless steel autoclave, and fill it with 5MPa oxygen As an oxygen source, the reaction was performed at 90° C. for 10 hours while being magnetically stirred. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 99.3%, and the yield of FDCA was 40.1%.
实施例6Example 6
将1.0 g共沉淀法制备的铈铬复合氧化物催化剂(氧化铈的质量百分含量为80%),10mL0.05mol/L HMF水溶液,0.2g碳酸钙,加入不锈钢高压反应釜,充入2MPa的氧气作为氧源,磁力搅拌的同时在110℃下反应12小时。HMF转化率为69.3%,FDCA收率为22.1%。Put 1.0 g of cerium-chromium composite oxide catalyst prepared by co-precipitation method (the mass percentage of cerium oxide is 80%), 10mL of 0.05mol/L HMF aqueous solution, 0.2g of calcium carbonate, into a stainless steel autoclave, and fill it with a 2MPa Oxygen was used as an oxygen source, and the reaction was performed at 110° C. for 12 hours while magnetically stirring. The conversion rate of HMF was 69.3%, and the yield of FDCA was 22.1%.
实施例7Example 7
将100mg水热法制备的铈钴复合氧化物催化剂(氧化铈的质量百分含量为30%),10mL0.05mol/L HMF水溶液,0.252 g碳酸氢钠,加入不锈钢高压反应釜,充入0.5MPa的氧气作为氧源,磁力搅拌的同时在60℃下反应3小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为74.2%,FDCA收率为15.8%。Put 100mg of cerium-cobalt composite oxide catalyst prepared by hydrothermal method (the mass percentage of cerium oxide is 30%), 10mL of 0.05mol/L HMF aqueous solution, 0.252g of sodium bicarbonate, add stainless steel autoclave, and fill it with 0.5MPa Oxygen was used as an oxygen source, and the reaction was carried out at 60°C for 3 hours while magnetically stirring. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 74.2%, and the yield of FDCA was 15.8%.
实施例8Example 8
将100mg溶胶凝胶法制备的铈锰复合氧化物催化剂(氧化铈的质量百分含量为30%),10mL 0.05mol/L HMF水溶液,0.03g碳酸钾,加入不锈钢高压反应釜,充入6MPa的氧气作为氧源,磁力搅拌的同时在150℃下反应3小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为97.2%,FDCA收率为60.3%。Put 100mg of cerium-manganese composite oxide catalyst prepared by sol-gel method (the mass percentage of cerium oxide is 30%), 10mL of 0.05mol/L HMF aqueous solution, 0.03g of potassium carbonate, into a stainless steel autoclave, and fill it with a 6MPa Oxygen was used as an oxygen source, and the reaction was carried out at 150° C. for 3 hours while magnetically stirring. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 97.2%, and the yield of FDCA was 60.3%.
实施例9Example 9
将130mg沉淀法制备的铈铁复合氧化物催化剂(氧化铈的质量百分含量为60%),10mL0.05mol/L HMF水溶液,0.16g氢氧化钠,加入不锈钢高压反应釜,充入1MPa的氧气作为氧源,磁力搅拌的同时在100℃下反应5小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为99.2%,FDCA收率为20.3%。Add 130mg of cerium-iron composite oxide catalyst prepared by precipitation method (the mass percentage of cerium oxide is 60%), 10mL of 0.05mol/L HMF aqueous solution, 0.16g of sodium hydroxide, into a stainless steel autoclave, and fill it with 1MPa oxygen As an oxygen source, the reaction was performed at 100° C. for 5 hours while being magnetically stirred. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 99.2%, and the yield of FDCA was 20.3%.
实施例10Example 10
非贵金属铈铁复合氧化物催化剂催化氧化的循环稳定性Cyclic stability of non-noble metal cerium-iron composite oxide catalysts for catalytic oxidation
将100mg共沉淀法制备的铈铁复合氧化物催化剂(氧化铈的质量百分含量为20%),10mL0.05mol/L HMF水溶液,0.112g氢氧化钾,加入不锈钢高压反应釜,充入1MPa的氧气作为氧源,磁力搅拌的同时在130℃下反应1小时。反应结束后,离心分离,对反应液进行分析得到5-HMF的转化率和FDCA的收率,催化剂用去离子水洗涤后继续做下一个反应,反应共套用8次,活性基本不变。Put 100mg of cerium-iron composite oxide catalyst prepared by co-precipitation method (the mass percentage of cerium oxide is 20%), 10mL of 0.05mol/L HMF aqueous solution, 0.112g of potassium hydroxide, into a stainless steel autoclave, and fill it with a 1MPa Oxygen was used as an oxygen source, and the reaction was performed at 130° C. for 1 hour while magnetically stirring. After the reaction, centrifuge and analyze the reaction solution to obtain the conversion rate of 5-HMF and the yield of FDCA. After the catalyst is washed with deionized water, the next reaction is continued. The reaction is applied 8 times in total, and the activity remains basically unchanged.
实施例11Example 11
将50mg共沉淀法制备的铈锰复合氧化物催化剂(氧化铈的质量百分含量为40%),10mL0.05mol/L葡萄糖脱水而来的HMF水溶液,0.12g尿素,加入不锈钢高压反应釜,充入3MPa的氧气作为氧源,磁力搅拌的同时在100℃下反应24小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为79.2%,FDCA收率为30.3%。Add 50mg of cerium-manganese composite oxide catalyst prepared by co-precipitation method (the mass percentage of cerium oxide is 40%), 10mL of HMF aqueous solution obtained by dehydration of 0.05mol/L glucose, and 0.12g of urea into a stainless steel autoclave. 3 MPa of oxygen was introduced as an oxygen source, and the reaction was carried out at 100° C. for 24 hours while stirring by magnetic force. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 79.2%, and the yield of FDCA was 30.3%.
实施例12Example 12
将120mg水热法制备的铈钒复合氧化物催化剂(氧化铈的质量百分含量为60%),10mL0.05mol/L HMF水溶液,0.1g碳酸氢钾,加入不锈钢高压反应釜,充入1MPa的氧气作为氧源,磁力搅拌的同时在20℃下反应5小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为59.2%,FDCA收率为10.3%。Put 120mg of cerium vanadium composite oxide catalyst prepared by hydrothermal method (the mass percentage of cerium oxide is 60%), 10mL of 0.05mol/L HMF aqueous solution, 0.1g of potassium bicarbonate, add stainless steel autoclave, and fill it with 1MPa Oxygen was used as an oxygen source, and the reaction was carried out at 20° C. for 5 hours while being magnetically stirred. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion of HMF was 59.2%, and the yield of FDCA was 10.3%.
实施例13Example 13
将100mg共沉淀法制备的铈铁复合氧化物催化剂(氧化铈的质量百分含量为30%),10mL0.05mol/L葡萄糖脱水而来的HMF水溶液,0.16g氢氧化钠,加入不锈钢高压反应釜,充入4MPa的氧气作为氧源,磁力搅拌的同时在70℃下反应28小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为99.2%,FDCA收率为12.3%。Add 100mg of cerium-iron composite oxide catalyst prepared by co-precipitation method (the mass percentage of cerium oxide is 30%), 10mL of 0.05mol/L glucose dehydration HMF aqueous solution, 0.16g of sodium hydroxide, into a stainless steel autoclave , filled with 4MPa oxygen as an oxygen source, and reacted at 70° C. for 28 hours while magnetically stirring. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 99.2%, and the yield of FDCA was 12.3%.
实施例14Example 14
将80mg水热法制备的铈钛复合氧化物催化剂(氧化铈的质量百分含量为35%),10mL0.05mol/L葡萄糖脱水而来的HMF水溶液,0.3g三乙胺,加入不锈钢高压反应釜,充入2MPa的氧气作为氧源,磁力搅拌的同时在60℃下反应24小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为69.2%,FDCA收率为2.3%。Put 80mg of cerium-titanium composite oxide catalyst prepared by hydrothermal method (the mass percentage of cerium oxide is 35%), 10mL of 0.05mol/L glucose dehydrated HMF aqueous solution, 0.3g of triethylamine, and put them into a stainless steel autoclave , filled with 2MPa oxygen as an oxygen source, and reacted at 60° C. for 24 hours while magnetically stirring. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 69.2%, and the yield of FDCA was 2.3%.
实施例15Example 15
将100mg溶胶凝胶法制备的铈锆复合氧化物催化剂(氧化铈的质量百分含量为70%),10mL 0.05mol/L葡萄糖脱水而来的HMF水溶液,0.16g吡啶,加入不锈钢高压反应釜,充入3.6MPa的氧气作为氧源,磁力搅拌的同时在150℃下反应18小时。最后反应液通过HPLC分析底物转化率和产物收率。HMF转化率为79.4%,FDCA收率为22.2%。Add 100 mg of cerium-zirconium composite oxide catalyst prepared by sol-gel method (the mass percentage of cerium oxide is 70%), 10 mL of HMF aqueous solution dehydrated from 0.05 mol/L glucose, and 0.16 g of pyridine into a stainless steel autoclave, Charge 3.6 MPa of oxygen as an oxygen source, and react at 150° C. for 18 hours while magnetically stirring. Finally, the reaction solution was analyzed by HPLC for substrate conversion rate and product yield. The conversion rate of HMF was 79.4%, and the yield of FDCA was 22.2%.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610924322.4A CN106565647B (en) | 2016-10-29 | 2016-10-29 | Method for preparing 2, 5-furandicarboxylic acid by catalytic oxidation of 5-hydroxymethylfurfural |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610924322.4A CN106565647B (en) | 2016-10-29 | 2016-10-29 | Method for preparing 2, 5-furandicarboxylic acid by catalytic oxidation of 5-hydroxymethylfurfural |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106565647A true CN106565647A (en) | 2017-04-19 |
CN106565647B CN106565647B (en) | 2020-01-10 |
Family
ID=58534145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610924322.4A Active CN106565647B (en) | 2016-10-29 | 2016-10-29 | Method for preparing 2, 5-furandicarboxylic acid by catalytic oxidation of 5-hydroxymethylfurfural |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106565647B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107051585A (en) * | 2017-05-19 | 2017-08-18 | 中南民族大学 | A kind of composite catalyst and its application with high-efficiency photocatalysis oxidization |
CN107117970A (en) * | 2017-04-21 | 2017-09-01 | 华东理工大学 | A kind of compound additive of new production low resistance high strength graphite material and the preparation method of the graphite material |
CN110180541A (en) * | 2019-06-28 | 2019-08-30 | 中国科学院大连化学物理研究所 | A kind of Au-based catalyst catalysis oxidation aldehyde generates the application of ester |
CN110437190A (en) * | 2019-07-29 | 2019-11-12 | 中国科学技术大学 | The method that 2,5- furandicarboxylic acid is prepared by 5 hydroxymethyl furfural |
CN111153876A (en) * | 2020-01-13 | 2020-05-15 | 华东师范大学 | Method for producing furan dicarboxylic acid and derivatives thereof from furfural |
CN111250126A (en) * | 2018-11-30 | 2020-06-09 | 中国科学院大连化学物理研究所 | Catalyst, preparation method and application thereof |
CN111362892A (en) * | 2020-04-13 | 2020-07-03 | 南京工业大学 | Method for preparing 2,5-furandicarboxylic acid by selective oxidation of 5-hydroxymethylfurfural over manganese-copper spinel catalyst |
CN111606875A (en) * | 2020-06-15 | 2020-09-01 | 莆田达凯新材料有限公司 | Method for preparing furandicarboxylic acid monomer from bamboo biomass |
CN112047912A (en) * | 2020-10-16 | 2020-12-08 | 中国科学技术大学 | A kind of preparation method of furandicarboxylic acid |
CN112341415A (en) * | 2020-10-28 | 2021-02-09 | 南京先进生物材料与过程装备研究院有限公司 | Method for preparing 5-hydroxymethyl-2-furancarboxylic acid by photocatalytic oxidation |
CN113041997A (en) * | 2021-03-05 | 2021-06-29 | 佛山科学技术学院 | Modified magnetic biochar and preparation method and application thereof |
CN113121477A (en) * | 2021-06-02 | 2021-07-16 | 宁波国生科技有限公司 | Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid |
CN113117705A (en) * | 2019-12-31 | 2021-07-16 | 中国石油化工股份有限公司 | Modified ruthenium-based catalyst and method for preparing 2, 5-furandicarboxylic acid by catalysis of modified ruthenium-based catalyst |
CN113117706A (en) * | 2019-12-31 | 2021-07-16 | 中国石油化工股份有限公司 | Metal modified ruthenium-based catalyst and method for preparing 2, 5-furandicarboxylic acid by using same |
CN113996296A (en) * | 2021-11-30 | 2022-02-01 | 北京化工大学 | Silver catalyst for preparing bio-based 2,5-furandicarboxylic acid and preparation method and application thereof |
CN114105917A (en) * | 2021-12-09 | 2022-03-01 | 万华化学集团股份有限公司 | Method for preparing 2, 5-furandicarboxylic acid by efficiently catalyzing 5-hydroxymethylfurfural |
CN114605359A (en) * | 2022-03-09 | 2022-06-10 | 苏州禾广吉智能装备有限公司 | Method for preparing FDCA (fully drawn yarn) and total bio-based filler by using non-grain biomass raw material |
CN114703495A (en) * | 2022-03-10 | 2022-07-05 | 东北林业大学 | Method for preparing 2, 5-furandicarboxylic acid by electrocatalytic oxidation of 5-hydroxymethylfurfural on amorphous NiFeB catalyst |
CN115073404A (en) * | 2022-07-14 | 2022-09-20 | 中科国生(杭州)科技有限公司 | Preparation method of 2, 5-furandicarboxylic acid |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102666521A (en) * | 2009-10-07 | 2012-09-12 | 福兰尼克斯科技公司 | Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid |
CN104277021A (en) * | 2013-07-02 | 2015-01-14 | 中国科学院大连化学物理研究所 | Method for preparing 2, 5-furan diamide by catalytic conversion of 5-hydroxymethylfurfural |
WO2016028488A1 (en) * | 2014-08-19 | 2016-02-25 | Archer Daniels Midland Company | Catalyst and process for producing 2,5-furandicarboxylic acid from hydromethylfurfural in water |
US20160221979A1 (en) * | 2013-09-19 | 2016-08-04 | Kao Corporation | 2,5-furan dicarboxylic acid production method |
CN105859662A (en) * | 2016-04-18 | 2016-08-17 | 天津理工大学 | Method for catalyzing selective oxidation of 5-hydroxymethyl furfural through manganese oxide |
-
2016
- 2016-10-29 CN CN201610924322.4A patent/CN106565647B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102666521A (en) * | 2009-10-07 | 2012-09-12 | 福兰尼克斯科技公司 | Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid |
CN104277021A (en) * | 2013-07-02 | 2015-01-14 | 中国科学院大连化学物理研究所 | Method for preparing 2, 5-furan diamide by catalytic conversion of 5-hydroxymethylfurfural |
US20160221979A1 (en) * | 2013-09-19 | 2016-08-04 | Kao Corporation | 2,5-furan dicarboxylic acid production method |
WO2016028488A1 (en) * | 2014-08-19 | 2016-02-25 | Archer Daniels Midland Company | Catalyst and process for producing 2,5-furandicarboxylic acid from hydromethylfurfural in water |
CN105859662A (en) * | 2016-04-18 | 2016-08-17 | 天津理工大学 | Method for catalyzing selective oxidation of 5-hydroxymethyl furfural through manganese oxide |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107117970A (en) * | 2017-04-21 | 2017-09-01 | 华东理工大学 | A kind of compound additive of new production low resistance high strength graphite material and the preparation method of the graphite material |
CN107051585A (en) * | 2017-05-19 | 2017-08-18 | 中南民族大学 | A kind of composite catalyst and its application with high-efficiency photocatalysis oxidization |
CN107051585B (en) * | 2017-05-19 | 2020-06-19 | 中南民族大学 | Composite catalyst with high-efficiency photocatalytic oxidation and application thereof |
CN111250126A (en) * | 2018-11-30 | 2020-06-09 | 中国科学院大连化学物理研究所 | Catalyst, preparation method and application thereof |
CN110180541A (en) * | 2019-06-28 | 2019-08-30 | 中国科学院大连化学物理研究所 | A kind of Au-based catalyst catalysis oxidation aldehyde generates the application of ester |
CN110437190A (en) * | 2019-07-29 | 2019-11-12 | 中国科学技术大学 | The method that 2,5- furandicarboxylic acid is prepared by 5 hydroxymethyl furfural |
CN110437190B (en) * | 2019-07-29 | 2023-03-10 | 中国科学技术大学 | Method for preparing 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural |
CN113117705A (en) * | 2019-12-31 | 2021-07-16 | 中国石油化工股份有限公司 | Modified ruthenium-based catalyst and method for preparing 2, 5-furandicarboxylic acid by catalysis of modified ruthenium-based catalyst |
CN113117705B (en) * | 2019-12-31 | 2024-05-07 | 中国石油化工股份有限公司 | Modified ruthenium-based catalyst and method for preparing 2, 5-furan dicarboxylic acid by catalysis of modified ruthenium-based catalyst |
CN113117706B (en) * | 2019-12-31 | 2024-04-12 | 中国石油化工股份有限公司 | Metal modified ruthenium-based catalyst and method for preparing 2, 5-furan dicarboxylic acid by catalysis of metal modified ruthenium-based catalyst |
CN113117706A (en) * | 2019-12-31 | 2021-07-16 | 中国石油化工股份有限公司 | Metal modified ruthenium-based catalyst and method for preparing 2, 5-furandicarboxylic acid by using same |
CN111153876A (en) * | 2020-01-13 | 2020-05-15 | 华东师范大学 | Method for producing furan dicarboxylic acid and derivatives thereof from furfural |
CN111153876B (en) * | 2020-01-13 | 2023-07-28 | 华东师范大学 | Method for producing furandicarboxylic acid and derivative thereof from furfural |
CN111362892A (en) * | 2020-04-13 | 2020-07-03 | 南京工业大学 | Method for preparing 2,5-furandicarboxylic acid by selective oxidation of 5-hydroxymethylfurfural over manganese-copper spinel catalyst |
CN111606875A (en) * | 2020-06-15 | 2020-09-01 | 莆田达凯新材料有限公司 | Method for preparing furandicarboxylic acid monomer from bamboo biomass |
CN111606875B (en) * | 2020-06-15 | 2022-12-30 | 莆田达凯新材料有限公司 | Method for preparing furandicarboxylic acid monomer from bamboo biomass |
CN112047912B (en) * | 2020-10-16 | 2022-07-15 | 中国科学技术大学 | A kind of preparation method of furandicarboxylic acid |
CN112047912A (en) * | 2020-10-16 | 2020-12-08 | 中国科学技术大学 | A kind of preparation method of furandicarboxylic acid |
CN112341415A (en) * | 2020-10-28 | 2021-02-09 | 南京先进生物材料与过程装备研究院有限公司 | Method for preparing 5-hydroxymethyl-2-furancarboxylic acid by photocatalytic oxidation |
CN113041997A (en) * | 2021-03-05 | 2021-06-29 | 佛山科学技术学院 | Modified magnetic biochar and preparation method and application thereof |
CN113121477A (en) * | 2021-06-02 | 2021-07-16 | 宁波国生科技有限公司 | Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid |
CN113996296A (en) * | 2021-11-30 | 2022-02-01 | 北京化工大学 | Silver catalyst for preparing bio-based 2,5-furandicarboxylic acid and preparation method and application thereof |
CN114105917A (en) * | 2021-12-09 | 2022-03-01 | 万华化学集团股份有限公司 | Method for preparing 2, 5-furandicarboxylic acid by efficiently catalyzing 5-hydroxymethylfurfural |
CN114605359A (en) * | 2022-03-09 | 2022-06-10 | 苏州禾广吉智能装备有限公司 | Method for preparing FDCA (fully drawn yarn) and total bio-based filler by using non-grain biomass raw material |
CN114605359B (en) * | 2022-03-09 | 2024-05-31 | 苏州禾广吉智能装备有限公司 | Method for preparing FDCA and full bio-based filler by using non-grain biomass raw material |
CN114703495B (en) * | 2022-03-10 | 2023-12-19 | 东北林业大学 | Method for preparing 2, 5-furandicarboxylic acid by electrocatalytic oxidation of 5-hydroxymethylfurfural on amorphous NiFeB catalyst |
CN114703495A (en) * | 2022-03-10 | 2022-07-05 | 东北林业大学 | Method for preparing 2, 5-furandicarboxylic acid by electrocatalytic oxidation of 5-hydroxymethylfurfural on amorphous NiFeB catalyst |
CN115073404B (en) * | 2022-07-14 | 2023-11-28 | 中科国生(杭州)科技有限公司 | Preparation method of 2, 5-furandicarboxylic acid |
CN115073404A (en) * | 2022-07-14 | 2022-09-20 | 中科国生(杭州)科技有限公司 | Preparation method of 2, 5-furandicarboxylic acid |
Also Published As
Publication number | Publication date |
---|---|
CN106565647B (en) | 2020-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106565647B (en) | Method for preparing 2, 5-furandicarboxylic acid by catalytic oxidation of 5-hydroxymethylfurfural | |
Dai | Synthesis of 2, 5-diformylfuran from renewable carbohydrates and its applications: A review | |
CN108484545B (en) | A kind of method and system for continuous synthesis of furandicarboxylic acid | |
CN102477020A (en) | A kind of method that catalyzes carbohydrate to prepare 5-hydroxymethylfurfural | |
CN107365287A (en) | A kind of method of synthesis 2,5- furandicarboxylic acids | |
CN110102350A (en) | Catalyst and its preparation method and application for oxidative synthesis 2,5- furandicarboxylic acid | |
CN107365286A (en) | A kind of method of synthesis 2,5- furandicarboxylic acids | |
CN111153876B (en) | Method for producing furandicarboxylic acid and derivative thereof from furfural | |
CN103910699B (en) | A kind of from the method for furfural Selective Oxidation for maleic anhydride | |
CN105968075B (en) | A kind of method that photochemical catalytic oxidation HMF prepares DFF | |
CN104557801A (en) | Method for preparing gamma-valerolactone from furfural on metal/solid acid catalyst | |
CN108383814A (en) | A kind of preparation method of 2,5- furandicarboxylic acids | |
CN103172599A (en) | Method for catalyzing carbohydrate to prepare 5-(hydroxymethyl) furfural (5-HMF) and levulinic acid (LA) | |
CN111362892A (en) | Method for preparing 2,5-furandicarboxylic acid by selective oxidation of 5-hydroxymethylfurfural over manganese-copper spinel catalyst | |
CN106582666B (en) | Gamma-valerolactone hydrogenation catalyst, preparation method and the method for being used to prepare 1,4- pentanediol and 2- methyltetrahydrofuran | |
CN109293608B (en) | A kind of preparation method of 5-formyl furoic acid | |
CN113603574B (en) | Method for catalyzing catalytic oxidation reaction of cyclopentene by using short-site silicotungstic heteropolyacid salt catalyst | |
CN102516070B (en) | Method for preparing 2,2-bi(4-carboxylphenyl)hexafluoropropane under novel catalytic system | |
CN110078702A (en) | A kind of method of poly ion liquid frame catalyst preparation cyclic carbonate | |
CN110256381B (en) | Method for clean preparation of 2, 5-furandicarboxylic acid by one-step method | |
CN113698373A (en) | Method for preparing 2, 5-furandicarboxylic acid by high-efficiency photocatalytic oxidation | |
CN108620095B (en) | A kind of composite catalyst and its application in synthesizing glyceraldehyde | |
CN108686682B (en) | Green oxidation synthesis method of glyceraldehyde | |
CN111548330A (en) | Method for preparing 2,5-furandicarbaldehyde by selective oxidation of 5-hydroxymethyl furfural over manganese-based spinel catalyst | |
CN102757416B (en) | Method for synthesizing 3-arylcoumarin by using N-heterocyclic carbene as catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |