CN105602564B - A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Zn and preparation method - Google Patents
A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Zn and preparation method Download PDFInfo
- Publication number
- CN105602564B CN105602564B CN201610122552.9A CN201610122552A CN105602564B CN 105602564 B CN105602564 B CN 105602564B CN 201610122552 A CN201610122552 A CN 201610122552A CN 105602564 B CN105602564 B CN 105602564B
- Authority
- CN
- China
- Prior art keywords
- conversion luminescent
- luminescent material
- preparation
- earth oxide
- enhanced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
- C09K11/7769—Oxides
- C09K11/7771—Oxysulfides
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明提供了一种Zn增强的稀土硫氧化物上转换发光材料及制备方法,该材料的化学式为(Ln1‑x‑y‑zYbxREyZnz)2O2S,其中0.04≤x≤0.2、0.005≤y≤0.02、0.005≤z≤0.02;Ln为La、Y或Gd中的一种,RE为Er、Ho、Tm、Pr、Eu或Tb中的一种。该材料发光强度大大增强,提高了50%~120%。该材料的制备方法,采用沉淀剂反滴的方法得到稀土氧化物原料,然后采用气体硫化法,反应条件简单、易控,该方法可以很好的保持稀土氧化物的形貌和颗粒尺寸,该方法所制备的稀土硫氧化物上转换发光材料多呈现球形,颗粒尺寸均匀,颗粒分布范围较窄,D90=0.2‑0.5μm。
The invention provides a Zn-enhanced rare-earth sulfur oxide up-conversion luminescent material and a preparation method. The chemical formula of the material is (Ln 1-x-y-z Yb x RE y Zn z ) 2 O 2 S, wherein 0.04≤ x≤0.2, 0.005≤y≤0.02, 0.005≤z≤0.02; Ln is one of La, Y or Gd, and RE is one of Er, Ho, Tm, Pr, Eu or Tb. The luminous intensity of the material is greatly enhanced by 50% to 120%. The preparation method of the material adopts the method of back-dropping the precipitant to obtain the rare earth oxide raw material, and then adopts the gas vulcanization method. The reaction conditions are simple and easy to control. This method can well maintain the morphology and particle size of the rare earth oxide. The rare earth sulfur oxide up-conversion luminescent materials prepared by the method are mostly spherical, with uniform particle size and narrow particle distribution range, D 90 =0.2-0.5 μm.
Description
技术领域technical field
本发明涉及精细化工领域,具体而言,涉及一种Zn增强的稀土硫氧化物上转换发光材料及制备方法。The invention relates to the field of fine chemical industry, in particular to a Zn-enhanced rare earth sulfur oxide up-conversion luminescent material and a preparation method.
背景技术Background technique
近年来,近红外半导体激光器二极管输出功率的提高,为上转换发光材料提供了有效的激发泵浦源,促进了上转换发光材料大规模的发展,在红绿蓝短波长激光器、三维立体显示、红外探测技术、防伪技术、生物分子荧光标记和太阳能电池等领域得到了实际或潜在的应用。基质材料是上转换发光材料的主要组成部分,其物理化学性质很大程度上决定了上转换发光材料的整体性能。硫氧化物因具有良好的热稳定性和化学稳定性,禁带宽度为4.6-4.8eV,适合于掺杂离子,其最大声子能为520cm-1,被认为是上转换发光材料潜在的基质材料。In recent years, the improvement of the output power of near-infrared semiconductor laser diodes has provided an effective excitation pump source for up-conversion luminescent materials, and promoted the large-scale development of up-conversion luminescent materials. Infrared detection technology, anti-counterfeiting technology, biomolecular fluorescent labeling and solar cells have been applied in actual or potential fields. The host material is the main component of the up-conversion luminescent material, and its physical and chemical properties largely determine the overall performance of the up-conversion luminescent material. Due to its good thermal and chemical stability, sulfur oxide is suitable for doping ions with a band gap of 4.6-4.8eV, and its maximum phonon energy is 520cm -1 , so it is considered as a potential host for upconversion luminescent materials. Material.
稀土硫氧化物上转换发光材料的制备方法有很多,其中硫熔法的主要优点在于适用于工业大规模生产,晶体完整,发光性能优于其他方法制备的产品。但是硫熔法的反应温度比较高,通常性能良好的产品反应温度高达1200℃,反应过程是不容易控制的。同时硫熔法的助熔剂用量和种类不固定,目前还没有一个明确的范围。另外,硫熔法所采用的氧化物原料一般直接使用市场上购买的稀土氧化物,未经进一步优化处理,颗粒尺寸不均匀,团聚较为严重,会影响稀土硫氧化物产物的颗粒物性。There are many preparation methods for rare earth sulfur oxide up-conversion luminescent materials, among which the main advantage of the sulfur melting method is that it is suitable for large-scale industrial production, the crystal is complete, and the luminescence performance is better than that of products prepared by other methods. However, the reaction temperature of the sulfur melting method is relatively high, and the reaction temperature of products with good performance is usually as high as 1200 ° C, and the reaction process is not easy to control. At the same time, the amount and type of flux used in the sulfur melting method are not fixed, and there is no clear range at present. In addition, the oxide raw materials used in the sulfur melting method generally use the rare earth oxides purchased in the market directly. Without further optimization, the particle size is uneven and the agglomeration is serious, which will affect the particle properties of the rare earth sulfur oxide product.
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
本发明的第一目的在于提供一种Zn增强的稀土硫氧化物上转换发光材料,以解决现有稀土硫氧化物上转换发光材料发光强度弱的问题,所述的Zn增强的稀土硫氧化物上转换发光材料,由于Zn的掺杂优化了稀土硫氧化物的晶体结构,降低了晶体结构对称性和声子能量,发光强度大大增强,提高了50%~120%。The first purpose of the present invention is to provide a Zn-enhanced rare earth oxysulfide up-conversion luminescent material to solve the problem of weak luminous intensity of existing rare-earth oxysulfide up-conversion luminescent materials. The Zn-enhanced rare earth oxysulfide For the up-conversion luminescent material, since Zn doping optimizes the crystal structure of the rare earth oxysulfide, the crystal structure symmetry and phonon energy are reduced, and the luminous intensity is greatly enhanced by 50% to 120%.
本发明的第二目的在于提供一种所述的Zn增强的稀土硫氧化物上转换发光材料的制备方法,该方法采用沉淀剂反滴的方法制备稀土氧化物原料,以解决现有购买的稀土氧化物原料颗粒尺寸不均匀、团聚较为严重的问题,所制备的稀土氧化物原料具有颗粒呈现球形、颗粒大小均匀、分散性好、不需要球磨、可直接使用等优点。然后,采用气体硫化法取代传统的硫熔法,反应条件简单、易控,该方法可以很好的保持稀土氧化物的形貌和颗粒尺寸。The second object of the present invention is to provide a preparation method of the Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the method adopts the method of precipitant reverse dripping to prepare rare earth oxide raw materials, so as to solve the problem of existing purchase of rare earth Oxide raw materials have uneven particle size and serious agglomeration problems. The prepared rare earth oxide raw materials have the advantages of spherical particles, uniform particle size, good dispersibility, no need for ball milling, and can be used directly. Then, the gas vulcanization method is used to replace the traditional sulfur melting method. The reaction conditions are simple and easy to control. This method can well maintain the morphology and particle size of rare earth oxides.
为了实现本发明的上述目的,特采用以下技术方案:In order to realize the above-mentioned purpose of the present invention, special adopt following technical scheme:
一种Zn增强的稀土硫氧化物上转换发光材料,该材料的化学式为(Ln1-x-y- zYbxREyZnz)2O2S,其中0.04≤x≤0.2、0.005≤y≤0.02、0.005≤z≤0.02;其中Ln为La、Y或Gd中的一种,RE为Er、Ho、Tm、Pr、Eu或Tb中的一种。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of the material is (Ln 1-xy- z Yb x RE y Zn z ) 2 O 2 S, wherein 0.04≤x≤0.2, 0.005≤y≤0.02 , 0.005≤z≤0.02; where Ln is one of La, Y or Gd, and RE is one of Er, Ho, Tm, Pr, Eu or Tb.
上转换发光是在长波长光激发下,可持续发射波长比激发光波长短的光。上转换发光本质上是一种反stocks发光,即辐射的能量大于所吸收的能量。上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特征,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。二价的Zn2+在稀土硫氧化物上转换发光材料中,优化了稀土硫氧化物的晶体结构,降低了晶体结构对称性和声子能量,这是由于Zn2+以填隙的方式进入稀土硫氧化物的晶格,产生晶格畸变,改变了稀土硫氧化物的晶体场。Up-conversion luminescence is the continuous emission of light with a wavelength shorter than that of the excitation light under the excitation of long-wavelength light. Up-conversion luminescence is essentially a kind of anti-stocks luminescence, that is, the radiated energy is greater than the absorbed energy. Up-conversion materials are mainly solid compounds doped with rare earth elements. Using the metastable energy level characteristics of rare earth elements, they can absorb multiple low-energy long-wave radiations, thereby turning infrared light invisible to the human eye into visible light. Divalent Zn 2+ optimizes the crystal structure of rare earth oxysulfide in the up-conversion luminescent material of rare earth oxysulfide, which reduces the crystal structure symmetry and phonon energy, which is because Zn 2+ enters in the form of interstitial The crystal lattice of the rare earth oxysulfide produces lattice distortion, which changes the crystal field of the rare earth oxysulfide.
一种Zn增强的稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:A preparation method of a Zn-enhanced rare earth oxysulfide up-conversion luminescent material, comprising the following steps:
(1)、按化学式(Ln1-x-y-zYbxREyZnz)2O2S称取所需原料Ln(NO3)3、Yb(NO3)3、RE(NO3)3和Zn(NO3)2,将上述原料溶解,配制成硝酸盐溶液;(1) According to the chemical formula (Ln 1-xyz Yb x RE y Zn z ) 2 O 2 S, weigh the required raw materials Ln(NO 3 ) 3 , Yb(NO 3 ) 3 , RE(NO 3 ) 3 and Zn( NO 3 ) 2 , dissolving the above raw materials to prepare a nitrate solution;
(2)、将步骤(1)所述的硝酸盐溶液滴入沉淀剂溶液中,并搅拌;滴定结束后,继续搅拌,并将滴定后的溶液密封、静置陈化、过滤;(2), the nitrate solution described in step (1) is dripped in the precipitating agent solution, and stir; After the titration finishes, continue to stir, and the solution after the titration is sealed, left to age, and filtered;
(3)、将步骤(2)中过滤后的沉淀用去离子水洗涤、烘干后,将沉淀升温到600-800℃,再保温后降至室温;(3), after the precipitate filtered in step (2) is washed with deionized water and dried, the temperature of the precipitate is raised to 600-800 ° C, and then the temperature is lowered to room temperature;
(4)、将步骤(3)中降至室温后的产物与硫单质混合,然后在惰性气体氛围中升温到800-1000℃,再保温后降至室温,得到该Zn增强的稀土硫氧化物上转换发光材料。(4) Mix the product after cooling down to room temperature in step (3) with sulfur element, then raise the temperature to 800-1000° C. in an inert gas atmosphere, and then lower the temperature to room temperature after keeping warm to obtain the Zn-enhanced rare earth sulfur oxide Up-converting luminescent materials.
当x、y和z在可选范围内选择不同的值时,称取等摩尔数的硝酸盐Ln(NO3)3、Yb(NO3)3、RE(NO3)3和Zn(NO3)2,配制沉淀剂溶液,然后将硝酸盐溶液反滴入沉淀剂溶液。沉淀剂溶液的用量,根据沉淀剂中阴离子的价态和称取的Ln(NO3)3、Yb(NO3)3、RE(NO3)3和Zn(NO3)2的摩尔数所决定的,保证沉淀剂中起到沉淀作用的阴离子的摩尔数与Ln(NO3)3、Yb(NO3)3、RE(NO3)3和Zn(NO3)2氧离子的摩尔数在化合价上是配平的,以达到电荷平衡。此时,沉淀剂过量,沉淀反应反应充分。反应完成后,过滤清洗沉淀,升温到600-800℃并保温,有助于晶体的形成,保证晶格的完整程度。然后根据称取的原料的量,量取适量的硫单质,混合后温到800-1000℃,保温以保证反应充分。When x, y and z select different values within the optional range, weigh the equimolar nitrates Ln(NO 3 ) 3 , Yb(NO 3 ) 3 , RE(NO 3 ) 3 and Zn(NO 3 ) 2 , prepare the precipitant solution, and then back-drop the nitrate solution into the precipitant solution. The amount of precipitant solution is determined according to the valence state of the anion in the precipitant and the moles of Ln(NO 3 ) 3 , Yb(NO 3 ) 3 , RE(NO 3 ) 3 and Zn(NO 3 ) 2 To ensure that the number of moles of anions in the precipitating agent and the number of moles of Ln(NO 3 ) 3 , Yb(NO 3 ) 3 , RE(NO 3 ) 3 and Zn(NO 3 ) 2 oxygen ions are in the same valence is trimmed to achieve charge balance. At this time, the precipitating agent is excessive, and the precipitation reaction is sufficient. After the reaction is completed, filter and clean the precipitate, raise the temperature to 600-800°C and keep it warm to help the formation of crystals and ensure the integrity of the crystal lattice. Then, according to the amount of raw materials weighed, measure an appropriate amount of sulfur element, mix and heat to 800-1000°C, and keep warm to ensure sufficient reaction.
本发明提供的方法,采用气体硫化法,比硫熔法更简单、方便,且反应条件容易控制。The method provided by the invention adopts the gas vulcanization method, which is simpler and more convenient than the sulfur melting method, and the reaction conditions are easy to control.
优选的,在步骤(1)中,所述沉淀剂为草酸,且所述草酸与所述上转换发光材料中所有金属元素的摩尔比为:1:(1-1.5)。Preferably, in step (1), the precipitating agent is oxalic acid, and the molar ratio of the oxalic acid to all metal elements in the up-conversion luminescent material is: 1: (1-1.5).
金属离子与草酸可以形成金属草酸盐沉淀。Metal ions and oxalic acid can form metal oxalate precipitation.
优选的,在步骤(2)中,所述继续搅拌的时间为0.5-1.5h,所述静置陈化的时间为10-20小时。Preferably, in step (2), the time for continuing stirring is 0.5-1.5 h, and the time for standing and aging is 10-20 hours.
搅拌和陈化的操作,可以保证反应充分进行。Stirring and aging operations can ensure that the reaction is fully carried out.
优选的,在步骤(3)中,所述用去离子水洗涤的次数为3-5次。Preferably, in step (3), the number of times of washing with deionized water is 3-5 times.
洗涤3-5次,可以洗去多余的杂质。Wash 3-5 times to remove excess impurities.
优选的,在步骤(3)中,所述烘干的温度为60-80℃。Preferably, in step (3), the drying temperature is 60-80°C.
优选的,在步骤(3)和步骤(4)中,所述升温采用快速升温箱式电阻炉,升温速率为3-5℃/分钟。Preferably, in step (3) and step (4), the temperature rise adopts a rapid temperature rise box-type resistance furnace, and the temperature rise rate is 3-5° C./min.
升温速率对发光材料的晶体形成和表面形貌都有着至关重要的作用,升温速率过快会导致晶体生长过快,使晶体形貌不够均匀;过慢会拖慢实验的效率和进程。The heating rate plays a vital role in the crystal formation and surface morphology of luminescent materials. If the heating rate is too fast, the crystal growth will be too fast and the crystal morphology will not be uniform; if the heating rate is too slow, the efficiency and progress of the experiment will be slowed down.
优选的,在步骤(3)中,所述保温的时间为2-4小时;Preferably, in step (3), the time of the heat preservation is 2-4 hours;
和/或;and / or;
在步骤(4)中,所述保温的时间为3-5小时。In step (4), the time of the heat preservation is 3-5 hours.
优选的,在步骤(4)中,所述惰性气体为氮气或者氩气中的一种。Preferably, in step (4), the inert gas is one of nitrogen or argon.
惰性气体气氛下,可以防止原料与空气中的氧气反应,影响发光材料的纯度。Under the inert gas atmosphere, it can prevent the raw material from reacting with the oxygen in the air and affect the purity of the luminescent material.
优选的,在步骤(4)中,所述硫单质与所述产物的摩尔比为5-7。Preferably, in step (4), the molar ratio of the sulfur element to the product is 5-7.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明提供的一种Zn增强的稀土硫氧化物上转换发光材料,由于Zn的掺杂优化了稀土硫氧化物的晶体结构,降低了晶体结构对称性和声子能量,发光强度大大增强,提高了50%~120%。(1) A Zn-enhanced rare earth oxysulfide up-conversion luminescent material provided by the present invention optimizes the crystal structure of the rare earth oxysulfide due to Zn doping, reduces crystal structure symmetry and phonon energy, and greatly improves luminous intensity Enhanced, increased by 50% to 120%.
(2)本发明提供的一种Zn增强的稀土硫氧化物上转换发光材料的制备方法,采用沉淀剂反滴的方法得到稀土氧化物原料,所制备的稀土氧化物原料具有颗粒呈现球形、颗粒大小均匀、分散性好、不需要球磨、可直接使用等优点。(2) The preparation method of a Zn-enhanced rare earth sulfur oxide up-conversion luminescent material provided by the present invention adopts the method of precipitant reverse dripping to obtain the rare earth oxide raw material, and the prepared rare earth oxide raw material has particles that are spherical, particle It has the advantages of uniform size, good dispersion, no need for ball milling, and can be used directly.
(3)本发明提供的一种Zn增强的稀土硫氧化物上转换发光材料的制备方法,采用气体硫化法取代传统的硫熔法,反应条件简单、易控,该方法可以很好的保持稀土氧化物的形貌和颗粒尺寸,该方法所制备的稀土硫氧化物上转换发光材料多呈现球形,颗粒尺寸均匀,颗粒分布范围较窄,D90=0.2-0.5μm,产物不需要球磨,可直接使用。(3) The preparation method of a Zn-enhanced rare earth oxysulfide up-conversion luminescent material provided by the present invention adopts the gas vulcanization method to replace the traditional sulfur melting method, the reaction conditions are simple and easy to control, and the method can well maintain rare earth The morphology and particle size of the oxide, the rare earth sulfur oxide up-conversion luminescent material prepared by this method is mostly spherical, the particle size is uniform, the particle distribution range is narrow, D 90 =0.2-0.5μm, the product does not need ball milling, and can be Use directly.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art.
图1为实施例2所制备的产物(La0.775Yb0.2Er0.005Zn0.02)2O2S的XRD图谱;Fig. 1 is the XRD spectrum of the product (La 0.775 Yb 0.2 Er 0.005 Zn 0.02 ) 2 O 2 S prepared in Example 2;
图2为实施例2所制备的产物(La0.775Yb0.2Er0.005Zn0.02)2O2S的SEM图片;Fig. 2 is the SEM image of the product (La 0.775 Yb 0.2 Er 0.005 Zn 0.02 ) 2 O 2 S prepared in Example 2;
图3为实施例2所制备的产物(La0.775Yb0.2Er0.005Zn0.02)2O2S的上转换发光光谱;Figure 3 is the upconversion luminescence spectrum of the product (La 0.775 Yb 0.2 Er 0.005 Zn 0.02 ) 2 O 2 S prepared in Example 2;
图4为实施例3所制备的产物(La0.8175Yb0.16Ho0.0075Zn0.015)2O2S的上转换发光光谱;Figure 4 is the upconversion luminescence spectrum of the product (La 0.8175 Yb 0.16 Ho 0.0075 Zn 0.015 ) 2 O 2 S prepared in Example 3;
图5为实施例4所制备的产物(Y0.8575Yb0.12Tm0.01Zn0.0125)2O2S的上转换发光光谱;Figure 5 is the upconversion luminescence spectrum of the product (Y 0.8575 Yb 0.12 Tm 0.01 Zn 0.0125 ) 2 O 2 S prepared in Example 4;
图6为实施例5所制备的产物(Y0.8775Yb0.1Pr0.0125Zn0.01)2O2S的上转换发光光谱;Figure 6 is the upconversion luminescence spectrum of the product (Y 0.8775 Yb 0.1 Pr 0.0125 Zn 0.01 ) 2 O 2 S prepared in Example 5;
图7为实施例6所制备的产物(Gd0.8975Yb0.08Eu0.015Zn0.0075)2O2S的上转换发光光谱;Figure 7 is the upconversion luminescence spectrum of the product (Gd 0.8975 Yb 0.08 Eu 0.015 Zn 0.0075 ) 2 O 2 S prepared in Example 6;
图8为实施例7所制备的产物(Gd0.935Yb0.04Tb0.02Zn0.005)2O2S的上转换发光光谱。Fig. 8 is the upconversion luminescence spectrum of the product (Gd 0.935 Yb 0.04 Tb 0.02 Zn 0.005 ) 2 O 2 S prepared in Example 7.
具体实施方式detailed description
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。Embodiments of the present invention will be described in detail below in conjunction with examples, but those skilled in the art will understand that the following examples are only for illustrating the present invention, and should not be considered as limiting the scope of the present invention. Those who do not indicate the specific conditions in the examples are carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used were not indicated by the manufacturer, and they were all conventional products that could be purchased from the market.
实施例1Example 1
一种Zn增强的稀土硫氧化物上转换发光材料,其化学式为(La0.8175Yb0.16Ho0.0075Zn0.015)2O2S。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of which is (La 0.8175 Yb 0.16 Ho 0.0075 Zn 0.015 ) 2 O 2 S.
该稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:The preparation method of the rare earth sulfur oxide up-conversion luminescent material comprises the following steps:
S11、按化学式(La0.8175Yb0.16Ho0.0075Zn0.015)2O2S,称取所需原料20.171g La(NO3)3·6H2O、4.095g Yb(NO3)3·5H2O、0.187g Ho(NO3)3·5H2O和0.254g Zn(NO3)2·6H2O,将上述原料溶解,配制成硝酸盐溶液;根据原料的量,称取7.902g草酸,并配制成草酸溶液;S11. According to the chemical formula (La 0.8175 Yb 0.16 Ho 0.0075 Zn 0.015 ) 2 O 2 S, weigh the required raw materials 20.171g La(NO 3 ) 3 6H 2 O, 4.095g Yb(NO 3 ) 3 5H 2 O, 0.187g Ho(NO 3 ) 3 ·5H 2 O and 0.254g Zn(NO 3 ) 2 ·6H 2 O, dissolve the above raw materials to prepare a nitrate solution; according to the amount of raw materials, weigh 7.902g of oxalic acid, and prepare into oxalic acid solution;
S12、将步骤S11所述的硝酸盐溶液滴入沉淀剂溶液中,并搅拌;滴定结束后,继续搅拌,并将滴定后的溶液密封、静置陈化、过滤;S12. Drop the nitrate solution described in step S11 into the precipitant solution, and stir; after the titration, continue to stir, and seal the titrated solution, leave it to age, and filter;
S13、将步骤S12中过滤后的沉淀用去离子水洗涤、烘干,然后将洗涤后的沉淀升温到650℃,保温后降至室温;S13. Wash and dry the precipitate filtered in step S12 with deionized water, then raise the temperature of the washed precipitate to 650° C., keep it warm and lower it to room temperature;
S14、再将步骤S13中降至室温后的产物与硫单质混合,然后在惰性气体氛围中升温到850℃,保温后降至室温,得到10g该Zn增强的稀土硫氧化物上转换发光材料。S14. Mix the product cooled to room temperature in step S13 with sulfur element, then raise the temperature to 850° C. in an inert gas atmosphere, keep warm and lower to room temperature to obtain 10 g of the Zn-enhanced rare earth sulfur oxide up-conversion luminescent material.
实施例2Example 2
一种Zn增强的稀土硫氧化物上转换发光材料,其化学式为(La0.775Yb0.2Er0.005Zn0.02)2O2S。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of which is (La 0.775 Yb 0.2 Er 0.005 Zn 0.02 ) 2 O 2 S.
该稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:The preparation method of the rare earth sulfur oxide up-conversion luminescent material comprises the following steps:
S21、按化学式(La0.775Yb0.2Er0.005Zn0.02)2O2S,称取所需原料19.020g La(NO3)3·6H2O、5.091g Yb(NO3)3·5H2O、0.126g Er(NO3)3·5H2O和0.337g Zn(NO3)2·6H2O,将上述原料溶解,配制成硝酸盐溶液;根据原料的量,称取7.145g草酸,并配制成草酸溶液;S21. According to the chemical formula (La 0.775 Yb 0.2 Er 0.005 Zn 0.02 ) 2 O 2 S, weigh the required raw materials 19.020g La(NO 3 ) 3 6H 2 O, 5.091g Yb(NO 3 ) 3 5H 2 O, 0.126g Er(NO 3 ) 3 ·5H 2 O and 0.337g Zn(NO 3 ) 2 ·6H 2 O, the above raw materials were dissolved to prepare a nitrate solution; according to the amount of raw materials, 7.145g oxalic acid was weighed and prepared into oxalic acid solution;
S22、将步骤S21所述的硝酸盐溶液滴入草酸溶液中,并搅拌;滴定结束后,继续搅拌0.5小时,并将滴定后的溶液密封、静置陈化10小时、过滤;S22. Drop the nitrate solution described in step S21 into the oxalic acid solution, and stir; after the titration, continue to stir for 0.5 hours, seal the titrated solution, leave it to age for 10 hours, and filter;
S23、将步骤S22中过滤后的沉淀用去离子水洗涤3次,在60℃下烘干,然后将洗涤后的沉淀采用快速升温箱式电阻炉,以3℃/分钟的速率升温到600℃,保温2小时后降至室温;S23. Wash the precipitate filtered in step S22 three times with deionized water, dry it at 60° C., and then heat the washed precipitate to 600° C. at a rate of 3° C./min in a box-type resistance furnace with rapid temperature rise. , down to room temperature after 2 hours of heat preservation;
S24、再将步骤S23中降至室温后的产物与4.543g硫单质混合,然后在氮气氛围中,采用快速升温箱式电阻炉,以5℃/分钟的速率升温到800℃,保温3小时后降至室温,得到10g该Zn增强的稀土硫氧化物上转换发光材料。S24. Mix the product that was lowered to room temperature in step S23 with 4.543 g of sulfur elemental substance, and then in a nitrogen atmosphere, use a fast heating box-type resistance furnace to heat up to 800° C. at a rate of 5° C./min, and keep it for 3 hours. After cooling down to room temperature, 10 g of the Zn-enhanced rare earth oxysulfide up-conversion luminescent material was obtained.
实施例3Example 3
一种Zn增强的稀土硫氧化物上转换发光材料,其化学式为(La0.8175Yb0.16Ho0.0075Zn0.015)2O2S。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of which is (La 0.8175 Yb 0.16 Ho 0.0075 Zn 0.015 ) 2 O 2 S.
该稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:The preparation method of the rare earth sulfur oxide up-conversion luminescent material comprises the following steps:
S31、按化学式(La0.8175Yb0.16Ho0.0075Zn0.015)2O2S,称取所需原料20.171g La(NO3)3·6H2O、4.095g Yb(NO3)3·5H2O、0.187g Ho(NO3)3·5H2O和0.254gZn(NO3)2·6H2O,将上述原料溶解,配制成硝酸盐溶液;根据原料的量,称取7.902g草酸,并配制成草酸溶液;S31. According to the chemical formula (La 0.8175 Yb 0.16 Ho 0.0075 Zn 0.015 ) 2 O 2 S, weigh the required raw materials 20.171g La(NO 3 ) 3 6H 2 O, 4.095g Yb(NO 3 ) 3 5H 2 O, 0.187g Ho(NO 3 ) 3 ·5H 2 O and 0.254g Zn(NO 3 ) 2 ·6H 2 O, the above raw materials were dissolved to prepare a nitrate solution; according to the amount of raw materials, 7.902g oxalic acid was weighed and prepared into Oxalic acid solution;
S32、将步骤S31所述的硝酸盐溶液滴入草酸溶液中,并搅拌;滴定结束后,继续搅拌1小时,并将滴定后的溶液密封、静置陈化12小时、过滤;S32. Drop the nitrate solution described in step S31 into the oxalic acid solution, and stir; after the titration, continue to stir for 1 hour, seal the titrated solution, leave it to age for 12 hours, and filter;
S33、将步骤S32中过滤后的沉淀用去离子水洗涤4次,在70℃下烘干,然后将洗涤后的沉淀采用快速升温箱式电阻炉,以3.5℃/分钟的速率升温到650℃,保温3小时后降至室温;S33. Wash the precipitate filtered in step S32 four times with deionized water, dry it at 70°C, and then heat the washed precipitate to 650°C at a rate of 3.5°C/min in a fast heating box-type resistance furnace , down to room temperature after 3 hours of heat preservation;
S34、再将步骤S33中降至室温后的产物与5.025g硫单质混合,然后在氩气氛围中,采用快速升温箱式电阻炉,以4.5℃/分钟的速率升温到850℃,保温4小时后降至室温,得到10g该Zn增强的稀土硫氧化物上转换发光材料。S34, then mix the product cooled to room temperature in step S33 with 5.025 g of sulfur element, and then in an argon atmosphere, use a fast heating box-type resistance furnace to raise the temperature to 850°C at a rate of 4.5°C/min, and keep it warm for 4 hours After cooling down to room temperature, 10 g of the Zn-enhanced rare earth oxysulfide up-conversion luminescent material was obtained.
实施例4Example 4
一种Zn增强的稀土硫氧化物上转换发光材料,其化学式为(Y0.8575Yb0.12Tm0.01Zn0.0125)2O2S。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of which is (Y 0.8575 Yb 0.12 Tm 0.01 Zn 0.0125 ) 2 O 2 S.
该稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:The preparation method of the rare earth sulfur oxide up-conversion luminescent material comprises the following steps:
S41、按化学式(Y0.8575Yb0.12Tm0.01Zn0.0125)2O2S,称取所需原料24.968g Y(NO3)3·6H2O、4.097g Yb(NO3)3·5H2O、0.270g Tm(NO3)3和0.283gZn(NO3)2·6H2O,将上述原料溶解,配制成硝酸盐溶液;根据原料的量,称取11.50g草酸,并配制成草酸溶液;S41. According to the chemical formula (Y 0.8575 Yb 0.12 Tm 0.01 Zn 0.0125 ) 2 O 2 S, weigh 24.968g Y(NO 3 ) 3 6H 2 O, 4.097g Yb(NO 3 ) 3 5H 2 O, 0.270g Tm(NO 3 ) 3 and 0.283g Zn(NO 3 ) 2 6H 2 O, the above raw materials were dissolved to prepare a nitrate solution; according to the amount of raw materials, 11.50g oxalic acid was weighed and prepared into an oxalic acid solution;
S42、将步骤S41所述的硝酸盐溶液滴入草酸溶液中,并搅拌;滴定结束后,继续搅拌1.5小时,并将滴定后的溶液密封、静置陈化14小时、过滤;S42, drop the nitrate solution described in step S41 into the oxalic acid solution, and stir; after the titration, continue to stir for 1.5 hours, and seal the titrated solution, leave it to age for 14 hours, and filter;
S43、将步骤S42中过滤后的沉淀用去离子水洗涤5次,在80℃下烘干,然后将洗涤后的沉淀采用快速升温箱式电阻炉,以4℃/分钟的速率升温到700℃,保温4小时后降至室温;S43. Wash the filtered precipitate in step S42 with deionized water for 5 times, dry it at 80°C, and then heat the washed precipitate to 700°C at a rate of 4°C/min by using a fast heating box-type resistance furnace , down to room temperature after 4 hours of heat preservation;
S44、再将步骤S43中降至室温后的产物与7.413g硫单质混合,然后在氮气氛围中,采用快速升温箱式电阻炉,以4℃/分钟的速率升温到900℃,保温5小时后降至室温,得到10g该Zn增强的稀土硫氧化物上转换发光材料。S44. Mix the product cooled to room temperature in step S43 with 7.413 g of sulfur element, and then in a nitrogen atmosphere, use a fast heating box-type resistance furnace to heat up to 900° C. at a rate of 4° C./min. After 5 hours of heat preservation After cooling down to room temperature, 10 g of the Zn-enhanced rare earth oxysulfide up-conversion luminescent material was obtained.
实施例5Example 5
一种Zn增强的稀土硫氧化物上转换发光材料,其化学式为(Y0.8775Yb0.1Pr0.0125Zn0.01)2O2S。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of which is (Y 0.8775 Yb 0.1 Pr 0.0125 Zn 0.01 ) 2 O 2 S.
该稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:The preparation method of the rare earth sulfur oxide up-conversion luminescent material comprises the following steps:
S51、按化学式(Y0.8775Yb0.1Pr0.0125Zn0.01)2O2S,称取所需原料25.899g Y(NO3)3·6H2O、3.461g Yb(NO3)3·5H2O、0.419g Pr(NO3)3和0.229g Zn(NO3)2·6H2O,将上述原料溶解,搅拌均匀,配制成硝酸盐溶液;根据原料的量,称取12.629g草酸,并配制成草酸溶液,搅拌均匀;S51. According to the chemical formula (Y 0.8775 Yb 0.1 Pr 0.0125 Zn 0.01 ) 2 O 2 S, weigh 25.899g Y(NO 3 ) 3 6H 2 O, 3.461g Yb(NO 3 ) 3 5H 2 O, 0.419g Pr(NO 3 ) 3 and 0.229g Zn(NO 3 ) 2 ·6H 2 O, dissolve the above raw materials, stir evenly, and prepare nitrate solution; according to the amount of raw materials, weigh 12.629g oxalic acid, and prepare Oxalic acid solution, stir evenly;
S52、将步骤S51所述的硝酸盐溶液滴入草酸溶液中,并搅拌;滴定结束后,继续搅拌0.5小时,并将滴定后的溶液密封、静置陈化16小时、过滤;S52. Drop the nitrate solution described in step S51 into the oxalic acid solution, and stir; after the titration, continue to stir for 0.5 hours, seal the titrated solution, leave it to age for 16 hours, and filter;
S53、将步骤S52中过滤后的沉淀用去离子水洗涤3次,在60℃下烘干,然后将洗涤后的沉淀采用快速升温箱式电阻炉,以4℃/分钟的速率升温到700℃,保温2小时后降至室温;S53. Wash the precipitate filtered in step S52 with deionized water three times, dry it at 60°C, and then heat the washed precipitate to 700°C at a rate of 4°C/min by using a fast heating box-type resistance furnace , down to room temperature after 2 hours of heat preservation;
S54、再将步骤S53中降至室温后的产物与7.413g硫单质混合,然后在氩气氛围中,采用快速升温箱式电阻炉,以4℃/分钟的速率升温到900℃,保温3小时后降至室温,得到10g该Zn增强的稀土硫氧化物上转换发光材料。S54. Mix the product cooled to room temperature in step S53 with 7.413 g of sulfur element, and then in an argon atmosphere, use a fast heating box-type resistance furnace to heat up to 900° C. at a rate of 4° C./min, and keep the temperature for 3 hours. After cooling down to room temperature, 10 g of the Zn-enhanced rare earth oxysulfide up-conversion luminescent material was obtained.
实施例6Example 6
一种Zn增强的稀土硫氧化物上转换发光材料,其化学式为(Gd0.8975Yb0.08Eu0.015Zn0.0075)2O2S。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of which is (Gd 0.8975 Yb 0.08 Eu 0.015 Zn 0.0075 ) 2 O 2 S.
该稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:The preparation method of the rare earth sulfur oxide up-conversion luminescent material comprises the following steps:
S61、按化学式(Gd0.8975Yb0.08Eu0.015Zn0.0075)2O2S,称取所需原料21.345g Gd(NO3)3·6H2O、1.893g Yb(NO3)3·5H2O、0.353g Eu(NO3)3·6H2O和0.118g Zn(NO3)2·6H2O,将上述原料溶解,搅拌均匀,配制成硝酸盐溶液;根据原料的量,称取9.30g草酸,并配制成草酸溶液,搅拌均匀;S61. According to the chemical formula (Gd 0.8975 Yb 0.08 Eu 0.015 Zn 0.0075 ) 2 O 2 S, weigh the required raw materials 21.345g Gd(NO 3 ) 3 6H 2 O, 1.893g Yb(NO 3 ) 3 5H 2 O, 0.353g Eu(NO 3 ) 3 6H 2 O and 0.118g Zn(NO 3 ) 2 6H 2 O, dissolve the above raw materials, stir evenly, and prepare nitrate solution; according to the amount of raw materials, weigh 9.30g oxalic acid , and prepared into an oxalic acid solution, and stirred evenly;
S62、将步骤S61所述的硝酸盐溶液滴入草酸溶液中,并搅拌;滴定结束后,继续搅拌1小时,并将滴定后的溶液密封、静置陈化18小时、过滤;S62, drop the nitrate solution described in step S61 into the oxalic acid solution, and stir; after the titration, continue to stir for 1 hour, and seal the titrated solution, leave it to age for 18 hours, and filter;
S63、将步骤S62中过滤后的沉淀用去离子水洗涤4次,在70℃下烘干,然后将洗涤后的沉淀采用快速升温箱式电阻炉,以4.5℃/分钟的速率升温到750℃,保温3小时后降至室温;S63. Wash the filtered precipitate in step S62 with deionized water for 4 times, dry it at 70°C, and then heat the washed precipitate to 750°C at a rate of 4.5°C/min in a fast heating box-type resistance furnace , down to room temperature after 3 hours of heat preservation;
S64、再将步骤S63中降至室温后的产物与5.491g硫单质混合,然后在氮气氛围中,采用快速升温箱式电阻炉,以3.5℃/分钟的速率升温到950℃,保温4小时后降至室温,得到10g该Zn增强的稀土硫氧化物上转换发光材料。S64, then mix the product cooled to room temperature in step S63 with 5.491 g of sulfur element, and then in a nitrogen atmosphere, use a fast heating box-type resistance furnace to raise the temperature to 950° C. at a rate of 3.5° C./min, and keep it for 4 hours. After cooling down to room temperature, 10 g of the Zn-enhanced rare earth oxysulfide up-conversion luminescent material was obtained.
实施例7Example 7
一种Zn增强的稀土硫氧化物上转换发光材料,其化学式为(Gd0.935Yb0.04Tb0.02Zn0.005)2O2S。A Zn-enhanced rare earth sulfur oxide up-conversion luminescent material, the chemical formula of which is (Gd 0.935 Yb 0.04 Tb 0.02 Zn 0.005 ) 2 O 2 S.
该稀土硫氧化物上转换发光材料的制备方法,包括以下步骤:The preparation method of the rare earth sulfur oxide up-conversion luminescent material comprises the following steps:
S71、按化学式(Gd0.935Yb0.04Tb0.02Zn0.005)2O2S,称取所需原料22.271g Gd(NO3)3·6H2O、0.948g Yb(NO3)3·5H2O、0.478g Tb(NO3)3·6H2O和0.078g Zn(NO3)2·6H2O,将上述原料溶解,搅拌均匀,配制成硝酸盐溶液;根据原料的量,称取9.979g草酸,并配制成草酸溶液,搅拌均匀;S71. According to the chemical formula (Gd 0.935 Yb 0.04 Tb 0.02 Zn 0.005 ) 2 O 2 S, weigh the required raw materials 22.271g Gd(NO 3 ) 3 6H 2 O, 0.948g Yb(NO 3 ) 3 5H 2 O, 0.478g Tb(NO 3 ) 3 6H 2 O and 0.078g Zn(NO 3 ) 2 6H 2 O, dissolve the above raw materials, stir evenly, and prepare nitrate solution; according to the amount of raw materials, weigh 9.979g oxalic acid , and prepared into an oxalic acid solution, and stirred evenly;
S72、将步骤S71所述的硝酸盐溶液滴入草酸溶液中,并搅拌;滴定结束后,继续搅拌1.5小时,并将滴定后的溶液密封、静置陈化20小时、过滤;S72, drop the nitrate solution described in step S71 into the oxalic acid solution, and stir; after the titration, continue to stir for 1.5 hours, seal the titrated solution, leave it to age for 20 hours, and filter;
S73、将步骤S72中过滤后的沉淀用去离子水洗涤5次,在80℃下烘干,然后将洗涤后的沉淀采用快速升温箱式电阻炉,以5℃/分钟的速率升温到800℃,保温4小时后降至室温;S73. Wash the precipitate filtered in step S72 with deionized water for 5 times, dry it at 80°C, and then heat the washed precipitate to 800°C at a rate of 5°C/min by using a fast heating box-type resistance furnace , down to room temperature after 4 hours of heat preservation;
S74、再将步骤S73中降至室温后的产物与5.923g硫单质混合,然后在氩气氛围中,采用快速升温箱式电阻炉,以3℃/分钟的速率升温到1000℃,保温5小时后降至室温,得到10g该Zn增强的稀土硫氧化物上转换发光材料。S74, then mix the product cooled to room temperature in step S73 with 5.923 g of sulfur elemental substance, and then in an argon atmosphere, use a fast heating box-type resistance furnace to heat up to 1000°C at a rate of 3°C/min, and keep it warm for 5 hours After cooling down to room temperature, 10 g of the Zn-enhanced rare earth oxysulfide up-conversion luminescent material was obtained.
实验例1 Zn增强的稀土硫氧化物上转换发光材料相组成、形貌和颗粒尺寸分析Experimental example 1 Phase composition, morphology and particle size analysis of Zn-enhanced rare earth oxysulfide up-conversion luminescent material
对实施例1-7所提供的Zn增强的稀土硫氧化物上转换发光材料,用X射线衍射仪(XRD,D/Max2500)进行相组成分析,用扫描电子显微镜(SEM,JEOL-6310)进行颗粒尺寸和形貌分析,采用软件进行颗粒尺寸统计,其D90统计结果如表1所示。For the Zn-enhanced rare earth oxysulfide up-conversion luminescent material provided in Examples 1-7, the phase composition analysis was carried out with an X-ray diffractometer (XRD, D/Max2500), and a scanning electron microscope (SEM, JEOL-6310) was used to analyze the phase composition. For particle size and shape analysis, software was used for particle size statistics, and the D90 statistical results are shown in Table 1.
表1实施例1-7D90统计结果Table 1 embodiment 1-7D 90 statistical results
实验证明,本发明提供的Zn增强的稀土硫氧化物上转换发光材料的XRD图谱显示主要衍射峰的位置都与六方稀土硫氧化物相对应,并且没有其他物质相的峰存在,其中,图1为实施例2所制备的产物(La0.775Yb0.2Er0.005Zn0.02)2O2S的XRD图谱;用扫描电子显微镜(SEM,JEOL-6310)进行颗粒尺寸和形貌分析,结果显示颗粒形貌为球形,颗粒分布均匀,其中,图2为实施例2所制备的产物(La0.775Yb0.2Er0.005Zn0.02)2O2S的SEM图片;采用软件进行颗粒尺寸统计,D90=0.20-0.50μm。Experiments have proved that the XRD spectrum of the Zn-enhanced rare-earth sulfur oxide up-conversion luminescent material provided by the present invention shows that the positions of the main diffraction peaks are all corresponding to the hexagonal rare-earth sulfur oxide, and there are no peaks of other material phases. Among them, Figure 1 The XRD spectrum of the product (La 0.775 Yb 0.2 Er 0.005 Zn 0.02 ) 2 O 2 S prepared for Example 2; the particle size and morphology analysis was carried out with a scanning electron microscope (SEM, JEOL-6310), and the results showed that the particle morphology It is spherical and the particles are evenly distributed. Figure 2 is the SEM picture of the product (La 0.775 Yb 0.2 Er 0.005 Zn 0.02 ) 2 O 2 S prepared in Example 2; the particle size statistics are performed using software, D 90 =0.20-0.50 μm.
实验例2 Zn增强的稀土硫氧化物上转换发光材料发光性能测试Experimental example 2 Luminescence performance test of Zn-enhanced rare earth oxysulfide up-conversion luminescent material
用荧光光谱仪(PL,FL3-221)进行上转换发光性能测试,结果与未掺杂Zn的样品相比,发光强度提高的程度如表2所示。The up-conversion luminescence performance test was carried out with a fluorescence spectrometer (PL, FL3-221), and the result compared with the sample without Zn doping, the degree of luminescence intensity improvement is shown in Table 2.
表2实施例1-7发光强度提高程度Table 2 embodiment 1-7 luminous intensity improvement degree
实验证明,由于Zn的掺杂优化了稀土硫氧化物的晶体结构,降低了晶体结构对称性和声子能量,发光强度大大增强,提高了50%~120%。其中,图3-8是实施例2-7的上转换发光光谱。Experiments have proved that because Zn doping optimizes the crystal structure of the rare earth oxysulfide, reduces crystal structure symmetry and phonon energy, and greatly enhances the luminous intensity by 50% to 120%. Among them, Figures 3-8 are the up-conversion luminescence spectra of Examples 2-7.
综上所述,本发明提供的一种Zn增强的稀土硫氧化物上转换发光材料,由于Zn的掺杂优化了稀土硫氧化物的晶体结构,降低了晶体结构对称性和声子能量,发光强度大大增强,提高了50%~120%。本发明提供的一种Zn增强的稀土硫氧化物上转换发光材料的制备方法,采用沉淀剂反滴的方法得到稀土氧化物原料,所制备的稀土氧化物原料具有颗粒呈现球形、颗粒大小均匀、分散性好、不需要球磨、可直接使用等优点;该制备方法,采用气体硫化法取代传统的硫熔法,反应条件简单、易控,该方法可以很好的保持稀土氧化物的形貌和颗粒尺寸,该方法所制备的稀土硫氧化物上转换发光材料多呈现球形,颗粒尺寸均匀,颗粒分布范围较窄,D90=0.2-0.5μm,产物不需要球磨,可直接使用。In summary, a Zn-enhanced rare earth oxysulfide up-conversion luminescent material provided by the present invention optimizes the crystal structure of the rare earth oxysulfide due to Zn doping, reduces the crystal structure symmetry and phonon energy, and emits light. The strength is greatly enhanced by 50% to 120%. The preparation method of a Zn-enhanced rare earth sulfur oxide up-conversion luminescent material provided by the present invention adopts the method of back-dropping the precipitant to obtain the rare earth oxide raw material, and the prepared rare earth oxide raw material has spherical particles, uniform particle size, Good dispersibility, no need for ball milling, and direct use; this preparation method uses gas vulcanization instead of the traditional sulfur melting method, and the reaction conditions are simple and easy to control. This method can well maintain the morphology and shape of rare earth oxides. Particle size. The rare earth sulfur oxide up-conversion luminescent material prepared by this method is mostly spherical, with uniform particle size and narrow particle distribution range, D 90 =0.2-0.5 μm. The product does not need ball milling and can be used directly.
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。While particular embodiments of the invention have been illustrated and described, it should be appreciated that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610122552.9A CN105602564B (en) | 2016-03-03 | 2016-03-03 | A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Zn and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610122552.9A CN105602564B (en) | 2016-03-03 | 2016-03-03 | A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Zn and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105602564A CN105602564A (en) | 2016-05-25 |
CN105602564B true CN105602564B (en) | 2017-11-07 |
Family
ID=55982932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610122552.9A Active CN105602564B (en) | 2016-03-03 | 2016-03-03 | A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Zn and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105602564B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106929018B (en) * | 2017-03-13 | 2019-08-13 | 盐城工学院 | A kind of laser protective material and preparation method thereof |
CN107446580B (en) * | 2017-08-03 | 2021-05-18 | 上海烁璞新材料有限公司 | Preparation method of oxysulfide luminescent powder |
WO2024225460A1 (en) * | 2023-04-27 | 2024-10-31 | 根本特殊化学株式会社 | Infrared persistently luminescent oxysulfide phosphor and luminescent composition for determining authenticity |
CN116875312B (en) * | 2023-06-21 | 2024-10-01 | 长春理工大学 | Green fluorescent powder with high thermal stability and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07278540A (en) * | 1994-04-08 | 1995-10-24 | Kasei Optonix Co Ltd | Green luminous fluorescent substance of rare earth elements oxysulfide and sensitized paper containing the same |
JP3777486B2 (en) * | 1997-07-08 | 2006-05-24 | 株式会社日立メディコ | Phosphor, radiation detector using the same, and X-ray CT apparatus |
CN1216124C (en) * | 2002-04-24 | 2005-08-24 | 北京有色金属研究总院 | Long-time red lighting material of RE-containing oxygen family compound and its prepn |
CN102321481B (en) * | 2011-07-11 | 2013-09-04 | 南京工业大学 | Tri-doped oxysulfide up-conversion white light material and preparation method thereof |
CN105018090B (en) * | 2015-07-29 | 2017-06-20 | 盐城工学院 | A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Mn and preparation method |
-
2016
- 2016-03-03 CN CN201610122552.9A patent/CN105602564B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105602564A (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105602564B (en) | A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Zn and preparation method | |
CN108998015B (en) | Solvothermal preparation method of manganese-doped cesium-lead halogen perovskite quantum dots | |
Yu et al. | Highly efficient far-red emitting Mn4+-activated Li3La3W2O12 phosphors for plant growth LED lighting | |
CN101177611A (en) | High luminous intensity up-conversion fluorescent nanocrystalline oxide and preparation method thereof | |
Li et al. | Sol–gel synthesis, structure and luminescence properties of Ba2ZnMoO6: Eu3+ phosphors | |
Kadyan et al. | Synthesis and optoelectronic characteristics of MGdAl3O7: Eu3+ nanophosphors for current display devices | |
CN104927863B (en) | The nanocrystalline method of hexagonal phase sodium yttrium tetrafluoride that rare earth metal is co-doped with is prepared using waste phosphor powder | |
CN106753371A (en) | A kind of holmium ytterbium codope bismuth tungstate fluorescent material and preparation method thereof | |
Llanos et al. | Synthesis and luminescent properties of two different Y2WO6: Eu3+ phosphor phases | |
CN103113889B (en) | A kind of molybdate red phosphor and preparation method thereof | |
CN117070221A (en) | Yb (Yb) 3+ Holmium-based chloride-doped double perovskite material, and preparation method and application thereof | |
Wu et al. | Highly uniform NaLa (MoO 4) 2: Eu 3+ microspheres: Microwave-assisted hydrothermal synthesis, growth mechanism and enhanced luminescent properties | |
CN102071017A (en) | Preparation method of aluminate blue fluorescent powder for three-color light-emitting diode | |
CN107418560A (en) | A kind of preparation method of efficiently sulfur doping nano zinc oxide material | |
CN106520117A (en) | A kind of preparation method of LiLa(MoO4)2:Eu3+ fluorescent powder | |
CN105238400A (en) | Novel mono-dispersed spherical rare earth oxide fluorescent powder ad preparation method thereof | |
Ma et al. | Synthesis and photoluminescence of highly enhanced green-emitting LaNbTiO6: xEr3+, yBi3+ micro/nanophosphors | |
CN106497553A (en) | A Ho3+/Yb3+/Gd3+ co-doped zinc oxide up-conversion luminescent material and its preparation method | |
CN104789221B (en) | Erbium-ytterbium co-doped antimonate up-conversion luminescent material and preparation method and application thereof | |
CN104263367B (en) | Mixed alkaline earth metal tungstates luminescent material and the synthetic method thereof of a kind of doped with rare-earth elements Eu, Sm | |
CN107345135A (en) | Rare-earth europium activation molybdate base red fluorescent powder and preparation method thereof | |
CN109233829B (en) | A kind of magnesium erbium ytterbium tri-doped sodium niobate and its preparation method and application | |
CN107936969B (en) | Synthesis method of monodisperse ultrafine erbium ion-doped potassium tridecafluoride nanoparticles | |
CN105950149A (en) | Rare-earth vanadium niobate red fluorescent material and preparation method thereof | |
Lien et al. | Influence of Annealing Temperature and Gd and Eu Concentrations on Structure and Luminescence Properties of (Y, Gd) BO 3: Eu 3+ Phosphors Prepared by Sol–Gel Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201202 Address after: 538021 middle section of Qunxing Avenue, Fangcheng District, Fangchenggang City, Guangxi Zhuang Autonomous Region Patentee after: Fangchenggang Tangshi Food Co., Ltd Address before: 224000 Yancheng City hope road, Jiangsu, No. 1 Patentee before: YANCHENG INSTITUTE OF TECHNOLOGY |
|
TR01 | Transfer of patent right |