CN106309083A - EMG controlled air-operated soft body rehabilitative mechanical hand - Google Patents
EMG controlled air-operated soft body rehabilitative mechanical hand Download PDFInfo
- Publication number
- CN106309083A CN106309083A CN201610802331.6A CN201610802331A CN106309083A CN 106309083 A CN106309083 A CN 106309083A CN 201610802331 A CN201610802331 A CN 201610802331A CN 106309083 A CN106309083 A CN 106309083A
- Authority
- CN
- China
- Prior art keywords
- finger
- deformation
- software
- rehabilitation
- soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005452 bending Methods 0.000 claims abstract description 45
- 239000000835 fiber Substances 0.000 claims abstract description 28
- 208000006011 Stroke Diseases 0.000 claims abstract description 17
- 230000033001 locomotion Effects 0.000 claims abstract description 12
- 210000003811 finger Anatomy 0.000 claims description 100
- 210000003813 thumb Anatomy 0.000 claims description 27
- 210000003205 muscle Anatomy 0.000 claims description 6
- 208000005392 Spasm Diseases 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 4
- 210000000245 forearm Anatomy 0.000 claims description 4
- 210000004932 little finger Anatomy 0.000 claims description 4
- 206010008190 Cerebrovascular accident Diseases 0.000 claims description 3
- 210000001145 finger joint Anatomy 0.000 claims description 3
- 210000003437 trachea Anatomy 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 3
- 239000013536 elastomeric material Substances 0.000 claims 1
- 210000005224 forefinger Anatomy 0.000 claims 1
- 238000005242 forging Methods 0.000 claims 1
- 238000007670 refining Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007779 soft material Substances 0.000 abstract description 3
- 229920002379 silicone rubber Polymers 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 208000007101 Muscle Cramp Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000004247 hand Anatomy 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000005057 finger movement Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000003767 neural control Effects 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009967 tasteless effect Effects 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0218—Drawing-out devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0274—Stretching or bending or torsioning apparatus for exercising for the upper limbs
- A61H1/0285—Hand
- A61H1/0288—Fingers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0006—Exoskeletons, i.e. resembling a human figure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/165—Wearable interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1657—Movement of interface, i.e. force application means
- A61H2201/1659—Free spatial automatic movement of interface within a working area, e.g. Robot
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/06—Arms
- A61H2205/065—Hands
- A61H2205/067—Fingers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2230/00—Measuring physical parameters of the user
- A61H2230/08—Other bio-electrical signals
- A61H2230/085—Other bio-electrical signals used as a control parameter for the apparatus
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Rehabilitation Tools (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种EMG控制的气动软体康复机械手,可以帮助中风患者或者有手部残疾的患者进行手部康复活动。这种康复机械手不同于传统的刚体式机械手,它的每根手指主要是由软材料(硅橡胶等超弹性材料)组成的中空腔体结构,外围布置了纤维和限制应变层,将弯曲变形、伸长变形、扭曲变形和扭转伸长变形的结构组合设计成软体手指,通过气动驱动实现运动变形。可以实现类似于人手指的多段式关节弯曲,带动中风手指的弯曲和伸展,恢复患者部运动能力。这种气动软体康复机械手具有低刚度、安全性高、舒适度高、轻量、噪声小等优点,相较于目前传统的机械刚体式康复手具有更明显的优势,在康复领域具有很大的应用前景。
The invention discloses an EMG-controlled pneumatic software rehabilitation manipulator, which can help stroke patients or patients with hand disabilities to perform hand rehabilitation activities. This kind of rehabilitation manipulator is different from the traditional rigid manipulator. Each of its fingers is mainly a hollow cavity structure composed of soft materials (superelastic materials such as silicon rubber), and fibers and strain-limiting layers are arranged on the periphery to reduce bending deformation, The structural combination of elongation deformation, torsion deformation and torsional elongation deformation is designed as a soft finger, which is driven by pneumatics to realize motion deformation. It can achieve multi-stage joint bending similar to human fingers, drive the bending and stretching of stroke fingers, and restore the patient's mobility. This pneumatic software rehabilitation manipulator has the advantages of low rigidity, high safety, high comfort, light weight, and low noise. Application prospects.
Description
【技术领域】【Technical field】
本发明属于医疗保健器械康复机器人和工业抓手技术领域,特别设计一种EMG控制的气动软体康复机械手,适用于老年人由于中风患者导致的手部功能障碍等症状进行康复训练和助力抓取。The invention belongs to the technical field of medical and health care equipment rehabilitation robots and industrial grippers, and especially designs an EMG-controlled pneumatic software rehabilitation manipulator, which is suitable for rehabilitation training and assisting grasping for elderly people with symptoms such as hand dysfunction caused by stroke patients.
【背景技术】【Background technique】
据世界卫生组织统计,全世界每6个人中就有1人可能罹患脑中风;每6秒钟就有1人死于脑中风;每6秒钟就有1人因为脑中风而永久致残……在全球3000万脑中风病人中,中国约占1/3,脑中风已经成为我国人口死亡和致残的第一位因素。70%的脑中风患者身体上患有不同程度的残疾。上肢残疾患者尤其是手残疾患者更能影响患者的正常生活,因为日常活动包括穿衣、吃饭、喝水等必须依靠手才能完成,因此手部的康复也显得尤为重要,从上世纪60年代起,就开发出了可以戴在患者手上的一系列机械式康复手,包括电机带动、拉线带动等,但是他们都是刚体,而且比手指关节的刚度还要大,当机械式的弯曲角度超过手指关节所能承受的弯曲角度时,这种机械康复手就会对手指产生压迫和抑制,造成患者的疼痛,因此,这种机械式的康复手有很大的危险性;而且对于不同的患者,手指所能承受的弯曲角度差异性很大,因此这种机械手不能广泛的被普及,调整也很不方便;它的成本和价格都太高,一般的消费者根本承担不起;机械式的一般重量都较重,因此携带起来不太方便,限制了患者的活动范围。According to the statistics of the World Health Organization, 1 out of every 6 people in the world may suffer from a stroke; every 6 seconds, 1 person dies from a stroke; every 6 seconds, 1 person is permanently disabled due to a stroke... …Among the 30 million cerebral apoplexy patients in the world, China accounts for about 1/3, and cerebral apoplexy has become the number one cause of death and disability in my country. 70% of stroke patients suffer from physical disabilities of varying degrees. Patients with upper limb disabilities, especially those with hand disabilities, can affect their normal life more, because daily activities, including dressing, eating, drinking, etc., must be completed by hands, so hand rehabilitation is also particularly important. Since the 1960s , developed a series of mechanical rehabilitation hands that can be worn on the patient's hand, including motor-driven, cable-driven, etc., but they are all rigid bodies, and the stiffness is greater than that of finger joints. When the mechanical bending angle exceeds When the bending angle of the finger joints can bear, this mechanical rehabilitation hand will oppress and restrain the fingers, causing pain to the patient. Therefore, this mechanical rehabilitation hand is very dangerous; and for different patients , the bending angles that the fingers can bear vary greatly, so this kind of manipulator cannot be widely popularized, and the adjustment is also very inconvenient; its cost and price are too high, and ordinary consumers cannot afford it at all; mechanical Generally, the weight is relatively heavy, so it is inconvenient to carry and limits the patient's range of motion.
【发明内容】【Content of invention】
本发明的目的在于克服上述现有技术的缺点,提供一种EMG控制的气动软体康复机械手。The object of the present invention is to overcome the above-mentioned shortcoming of prior art, provide a kind of pneumatic software rehabilitation manipulator controlled by EMG.
为达到上述目的,本发明采用以下技术方案予以实现:In order to achieve the above object, the present invention adopts the following technical solutions to achieve:
一种EMG控制的气动软体康复机械手,包括上下两层结构的手套、以及安装于软体手套上层的五根中空的软体手指;手套的下层穿戴在使用者手上,每根软体手指均通过气管连接便携式驱动装置,便携式驱动装置能够通过采集使用者小臂上的肌肉电信号,并对其解码,将得到的识别信号作为出发信号,控制电磁阀和比例阀实现气压的充放气速度调节,以实现对软体手指的主动控制。An EMG-controlled pneumatic software rehabilitation manipulator, including a glove with upper and lower layers and five hollow soft fingers installed on the upper layer of the soft glove; the lower layer of the glove is worn on the user's hand, and each soft finger is connected through a trachea Portable driving device, the portable driving device can collect and decode the muscle electrical signal on the user's forearm, and use the obtained identification signal as the starting signal to control the solenoid valve and proportional valve to realize the adjustment of the air pressure inflation and deflation speed. Realize the active control of soft fingers.
本发明进一步的改进在于:The further improvement of the present invention is:
所述软体手指的食指、中指、无名指以及小指为弯曲伸长类结构;软体康复手指的拇指为软体拇指类结构;The index finger, middle finger, ring finger and little finger of the soft finger have a curved and elongated structure; the thumb of the soft rehabilitation finger has a soft thumb structure;
弯曲伸长类结构的软体手指包括5段变形,其中3段弯曲变形和2段伸长变形,3段弯曲角度与手指关节的弯曲角度相同,2段伸长变形与手指表面皮肤的伸长量相等,一个软体手指在充气后,从伸直状态变为弯曲状态,能够产生人手指的多段关节式变形;The soft finger with bending and elongation structure includes 5 stages of deformation, including 3 stages of bending deformation and 2 stages of elongation deformation. Equal, after a soft finger is inflated, it changes from a straight state to a curved state, which can produce multi-segment joint deformation of human fingers;
软体拇指结构包括5段变形,其中1段扭曲变形、1段扭转伸长变形、2段弯曲变形和1段伸长变形;扭曲变形与拇指的第一段关节产生的扭曲变形相同,扭转伸长变形与扭曲变形与拇指皮肤表面的伸长量相等,2个弯曲变形与拇指第二个、三个关节产生的弯曲变形相等;对软体拇指充气后,能够产生拇指的变形。The soft thumb structure includes 5 stages of deformation, including 1 stage of twisting deformation, 1 stage of torsional elongation deformation, 2 stages of bending deformation and 1 stage of elongation deformation; The deformation and distortion are equal to the elongation of the thumb skin surface, and the two bending deformations are equal to the bending deformation produced by the second and third joints of the thumb; after inflating the soft thumb, the deformation of the thumb can be produced.
所述软体手指包括本体和绕在本体表面的左螺旋纤维和有螺旋纤维,本体采用弹性材料制成;本体上还粘接有用于限制本体在充气后不产生膨胀变形的限制应变层。The soft finger includes a body and left-helical fibers and helical fibers wound on the surface of the body. The body is made of elastic material; the body is also bonded with a strain-limiting layer for preventing the body from expanding and deforming after inflation.
所述软体手指的截面结构为长方形、梯形、半圆形或变截面型,软体手指变形所需的气压和产生的驱动力与软体手指的截面形状相关。The cross-sectional structure of the soft finger is rectangular, trapezoidal, semicircular or variable cross-section, and the air pressure and driving force required for deformation of the soft finger are related to the cross-sectional shape of the soft finger.
所述软体手指能够通过纯弯曲结构实现,每根软体手指都产生弯曲变形,通过中风手指的肌肉痉挛力和手套的松紧度作为外力改变软体手指的运动变形,使其能够带动手指进行康复锻炼和助力抓取。The soft fingers can be realized through a pure bending structure, and each soft finger is bent and deformed. The muscle spasm force of the stroke finger and the tightness of the glove are used as external forces to change the motion deformation of the soft finger, so that it can drive the finger to perform rehabilitation exercises and Assisted grabbing.
所述手套采用适合穿戴和康复锻炼的柔软布料。The glove features a soft cloth suitable for donning and rehabilitation.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明介绍的气动软体康复机械手采用软材料,刚度比手指的刚度小,因此手指能够克服所产生的压迫力,安全性已经大大提高。而且,它可以通过大变形柔性传感器进行实现姿态反馈,时刻监测软体手指手的变形,提高了气动软体康复机械手的安全性。气动软体康复机械手使用材料的价格较为便宜,它的重量也很轻,携带方便,而且具有柔软舒服等特点,能够很好的与患者交互。诸如上述优点,弥补了机械刚体式康复手的不足,为手部需要康复的患者带来了新的希望,如果能够得到推广,将提升患者的生活质量,减轻家庭和社会医护人员的负担。The pneumatic software rehabilitation manipulator introduced in the present invention adopts soft materials, and its stiffness is smaller than that of fingers, so the fingers can overcome the generated compressive force, and the safety has been greatly improved. Moreover, it can realize attitude feedback through a large deformation flexible sensor, monitor the deformation of the soft finger and hand at all times, and improve the safety of the pneumatic soft rehabilitation manipulator. Pneumatic software rehabilitation manipulators use relatively cheap materials, are light in weight, easy to carry, soft and comfortable, and can interact well with patients. Such advantages as above make up for the shortcomings of mechanical rigid rehabilitation hands, and bring new hope to patients who need rehabilitation. If they can be promoted, they will improve the quality of life of patients and reduce the burden on families and social medical staff.
【附图说明】【Description of drawings】
图1为软体驱动器伸长变形的实现原理示意图;Figure 1 is a schematic diagram of the realization principle of the elongation and deformation of the software driver;
图2为软体驱动器弯曲变形的实现原理示意图;Fig. 2 is a schematic diagram of the realization principle of bending deformation of the software driver;
图3为软体手指的截面形状结构图;Fig. 3 is a cross-sectional shape structure diagram of a soft finger;
图4为弯曲伸长类软体手指的结构组成示意图;Fig. 4 is a schematic diagram of the structure and composition of a curved and elongated soft finger;
图5为弯曲伸长类软体手指的变形结果图;Fig. 5 is a deformation result diagram of a bent and elongated soft finger;
图6为软体拇指的结构组成;Fig. 6 is the structural composition of software thumb;
图7为软体拇指的变形结果图;Fig. 7 is the deformation result figure of soft body thumb;
图8为气动软体康复机械手结构示意图;Fig. 8 is a structural schematic diagram of the pneumatic software rehabilitation manipulator;
图9为软体手指与手指贴合情况示意图。Fig. 9 is a schematic diagram of the fit between the soft finger and the finger.
其中:1-软体手指;2-气管。Among them: 1-soft fingers; 2-trachea.
【具体实施方式】【detailed description】
下面结合附图对本发明做进一步详细描述:The present invention is described in further detail below in conjunction with accompanying drawing:
参见图8,本发明EMG控制的气动软体康复机械手,其特征在于,包括上下两层结构的手套、以及安装于软体手套上层的五根中空的软体手指;手套的下层穿戴在使用者手上,每根软体手指均通过气管连接便携式驱动装置,便携式驱动装置能够通过采集使用者小臂上的肌肉电信号,并对其解码,将得到的识别信号作为出发信号,控制电磁阀和比例阀实现气压的充放气速度调节,以实现对软体手指的主动控制。软体康复手指的食指、中指、无名指以及小指为弯曲伸长类结构;软体手指的拇指为软体拇指类结构;Referring to Fig. 8, the pneumatic software rehabilitation manipulator controlled by EMG of the present invention is characterized in that it includes gloves with upper and lower layers of structure, and five hollow soft fingers installed on the upper layer of the soft glove; the lower layer of the glove is worn on the user's hand, Each soft finger is connected to a portable driving device through a trachea. The portable driving device can collect and decode the muscle electrical signal on the user's forearm, and use the obtained identification signal as a starting signal to control the solenoid valve and proportional valve to realize air pressure. The inflation and deflation speed can be adjusted to achieve active control of the soft finger. The index finger, middle finger, ring finger and little finger of the software rehabilitation finger have a curved and elongated structure; the thumb of the soft finger has a soft thumb structure;
弯曲伸长类结构的软体手指包括5段变形,其中3段弯曲变形和2段伸长变形,3段弯曲角度与手指关节的弯曲角度相同,2段伸长变形与手指表面皮肤的伸长量相等,一个软体手指在充气后,从伸直状态变为弯曲状态,能够产生人手指的多段关节式变形;The soft finger with bending and elongation structure includes 5 stages of deformation, including 3 stages of bending deformation and 2 stages of elongation deformation. Equal, after a soft finger is inflated, it changes from a straight state to a curved state, which can produce multi-segment joint deformation of human fingers;
软体拇指结构包括5段变形,其中1段扭曲变形、1段扭转伸长变形、2段弯曲变形和1段伸长变形;扭曲变形与拇指的第一段关节产生的扭曲变形相同,扭转伸长变形与扭曲变形与拇指皮肤表面的伸长量相等,2个弯曲变形与拇指第二个、三个关节产生的弯曲变形相等;对软体拇指充气后,能够产生拇指的变形。The soft thumb structure includes 5 stages of deformation, including 1 stage of twisting deformation, 1 stage of torsional elongation deformation, 2 stages of bending deformation and 1 stage of elongation deformation; The deformation and distortion are equal to the elongation of the thumb skin surface, and the two bending deformations are equal to the bending deformation produced by the second and third joints of the thumb; after inflating the soft thumb, the deformation of the thumb can be produced.
软体手指包括本体和绕在本体表面的左螺旋纤维和有螺旋纤维,本体采用弹性材料制成;本体上还粘接有用于限制本体在充气后不产生膨胀变形的限制应变层。软体手指的截面结构为长方形、梯形、半圆形或变截面型,软体手指变形所需的气压和产生的驱动力与软体手指的截面形状相关。软体手指能够通过纯弯曲结构实现,每根软体手指都产生弯曲变形,通过中风手指的肌肉痉挛力和软体手套的松紧度作为外力改变软体手指的运动变形,使其能够带动手指进行康复锻炼和助力抓取。手套采用适合穿戴和康复锻炼的柔软布料。The soft finger includes a main body and left-helical fibers and helical fibers wound on the surface of the main body. The main body is made of elastic material; the main body is also bonded with a strain-limiting layer for preventing the main body from expanding and deforming after being inflated. The cross-sectional structure of the soft finger is rectangular, trapezoidal, semicircular or variable cross-section, and the air pressure and driving force required for the deformation of the soft finger are related to the cross-sectional shape of the soft finger. The soft finger can be realized through a pure bending structure, and each soft finger is bent and deformed. The muscle spasm force of the stroke finger and the tightness of the soft glove are used as external forces to change the motion deformation of the soft finger, so that it can drive the finger to perform rehabilitation exercises and assist crawl. Gloves are made of soft cloth suitable for donning and rehabilitation exercises.
本发明的原理:Principle of the present invention:
本发明提供了一种可以帮助手部无力、肌肉退化或者手部运动不灵活等患者恢复手部正常运动能力的装置。气动软体康复机械手可以像手套似的穿戴在手的背面,使手被动的跟随软体康复手的弯曲而使手产生弯曲,对于某些患者,可以通过不断的被动锻炼,舒活手部神经,并且重塑大脑中的手部神经控制网络,使患者可以恢复手部正常运动。The present invention provides a device that can help patients with hand weakness, muscle degeneration, or inflexible hand movement to restore the normal movement ability of the hand. The pneumatic software rehabilitation manipulator can be worn on the back of the hand like a glove, so that the hand passively follows the bending of the software rehabilitation hand to make the hand bend. For some patients, continuous passive exercise can be used to relax the nerves of the hand, and Reshape the hand neural control network in the brain, allowing patients to restore normal hand movement.
本发明也可以作为机器人的末端执行器,由于它可以产生类似于手指那样的多段式变形,因此可以像手那样进行物体的抓取,由于它的刚度较小,在抓取一般的物体时,不会对物体产生损害,在工业应用领域主要用做分拣、转移物体等任务,比如摘水果、分拣水果,不会对水果表面产生损害;家用领域则可以用来做家务(洗菜、按摩)等;民用领域则可以作为气动玩具,给人以活灵活现、惟妙惟肖的感觉。The present invention can also be used as an end effector of a robot. Because it can produce multi-stage deformation similar to fingers, it can grasp objects like a hand. Because of its small rigidity, when grasping general objects, It will not cause damage to objects. It is mainly used for tasks such as sorting and transferring objects in industrial applications, such as picking and sorting fruits, without causing damage to the surface of fruits; it can be used for household chores (washing vegetables, Massage), etc.; in the civilian field, it can be used as a pneumatic toy, giving people a vivid and lifelike feeling.
本发明包括康复手套和软体手指两个部分。当从伸展状态变为弯曲状态时,气动软体康复机械手可实现单方向弯曲变形带动中风手指康复运动;当从弯曲状态变为伸展状态时,可依靠软体手指材料的自身弹性和软体手套的弹性将中风手指拉回到伸展状态。The present invention includes two parts of recovery gloves and soft fingers. When changing from a stretched state to a bent state, the pneumatic software rehabilitation manipulator can achieve unidirectional bending deformation to drive the rehabilitation movement of stroke fingers; Stroke fingers back to stretch.
将软体手指分为两大类:弯曲伸长类和软体拇指类两种。Divide soft fingers into two categories: flexion and extension and soft thumbs.
弯曲伸长类包含5段:3段弯曲变形和2段伸长变形,每段的长度都可以根据软体手机的原理进行设计计算,最终得到的软体手指可以实现手指般的多段关节式变形。The bending and elongation category includes 5 sections: 3 sections of bending deformation and 2 sections of elongation deformation. The length of each section can be designed and calculated according to the principle of the soft phone, and the final soft finger can realize finger-like multi-segment joint deformation.
软体拇指包含5段:1段扭曲变形、1段扭转伸长变形、2段弯曲变形和1段伸长变形,每段的长度都可以根据软体手机的原理进行设计计算,最终得到的软体手指与拇指弯曲的多段关节式变形类似。The soft thumb consists of 5 sections: 1 section of twisting deformation, 1 section of twisting and elongation deformation, 2 sections of bending deformation and 1 section of elongation deformation. The length of each section can be designed and calculated according to the principle of the software mobile phone. The multi-segment articulation deformation of the flexed thumb is similar.
每根软体手指都包含三个部分:本体、纤维和限制应变层。本体为中空腔体,纤维包含左螺旋纤维和右螺旋纤维,纤维用来限制径向方向的膨胀变形,使软体手指可以承受更高的气压,限制应变层可以改变软体运动变形的方向,使其实现弯曲变形和扭曲变形。Each soft finger consists of three parts: a body, a fiber, and a strain-limiting layer. The body is a hollow cavity, and the fibers include left-helical fibers and right-helical fibers. The fibers are used to limit the expansion and deformation in the radial direction, so that the soft finger can withstand higher air pressure. Achieve bending and twisting deformations.
软体手指截面结构包含长方形、梯形、半圆形和变截面型等,其中,长方形、梯形和半圆形均可以实现常曲率弯曲,而变截面实现的是变曲率弯曲,软体手指变形所需的气压和产生的驱动力与截面形状相关。The cross-section structure of the soft finger includes rectangle, trapezoid, semicircle and variable cross section, etc. Among them, the rectangle, trapezoid and semicircle can all realize constant curvature bending, while the variable cross section realizes variable curvature bending, which is required for soft finger deformation. The air pressure and resulting driving force are related to the cross-sectional shape.
软体手指也可设计为纯弯曲结构,通过中风手指的肌肉痉挛力和软体手套的松紧度作为外力改变软体手指的运动变形,使其能够带动手指进行康复锻炼和助力理抓取。虽然这种结构的软体手指没能完全与手指贴合,但是可以通过合理设计手套的松紧度改善软体手指与中风手指的贴合度,这样的结构便于制造,而且输出的力较大,便于患者使用。The soft finger can also be designed as a pure bending structure. The muscle spasm force of the stroke finger and the tightness of the soft glove are used as external forces to change the motion deformation of the soft finger, so that it can drive the finger to perform rehabilitation exercises and assist physical grasping. Although the soft finger with this structure cannot fit the finger completely, the fit between the soft finger and the stroke finger can be improved by rationally designing the tightness of the glove. This structure is easy to manufacture and has a large output force, which is convenient for patients use.
设计软体手套的上下层,使其能够包裹软体手指和带动中风手指运动,选择合适的材料使得在康复时不会对患者造成不适。Design the upper and lower layers of the soft glove so that it can wrap the soft finger and drive the movement of the stroke finger, and choose the appropriate material so that it will not cause discomfort to the patient during rehabilitation.
气动软体康复手的结构主要包括三种材料:The structure of the pneumatic software rehabilitation hand mainly includes three materials:
本体:由超弹性材料构成,比如硅橡胶材料,对人体不能有伤害,无毒无味,没有副作用,材料弹性模量在0.1~1Mpa左右,与皮肤、肌肉等生物材料的弹性模量相当。此外材料的流动性、可浇注性要好,材料固化后不能有黏性,固化后的表面要光洁柔软。Body: Made of superelastic material, such as silicone rubber material, which will not harm the human body, is non-toxic, tasteless, and has no side effects. The elastic modulus of the material is about 0.1-1Mpa, which is equivalent to that of biological materials such as skin and muscle. In addition, the fluidity and castability of the material should be good, the material should not be sticky after curing, and the surface after curing should be smooth and soft.
如图3所示,软体手指截面形状有多种形状:比如长方形、梯形、半圆形、变截面等,不同截面产生的变形效果不一样,比如长方形和半圆形可以产生常曲率弯曲变形,而变截面型却产生变曲率弯曲变形,因此,在设计手指时可根据功能需要设计不同的截面形状。As shown in Figure 3, the cross-section shape of the soft finger has various shapes: such as rectangle, trapezoid, semi-circle, variable cross-section, etc. The deformation effects of different cross-sections are different. For example, rectangle and semi-circle can produce constant curvature bending deformation. However, the variable cross-section type produces variable curvature bending deformation. Therefore, different cross-sectional shapes can be designed according to functional requirements when designing fingers.
纤维:纤维的强度要高,直径要小,柔度要小,比普通缝纫使用的线的强度要高。易与本体材料粘接在一起,在使用时分为左螺旋纤维和右螺旋纤维。Fiber: The fiber should have high strength, small diameter, and low flexibility, which is stronger than the thread used in ordinary sewing. It is easy to be bonded with the body material, and can be divided into left-helical fibers and right-helical fibers when in use.
限制应变层:薄层网状纤维布不可拉伸,强度要求高,柔度要大,比如玻璃纤维层。它一般是网格状结构,中间小孔便于制造时液体浇筑,与本体材料粘为一体。Strain-limiting layer: The thin-layer mesh fiber cloth is not stretchable, and requires high strength and flexibility, such as glass fiber layer. It is generally a grid structure, and the small hole in the middle is convenient for liquid pouring during manufacture, and it is bonded with the body material as a whole.
如图1所示,伸长变形原理:伸长驱动器包含一个中空腔体,本体表面绕有左螺旋纤维和右螺旋纤维,对其充气后,产生轴向伸长变形,径向由于受到纤维的限制不会产生膨胀变形;其中,a为软材料制作的腔体,b为顺时针缠绕的纤维即左螺旋纤维,c为逆时针缠绕的纤维即右螺旋纤维,d为对缠绕了纤维的腔体充气后的伸长变形的示意图。As shown in Figure 1, the principle of elongation deformation: the elongation driver contains a hollow cavity, and the surface of the body is wound with left-helical fibers and right-helical fibers. After inflating it, it will produce axial elongation deformation. Restriction will not produce expansion deformation; where, a is the cavity made of soft material, b is the fiber wound clockwise, that is, the left-helical fiber, c is the fiber that is wound counterclockwise, that is, the right-helical fiber, and d is the cavity where the fiber is wound Schematic diagram of the elongation deformation of a body after inflation.
如图2所示,弯曲变形原理:弯曲驱动器包含一个中空腔体和一层限制应变层,本体表面绕有左螺旋纤维和右螺旋纤维,对其充气后,沿着不产生应变的限制应变层产生弯曲变形,径向由于受到纤维的限制不会产生膨胀变形;其中,e为限制应变层,f为对缠绕了纤维并加上限制应变层的腔体充气后的弯曲变形的示意图。As shown in Figure 2, the principle of bending deformation: the bending driver consists of a hollow cavity and a layer of strain-limiting layer. The surface of the body is wound with left-helical fibers and right-helical fibers. Bending deformation occurs, and expansion deformation does not occur in the radial direction due to the limitation of fibers; where, e is the strain-limiting layer, and f is a schematic diagram of bending deformation after inflating the cavity wrapped with fibers and adding the strain-limiting layer.
由于人手指产生的是多段式关节弯曲,因此软体康复手指也应该设计成多段式结构。软体康复手包含五根软体手指,每根手指的长度不一,分别与各根手指的长度近似,都是中空结构;不同的是,食指、中指、无名指、小指的变形类似,属于弯曲伸长类结构,只是各根手指的宽窄和长度不一样;拇指较为特殊,拇指的第一个关节为扭曲结构,需单独进行设计。Since the human finger produces multi-segment joint bending, the software rehabilitation finger should also be designed as a multi-segment structure. The soft rehabilitation hand consists of five soft fingers. Each finger has a different length and is similar to the length of each finger. They are all hollow structures. The difference is that the deformation of the index finger, middle finger, ring finger, and little finger is similar, which belongs to bending and elongation. Similar structures, but the width and length of each finger are different; the thumb is special, the first joint of the thumb is a twisted structure, which needs to be designed separately.
如图4和图5所示,弯曲伸长类结构软体手指包含5段,其中图4的a1、a2、a3为弯曲变形的长度,b1、b2为伸长变形的长度,各个部分的长度可按照软体变形的原理进行设计计算,它的变形结果如图5所示,可以产生三段弯曲和2段伸长,与手指弯曲变形类似,不会产生阻碍作用。As shown in Figure 4 and Figure 5, the soft finger with bending and elongation structure consists of 5 segments, where a 1 , a 2 , and a 3 in Figure 4 are the lengths of bending deformation, b 1 , b 2 are the lengths of elongation deformation, The length of each part can be designed and calculated according to the principle of soft body deformation. Its deformation results are shown in Figure 5, which can produce three sections of bending and two sections of elongation, which are similar to finger bending deformation and will not produce hindrance.
如图6和图7所示,软体拇指手指包含5段,其中图6的a1为扭曲变形长度、b1为扭转伸长变形长度、a2和a3为弯曲变形的长度,b2为伸长变形的长度,各个部分的长度也可按照软体变形的原理进行设计计算,它的变形结果如图7所示,可以产生类似于拇指的多段关节式变形。As shown in Figure 6 and Figure 7, the soft thumb finger consists of 5 sections, where a 1 in Figure 6 is the length of twisting deformation, b 1 is the length of torsional elongation deformation, a 2 and a 3 are the length of bending deformation, and b 2 is The length of elongation deformation and the length of each part can also be designed and calculated according to the principle of soft body deformation. Its deformation result is shown in Figure 7, which can produce multi-segment joint deformation similar to the thumb.
本发明的工作过程:Working process of the present invention:
根据患者手指尺寸设计制造出五根软体手指,保证实际制造出得软体手指与仿真分析的变形结果相近,每根手指都可以产生多段关节式运动学变形和足够的力带动手指运动。将软体手指装入手套中,根据患者手部的实际情况调整软体手指位置和松紧度。将每根软体手指的气管连接便携式驱动装置,对其进行充放气。为了实现能够自主控制软体康复手的运动,可通过采集小臂上的肌肉电信号并对其解码,将得到的识别信号作为触发信号控制电磁阀和比例阀实现气压和充放气速度调节,最终实现对软体康复手指的主动控制。Five soft fingers were designed and manufactured according to the size of the patient's fingers to ensure that the actually manufactured soft fingers are similar to the deformation results of the simulation analysis. Each finger can produce multi-segment joint kinematic deformation and sufficient force to drive the finger movement. Put the soft fingers into the glove, and adjust the position and tightness of the soft fingers according to the actual condition of the patient's hand. The air tubes of each soft finger are connected to a portable drive unit to inflate and deflate them. In order to realize the autonomous control of the movement of the software rehabilitation hand, the muscle electrical signal on the forearm can be collected and decoded, and the obtained identification signal can be used as a trigger signal to control the solenoid valve and proportional valve to adjust the air pressure and inflation and deflation speed. Realize the active control of the soft rehabilitation finger.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical ideas of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solutions according to the technical ideas proposed in the present invention shall fall within the scope of the claims of the present invention. within the scope of protection.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610802331.6A CN106309083B (en) | 2016-09-05 | 2016-09-05 | A kind of pneumatic software manipulators in rehabilitation of EMG controls |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610802331.6A CN106309083B (en) | 2016-09-05 | 2016-09-05 | A kind of pneumatic software manipulators in rehabilitation of EMG controls |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106309083A true CN106309083A (en) | 2017-01-11 |
CN106309083B CN106309083B (en) | 2018-09-04 |
Family
ID=57786508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610802331.6A Active CN106309083B (en) | 2016-09-05 | 2016-09-05 | A kind of pneumatic software manipulators in rehabilitation of EMG controls |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106309083B (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106956288A (en) * | 2017-04-28 | 2017-07-18 | 上海交通大学 | Multiple degrees of freedom software grabbing device |
CN107184364A (en) * | 2017-07-07 | 2017-09-22 | 北京恒通信佳科技发展有限公司 | A kind of bellows |
CN107234621A (en) * | 2017-06-16 | 2017-10-10 | 广东工业大学 | A kind of pneumatic soft robot of imitative looper climbing |
CN107280915A (en) * | 2017-07-14 | 2017-10-24 | 中国科学院自动化研究所 | The hand convalescence device of software gas drive |
CN107374908A (en) * | 2017-02-24 | 2017-11-24 | 苏州柔触机器人科技有限公司 | A kind of joint rehabilitation device |
CN107397650A (en) * | 2017-08-15 | 2017-11-28 | 西安交通大学 | A kind of pneumatic software manipulator of the variation rigidity of achievable isometric exercise |
CN107718021A (en) * | 2017-10-27 | 2018-02-23 | 华南理工大学 | A kind of pneumatic software handgrip |
CN108044606A (en) * | 2017-12-29 | 2018-05-18 | 广东技术师范学院 | A kind of rehabilitation formula software manipulator |
CN108214521A (en) * | 2017-12-26 | 2018-06-29 | 北京邮电大学 | Can autonomous even contact power soft robot |
WO2018136004A1 (en) * | 2017-01-23 | 2018-07-26 | National University Of Singapore | A fluid-driven actuator and its applications |
CN108392375A (en) * | 2018-04-19 | 2018-08-14 | 郑州大学 | A kind of pneumatic software functional rehabilitation gloves |
CN108568838A (en) * | 2018-04-08 | 2018-09-25 | 西安交通大学 | A kind of heavy load flexible manipulator based on rigid constraint |
CN108621129A (en) * | 2017-04-14 | 2018-10-09 | 香港中文大学 | Flexible driving type mechanical arm |
CN108943007A (en) * | 2018-08-24 | 2018-12-07 | 哈尔滨工业大学 | A kind of aerodynamic twist joint of air pressure strengthen rigidity |
CN109223430A (en) * | 2018-07-23 | 2019-01-18 | 上海交通大学 | Wearable software restoring gloves and its control method, system |
CN109247638A (en) * | 2018-09-25 | 2019-01-22 | 北京航空航天大学 | A kind of force feedback gloves based on software variation rigidity joint driver |
CN109483574A (en) * | 2018-11-12 | 2019-03-19 | 上海交通大学 | The just soft coupling machinery finger of variation rigidity endoskeleton |
CN109875839A (en) * | 2019-03-20 | 2019-06-14 | 金陵科技学院 | A mobile device for medical care and hand rehabilitation with a soft manipulator |
CN109925166A (en) * | 2019-03-14 | 2019-06-25 | 清华大学 | A kind of exoskeleton rehabilitation system and method for rehabilitation |
CN109955275A (en) * | 2019-03-20 | 2019-07-02 | 中国地质大学(武汉) | Thermal expansion fluid composite special-shaped cavity-driven robotic soft hand |
CN109999429A (en) * | 2019-04-17 | 2019-07-12 | 上海司羿智能科技有限公司 | Hand rehabilitation training system and training method |
CN110037895A (en) * | 2019-05-23 | 2019-07-23 | 武汉轻工大学 | A kind of restoring gloves and healing hand function equipment |
CN110269776A (en) * | 2019-06-28 | 2019-09-24 | 清华大学深圳研究生院 | A kind of finger recovering aid fingerstall and its manufacturing method based on pneumatic software actuator |
CN110497439A (en) * | 2018-05-16 | 2019-11-26 | 天津大学 | A double-joint variable-section soft hand with wedge-shaped cross-grain structure |
CN110613580A (en) * | 2019-02-28 | 2019-12-27 | 复旦大学 | Finger-to-finger rehabilitation training glove and method |
CN110815199A (en) * | 2019-11-12 | 2020-02-21 | 上海交通大学 | Bending Variable Stiffness Self-Sensing Pneumatic Soft Actuator |
CN110888528A (en) * | 2019-11-14 | 2020-03-17 | 南京航空航天大学 | A wearable device for measuring the splay angle between fingers |
CN110987245A (en) * | 2019-12-13 | 2020-04-10 | 复旦大学 | Fibrous pressure luminescence sensor and preparation method and application thereof |
CN111150602A (en) * | 2018-11-07 | 2020-05-15 | 哈尔滨工业大学 | Rigid-flexible coupled extensible joint type soft exoskeleton glove and method |
CN111390899A (en) * | 2020-03-28 | 2020-07-10 | 徐州柚创谷智能科技有限公司 | Flexible pneumatic arm for intelligent manufacturing equipment |
CN111469435A (en) * | 2020-04-01 | 2020-07-31 | 浙江工业大学 | Bistable flexible robotic gripper with bionic petal structure and method for making the same |
CN111529311A (en) * | 2020-05-09 | 2020-08-14 | 江南大学 | Integrated soft glove system for medical rehabilitation |
CN111773031A (en) * | 2020-07-24 | 2020-10-16 | 上海交通大学 | Human hand thumb adduction rehabilitation exoskeleton device combined with visual feedback system |
CN111870476A (en) * | 2020-06-28 | 2020-11-03 | 吉林化工学院 | Finger soft body rehabilitation training device |
CN111939001A (en) * | 2020-02-24 | 2020-11-17 | 合肥工业大学 | An integral soft body finger and finger trainer |
CN112022623A (en) * | 2020-09-14 | 2020-12-04 | 北京航空航天大学 | Wearable flexible upper limb assistance exoskeleton mechanism based on software driver |
CN112353630A (en) * | 2020-09-28 | 2021-02-12 | 东华大学 | Pneumatic wrist exoskeleton auxiliary component |
CN112515915A (en) * | 2020-11-30 | 2021-03-19 | 重庆电子工程职业学院 | Wearable finger rehabilitation robot |
WO2021068169A1 (en) * | 2019-10-10 | 2021-04-15 | Xiaoping Lu | Pneumatically-actuated-muscle articulated plush toy |
CN113332104A (en) * | 2021-07-08 | 2021-09-03 | 中国科学技术大学 | Recovered robot gloves of articulated type software |
CN115570577A (en) * | 2021-11-03 | 2023-01-06 | 南京航空航天大学 | A Pneumatic Tea Picking Soft Manipulator Imitating Hand Picking |
WO2023015838A1 (en) * | 2021-08-09 | 2023-02-16 | 东南大学 | Method for manufacturing and controlling rehabilitation gloves based on bidirectional driver of honeycomb-like structure |
US11969891B2 (en) | 2020-03-20 | 2024-04-30 | Yanshan University | 4D printed gripper with flexible finger joints and trajectory tracking control method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101219075A (en) * | 2007-11-27 | 2008-07-16 | 中国计量学院 | Multi-DOF Intelligent Pneumatic Muscle Based on Shape Memory Alloy Deformable Mesh |
CN101433491A (en) * | 2008-12-05 | 2009-05-20 | 华中科技大学 | Multiple-freedom degree wearing type rehabilitation training robot for function of hand and control system thereof |
WO2012165880A2 (en) * | 2011-05-31 | 2012-12-06 | 주식회사 네오펙트 | Apparatus for rehabilitation exercise, method and device for controlling proactive assistance control in apparatus for rehabilitation exercise, and mobile-linked glove apparatus for inputting data |
CN105380773A (en) * | 2015-11-10 | 2016-03-09 | 哈尔滨工业大学 | Exercise assisting device based on elongate pneumatic muscles |
-
2016
- 2016-09-05 CN CN201610802331.6A patent/CN106309083B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101219075A (en) * | 2007-11-27 | 2008-07-16 | 中国计量学院 | Multi-DOF Intelligent Pneumatic Muscle Based on Shape Memory Alloy Deformable Mesh |
CN101433491A (en) * | 2008-12-05 | 2009-05-20 | 华中科技大学 | Multiple-freedom degree wearing type rehabilitation training robot for function of hand and control system thereof |
WO2012165880A2 (en) * | 2011-05-31 | 2012-12-06 | 주식회사 네오펙트 | Apparatus for rehabilitation exercise, method and device for controlling proactive assistance control in apparatus for rehabilitation exercise, and mobile-linked glove apparatus for inputting data |
CN105380773A (en) * | 2015-11-10 | 2016-03-09 | 哈尔滨工业大学 | Exercise assisting device based on elongate pneumatic muscles |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11918529B2 (en) | 2017-01-23 | 2024-03-05 | National University Of Singapore | Fluid-driven actuator and its applications |
WO2018136004A1 (en) * | 2017-01-23 | 2018-07-26 | National University Of Singapore | A fluid-driven actuator and its applications |
CN107374908A (en) * | 2017-02-24 | 2017-11-24 | 苏州柔触机器人科技有限公司 | A kind of joint rehabilitation device |
CN108621129B (en) * | 2017-04-14 | 2022-06-14 | 香港中文大学 | Flexible driving type mechanical arm |
CN108621129A (en) * | 2017-04-14 | 2018-10-09 | 香港中文大学 | Flexible driving type mechanical arm |
US11129766B2 (en) | 2017-04-14 | 2021-09-28 | The Chinese University Of Hong Kong | Flexibly driven robotic hands |
CN106956288A (en) * | 2017-04-28 | 2017-07-18 | 上海交通大学 | Multiple degrees of freedom software grabbing device |
CN107234621B (en) * | 2017-06-16 | 2024-02-13 | 广东工业大学 | Pneumatic soft robot imitating inchworm climbing |
CN107234621A (en) * | 2017-06-16 | 2017-10-10 | 广东工业大学 | A kind of pneumatic soft robot of imitative looper climbing |
CN107184364B (en) * | 2017-07-07 | 2018-04-17 | 北京恒通信佳科技发展有限公司 | A kind of bellows |
CN107184364A (en) * | 2017-07-07 | 2017-09-22 | 北京恒通信佳科技发展有限公司 | A kind of bellows |
US10772784B2 (en) | 2017-07-07 | 2020-09-15 | Beijing Hengtong Xinjia Technology Development Co, Ltd. | Corrugated tube |
CN107280915A (en) * | 2017-07-14 | 2017-10-24 | 中国科学院自动化研究所 | The hand convalescence device of software gas drive |
CN107280915B (en) * | 2017-07-14 | 2019-12-13 | 中国科学院自动化研究所 | Soft gas-driven hand rehabilitation device |
CN107397650A (en) * | 2017-08-15 | 2017-11-28 | 西安交通大学 | A kind of pneumatic software manipulator of the variation rigidity of achievable isometric exercise |
CN107718021A (en) * | 2017-10-27 | 2018-02-23 | 华南理工大学 | A kind of pneumatic software handgrip |
CN107718021B (en) * | 2017-10-27 | 2023-05-23 | 华南理工大学 | Pneumatic soft tongs |
CN108214521A (en) * | 2017-12-26 | 2018-06-29 | 北京邮电大学 | Can autonomous even contact power soft robot |
CN108214521B (en) * | 2017-12-26 | 2019-08-09 | 北京邮电大学 | A soft robot capable of autonomously balancing contact forces |
CN108044606A (en) * | 2017-12-29 | 2018-05-18 | 广东技术师范学院 | A kind of rehabilitation formula software manipulator |
CN108568838A (en) * | 2018-04-08 | 2018-09-25 | 西安交通大学 | A kind of heavy load flexible manipulator based on rigid constraint |
CN108392375A (en) * | 2018-04-19 | 2018-08-14 | 郑州大学 | A kind of pneumatic software functional rehabilitation gloves |
CN110497439A (en) * | 2018-05-16 | 2019-11-26 | 天津大学 | A double-joint variable-section soft hand with wedge-shaped cross-grain structure |
CN109223430A (en) * | 2018-07-23 | 2019-01-18 | 上海交通大学 | Wearable software restoring gloves and its control method, system |
CN108943007A (en) * | 2018-08-24 | 2018-12-07 | 哈尔滨工业大学 | A kind of aerodynamic twist joint of air pressure strengthen rigidity |
CN108943007B (en) * | 2018-08-24 | 2020-06-02 | 哈尔滨工业大学 | A pneumatic torsion joint with air pressure enhancing stiffness |
CN109247638A (en) * | 2018-09-25 | 2019-01-22 | 北京航空航天大学 | A kind of force feedback gloves based on software variation rigidity joint driver |
CN111150602A (en) * | 2018-11-07 | 2020-05-15 | 哈尔滨工业大学 | Rigid-flexible coupled extensible joint type soft exoskeleton glove and method |
CN109483574A (en) * | 2018-11-12 | 2019-03-19 | 上海交通大学 | The just soft coupling machinery finger of variation rigidity endoskeleton |
CN110613580A (en) * | 2019-02-28 | 2019-12-27 | 复旦大学 | Finger-to-finger rehabilitation training glove and method |
CN109925166A (en) * | 2019-03-14 | 2019-06-25 | 清华大学 | A kind of exoskeleton rehabilitation system and method for rehabilitation |
CN109955275B (en) * | 2019-03-20 | 2023-12-29 | 中国地质大学(武汉) | Thermal expansion fluid composite special-shaped cavity driving type robot soft hand |
CN109955275A (en) * | 2019-03-20 | 2019-07-02 | 中国地质大学(武汉) | Thermal expansion fluid composite special-shaped cavity-driven robotic soft hand |
CN109875839A (en) * | 2019-03-20 | 2019-06-14 | 金陵科技学院 | A mobile device for medical care and hand rehabilitation with a soft manipulator |
CN109999429A (en) * | 2019-04-17 | 2019-07-12 | 上海司羿智能科技有限公司 | Hand rehabilitation training system and training method |
CN110037895A (en) * | 2019-05-23 | 2019-07-23 | 武汉轻工大学 | A kind of restoring gloves and healing hand function equipment |
CN110269776A (en) * | 2019-06-28 | 2019-09-24 | 清华大学深圳研究生院 | A kind of finger recovering aid fingerstall and its manufacturing method based on pneumatic software actuator |
CN110269776B (en) * | 2019-06-28 | 2021-09-07 | 清华大学深圳研究生院 | Finger-assisted rehabilitation finger stall based on pneumatic soft actuator and manufacturing method thereof |
WO2021068169A1 (en) * | 2019-10-10 | 2021-04-15 | Xiaoping Lu | Pneumatically-actuated-muscle articulated plush toy |
CN110815199A (en) * | 2019-11-12 | 2020-02-21 | 上海交通大学 | Bending Variable Stiffness Self-Sensing Pneumatic Soft Actuator |
CN110888528A (en) * | 2019-11-14 | 2020-03-17 | 南京航空航天大学 | A wearable device for measuring the splay angle between fingers |
CN110888528B (en) * | 2019-11-14 | 2021-06-15 | 南京航空航天大学 | A wearable device for measuring the splay angle between fingers |
CN110987245A (en) * | 2019-12-13 | 2020-04-10 | 复旦大学 | Fibrous pressure luminescence sensor and preparation method and application thereof |
CN110987245B (en) * | 2019-12-13 | 2021-04-30 | 复旦大学 | Fibrous pressure luminescence sensor and preparation method and application thereof |
CN111939001A (en) * | 2020-02-24 | 2020-11-17 | 合肥工业大学 | An integral soft body finger and finger trainer |
US11969891B2 (en) | 2020-03-20 | 2024-04-30 | Yanshan University | 4D printed gripper with flexible finger joints and trajectory tracking control method thereof |
CN111390899A (en) * | 2020-03-28 | 2020-07-10 | 徐州柚创谷智能科技有限公司 | Flexible pneumatic arm for intelligent manufacturing equipment |
CN111469435A (en) * | 2020-04-01 | 2020-07-31 | 浙江工业大学 | Bistable flexible robotic gripper with bionic petal structure and method for making the same |
CN111529311A (en) * | 2020-05-09 | 2020-08-14 | 江南大学 | Integrated soft glove system for medical rehabilitation |
CN111870476A (en) * | 2020-06-28 | 2020-11-03 | 吉林化工学院 | Finger soft body rehabilitation training device |
CN111870476B (en) * | 2020-06-28 | 2022-12-23 | 吉林化工学院 | Finger software rehabilitation training device |
CN111773031A (en) * | 2020-07-24 | 2020-10-16 | 上海交通大学 | Human hand thumb adduction rehabilitation exoskeleton device combined with visual feedback system |
CN112022623A (en) * | 2020-09-14 | 2020-12-04 | 北京航空航天大学 | Wearable flexible upper limb assistance exoskeleton mechanism based on software driver |
CN112353630A (en) * | 2020-09-28 | 2021-02-12 | 东华大学 | Pneumatic wrist exoskeleton auxiliary component |
CN112515915B (en) * | 2020-11-30 | 2023-01-17 | 重庆电子工程职业学院 | Wearable finger rehabilitation robot |
CN112515915A (en) * | 2020-11-30 | 2021-03-19 | 重庆电子工程职业学院 | Wearable finger rehabilitation robot |
CN113332104A (en) * | 2021-07-08 | 2021-09-03 | 中国科学技术大学 | Recovered robot gloves of articulated type software |
WO2023015838A1 (en) * | 2021-08-09 | 2023-02-16 | 东南大学 | Method for manufacturing and controlling rehabilitation gloves based on bidirectional driver of honeycomb-like structure |
US11701289B2 (en) | 2021-08-09 | 2023-07-18 | Southeast University | Method for manufacturing and controlling rehabilitation glove based on bidirectional driver of honeycomb imitating structure |
CN115570577A (en) * | 2021-11-03 | 2023-01-06 | 南京航空航天大学 | A Pneumatic Tea Picking Soft Manipulator Imitating Hand Picking |
Also Published As
Publication number | Publication date |
---|---|
CN106309083B (en) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106309083B (en) | A kind of pneumatic software manipulators in rehabilitation of EMG controls | |
CN105919772B (en) | A kind of wearable hand device for healing and training | |
CN107397650A (en) | A kind of pneumatic software manipulator of the variation rigidity of achievable isometric exercise | |
CN108371610B (en) | Modular soft rehabilitation glove and system for assisting finger extension | |
CN205698423U (en) | A kind of wearable hand device for healing and training | |
CN101125112A (en) | A wearable upper limb rehabilitation training robot device | |
JP4564788B2 (en) | Wearable power assist device | |
CN108371609A (en) | A kind of software driver for assisting human hand thumb stretching, extension and abduction | |
CN108354779B (en) | A software driver for assisting human hand's four-finger stretching | |
CN106074074B (en) | A kind of eccentric fiber composite elastic body and the device for healing and training with the elastomer | |
CN206473520U (en) | Finger rehabilitation training device | |
CN105943308A (en) | Hand exoskeleton device for rehabilitation training | |
CN104970949A (en) | Wearable type pneumatic muscle and knuckle active/passive rehabilitation training device | |
CN110269779B (en) | Hand rehabilitation device based on flexible driver | |
CN109938963A (en) | Wearable hand mechanical exoskeleton with assisted grasping and rehabilitation training functions | |
JP7411317B2 (en) | Small and portable robot systems with voice recognition | |
CN105662784A (en) | Wearable and portable hand rehabilitation training device | |
CN106618967A (en) | Novel portable hand exoskeleton recovery device | |
CN110037890B (en) | An exoskeleton robot for hand function rehabilitation based on double four-bar mechanism | |
CN111012627A (en) | An active upper limb exercise rehabilitation assisting exoskeleton | |
CN111467182A (en) | Household hand function training instrument | |
CN111789745A (en) | A kind of pneumatic rehabilitation gloves | |
CN115399980A (en) | Wearable glove capable of inhibiting tremor and assisting in grabbing and control method thereof | |
CN211512540U (en) | Concave-convex type resettable multi-section flexible rehabilitation glove | |
CN210998696U (en) | Exoskeleton mechanical auxiliary hand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |