CN105510637B - Micro-/ nano thermoelectricity in-situ detector based on scanning probe microscopy and detection method - Google Patents
Micro-/ nano thermoelectricity in-situ detector based on scanning probe microscopy and detection method Download PDFInfo
- Publication number
- CN105510637B CN105510637B CN201410495722.9A CN201410495722A CN105510637B CN 105510637 B CN105510637 B CN 105510637B CN 201410495722 A CN201410495722 A CN 201410495722A CN 105510637 B CN105510637 B CN 105510637B
- Authority
- CN
- China
- Prior art keywords
- sample
- probe
- film
- signal
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 63
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 45
- 238000004621 scanning probe microscopy Methods 0.000 title abstract description 8
- 230000005619 thermoelectricity Effects 0.000 title abstract 2
- 239000000523 sample Substances 0.000 claims abstract description 345
- 239000000463 material Substances 0.000 claims abstract description 85
- 238000006073 displacement reaction Methods 0.000 claims abstract description 28
- 230000001360 synchronised effect Effects 0.000 claims abstract description 10
- 238000012876 topography Methods 0.000 claims abstract description 9
- 239000010408 film Substances 0.000 claims description 123
- 239000010409 thin film Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 30
- 238000000576 coating method Methods 0.000 claims description 24
- 238000004458 analytical method Methods 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 6
- 238000011897 real-time detection Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000011160 research Methods 0.000 abstract description 5
- 238000011161 development Methods 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 230000005611 electricity Effects 0.000 abstract description 2
- 230000010355 oscillation Effects 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 11
- 238000005566 electron beam evaporation Methods 0.000 description 9
- 238000007641 inkjet printing Methods 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 238000004528 spin coating Methods 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 238000002207 thermal evaporation Methods 0.000 description 9
- 229910021389 graphene Inorganic materials 0.000 description 8
- 229910052797 bismuth Inorganic materials 0.000 description 7
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- KAGOZRSGIYZEKW-UHFFFAOYSA-N cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Co+3].[Co+3] KAGOZRSGIYZEKW-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001124 conductive atomic force microscopy Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- FSJWWSXPIWGYKC-UHFFFAOYSA-M silver;silver;sulfanide Chemical compound [SH-].[Ag].[Ag+] FSJWWSXPIWGYKC-UHFFFAOYSA-M 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本申请属于信号探测技术领域,尤其涉及一种基于扫描探针显微镜的微/纳米热电原位探测装置及探测方法,可原位、同步、实时探测微区导电性能和热学性能。The application belongs to the technical field of signal detection, and in particular relates to a micro/nano pyroelectric in-situ detection device and detection method based on a scanning probe microscope, which can detect the electrical conductivity and thermal properties of micro-regions in situ, synchronously and in real time.
背景技术Background technique
1981年Binning等人发明了扫描隧道显微镜(STM),并由此获得了诺贝尔物理学奖。STM基于量子力学中的隧道效应理论,当金属探针与导电性良好的样品表面靠近时,在偏压作用下金属探针和样品之间会产生隧穿电流,该电流大小可以精确地反应探针和样品之间的距离,因此STM可以对原子尺度的样品进行成像,其横向分辨率可达0.1nm。In 1981, Binning et al. invented the scanning tunneling microscope (STM), for which they won the Nobel Prize in Physics. STM is based on the theory of tunneling effect in quantum mechanics. When the metal probe is close to the surface of a sample with good conductivity, a tunneling current will be generated between the metal probe and the sample under the action of bias voltage, and the magnitude of the current can accurately reflect the probe. The distance between the needle and the sample, so STM can image atomic-scale samples with a lateral resolution down to 0.1nm.
但是,利用STM对样品特性进行表征时要求样品表面具有一定的导电性,因此限制了其应用领域。Bing等人随后研发出扫描探针显微镜(SPM)技术,该技术通过检测样品和SPM探针针尖之间的相互作用而在微纳尺度下研究样品的相应性质,因此促进了微纳米材料的性能表征。However, when using STM to characterize sample properties, the surface of the sample is required to have a certain conductivity, which limits its application field. Bing et al. subsequently developed the Scanning Probe Microscopy (SPM) technology, which can study the corresponding properties of the sample at the micro-nano scale by detecting the interaction between the sample and the SPM probe tip, thus promoting the performance of micro-nano materials characterization.
利用SPM对样品特性进行表征时,根据探针的性质以及探针与样品之间的相互作用而得到样品不同特性的表征。例如,表征样品导电性能时,需要探针表面镀有金属导电层并且能够在外加电压下读取电流;而表征样品磁性能时,要求探针表面镀有磁性薄膜,依靠该磁性薄膜的磁矩与样品磁矩之间的相互作用对样品磁性能进行表征。因此,很大程度上探针的性能决定了样品特性获取的准确性和可靠性。When using SPM to characterize the characteristics of the sample, the characteristics of different characteristics of the sample can be obtained according to the properties of the probe and the interaction between the probe and the sample. For example, when characterizing the conductivity of a sample, it is necessary to coat the surface of the probe with a metal conductive layer and be able to read the current under an applied voltage; while characterizing the magnetic properties of the sample, it is required that the surface of the probe be coated with a magnetic film, relying on the magnetic moment of the magnetic film The interaction with the magnetic moment of the sample characterizes the magnetic properties of the sample. Therefore, the performance of the probe largely determines the accuracy and reliability of sample property acquisition.
随着电子器件的小型化和集成化,器件尺寸以及器件间距已达到微/纳尺度,其发热与散热问题成为制约进一步高度集成的瓶颈。在微/纳尺度下,材料的微观结构和畴结构对热学性质的影响尤为重要,一个微裂纹、空穴、晶界、乃至一个畴壁都可能影响到材料的热学性质。以多铁材料为例,在外场驱动下的磁/电畴翻转(或畴壁移动)和漏电流都会引起微区发热。因此,在微/纳尺度下表征与热相关的物性,理解发热和散热的物理过程已经成为现代热科学中的一个崭新的分支─微/纳尺度热科学。With the miniaturization and integration of electronic devices, the device size and device spacing have reached the micro/nano scale, and its heat generation and heat dissipation problems have become a bottleneck restricting further high integration. At the micro/nano scale, the microstructure and domain structure of materials have a particularly important impact on thermal properties. A microcrack, cavity, grain boundary, or even a domain wall may affect the thermal properties of a material. Taking multiferroic materials as an example, magnetic/electrical domain flipping (or domain wall movement) and leakage current driven by an external field will both cause micro-region heating. Therefore, characterizing heat-related physical properties at the micro/nano scale and understanding the physical processes of heat generation and heat dissipation have become a brand-new branch of modern thermal science—micro/nano-scale thermal science.
因此,研究相关材料,尤其是微纳米材料的表面形貌、热性能与电性能之间的相互关系对于理解其内禀性质、发热与散热的物理机制,以及发展相关多功能材料具有极其重要的意义。Therefore, it is extremely important to study the relationship between the surface morphology, thermal properties and electrical properties of related materials, especially micro-nano materials, for understanding their intrinsic properties, physical mechanisms of heat generation and heat dissipation, and for the development of related multifunctional materials. significance.
但是,目前大部分SPM,例如,导电原子力显微镜只能单独、实时、非原位地表征样品的形貌特征和/或电性能,而不能同时表征形貌、导电性能以及热学性能。因此,如何原位、同步、实时地表征微纳米材料的形貌、导电性能以及热学性能是科技工作者研究的课题之一。However, most of the current SPMs, such as conductive atomic force microscopy, can only characterize the morphology and/or electrical properties of samples independently, in real time, and ex situ, but cannot simultaneously characterize the morphology, electrical conductivity, and thermal properties. Therefore, how to characterize the morphology, electrical conductivity, and thermal properties of micro-nano materials in situ, synchronously, and in real time is one of the research topics for scientific and technological workers.
发明内容Contents of the invention
针对上述技术问题,本发明提供了一种微/纳米尺度下的信号探测装置,该装置可用于同步、原位、实时地对微/纳尺度下材料的表面形貌、热学性能以及导电性能进行探测。In view of the above technical problems, the present invention provides a signal detection device at the micro/nano scale, which can be used for synchronous, in situ and real-time monitoring of the surface morphology, thermal properties and electrical conductivity of materials at the micro/nano scale probing.
本发明实现上述技术目的所采用的技术方案为:一种基于扫描探针显微镜的微/纳米热电原位探测装置,该探测装置包括如下:The technical solution adopted by the present invention to achieve the above technical purpose is: a micro/nano pyroelectric in-situ detection device based on a scanning probe microscope, the detection device includes the following:
(1)扫描探针显微镜平台、探针、探针控制单元(1) Scanning probe microscope platform, probe, probe control unit
探针控制单元:用于驱动或者控制探针进行位移和/或振动;Probe control unit: for driving or controlling the displacement and/or vibration of the probe;
探针:具有导电性与导热性;Probe: has electrical conductivity and thermal conductivity;
所述的探针包括探针臂与针尖;The probe includes a probe arm and a needle tip;
(2)形貌检测平台(2) Shape detection platform
包括位移或振动信号采集单元,用于接收探针的位移信号或振动信号;Including a displacement or vibration signal acquisition unit for receiving the displacement signal or vibration signal of the probe;
探针自初始位置对样品表面进行横向定向扫描,扫描过程中控制探针针尖与样品表面点接触或振动点接触,位移或振动信号采集单元接收探针针尖的纵向位移信号或振动信号,经采集分析得到样品的形貌信号;The probe scans the sample surface horizontally and directionally from the initial position. During the scanning process, the probe tip is controlled to be in point contact or vibration point contact with the sample surface. The displacement or vibration signal acquisition unit receives the longitudinal displacement signal or vibration signal of the probe tip. Analyze the shape signal of the sample;
(3)热信号检测平台(3) Thermal signal detection platform
包括热学回路与热信号采集单元;Including thermal circuit and thermal signal acquisition unit;
所述的热学回路由电信号施加单元激励电信号,该电信号流入探针并对探针进行加热,探针与样品进行热交换,使热学回路中的电压信号发生改变,经采集电压信号的变化得到样品的热信号;In the thermal circuit, the electrical signal is excited by the electrical signal applying unit, and the electrical signal flows into the probe and heats the probe. The probe and the sample perform heat exchange, so that the voltage signal in the thermal circuit changes. Change to obtain the thermal signal of the sample;
(4)电信号检测平台(4) Electrical signal detection platform
包括电学回路与电信号采集单元;Including electrical circuit and electrical signal acquisition unit;
所述的电学回路由电信号施加单元激励电信号,该电信号依次流入探针、样品,经电信号采集单元得到样品的电信号;In the electrical circuit, the electrical signal is excited by the electrical signal applying unit, and the electrical signal flows into the probe and the sample in turn, and the electrical signal of the sample is obtained through the electrical signal acquisition unit;
(5)中心控制单元(5) Central control unit
用于初始化系统各单元,控制系统各单元,接收样品的形貌、热、电信号、分析后得到样品的形貌、热、电信号图像。It is used to initialize each unit of the system, control each unit of the system, receive the shape, heat, and electrical signals of the sample, and obtain the image of the shape, heat, and electrical signals of the sample after analysis.
作为优选,所述的扫描探针显微镜平台设置电阻加热台,用于提供变温环境。Preferably, the scanning probe microscope platform is provided with a resistance heating stage for providing a variable temperature environment.
本发明还提供了一种优选的探针结构,如图1、2所示,探针包括探针臂1与针尖2,针尖2由针尖本体3与覆盖层组成,覆盖层由位于针尖本体3表面的薄膜一4、薄膜一表面的薄膜二5、薄膜二表面的薄膜三6组成;薄膜一4具有导电性、薄膜二5具有电绝缘性、薄膜三6具有导电性,薄膜一4与薄膜三6的材料不同;并且,薄膜一4、薄膜二5和薄膜三6构成热电偶结构,即:在针尖本体的尖端部位,薄膜一4表面为薄膜三6,除本体尖端之外的其余部位,薄膜二5位于薄膜一4与薄膜三6之间。The present invention also provides a preferred probe structure. As shown in Figures 1 and 2, the probe includes a probe arm 1 and a needle point 2. The needle point 2 is composed of a needle point body 3 and a covering layer. Film one 4 on the surface, film two 5 on the surface of film one, and film three 6 on the surface of the film two; film one 4 has conductivity, film two 5 has electrical insulation, film three 6 has conductivity, film one 4 and film The materials of three 6 are different; and, film one 4, film two 5 and film three 6 form a thermocouple structure, that is: at the tip of the needle point body, the surface of film one 4 is film three 6, and the remaining parts except the tip of the body , film two 5 is located between film one 4 and film three 6 .
所述的薄膜一4材料不限,包括具有良好导电性能的金属和半导体中的一种材料或者两种以上的组合材料,例如铋(Bi)、镍(Ni)、钴(Co)、钾(K)等金属以及其合金,石墨、石墨烯等半导体中的至少一种。The material of the thin film-4 is not limited, including one material or a combination of two or more materials in metals and semiconductors with good electrical conductivity, such as bismuth (Bi), nickel (Ni), cobalt (Co), potassium ( K) and other metals and their alloys, at least one of semiconductors such as graphite and graphene.
所述的薄膜二5材料不限,包括具有一定绝缘性能的半导体、无机材料或者有机材料,例如氧化锌(ZnO)、铁酸铋(BiFeO3)、钴酸锂(LiCoO2)、氧化镍(NiO)、氧化钴(Co2O3)、氧化铜(CuxO)、二氧化硅(SiO2)、氮化硅(SiNx)、二氧化钛(TiO2)、五氧化二钽(Ta2O5)、五氧化二铌(Nb2O5)、氧化钨(WOx)、二氧化铪(HfO2)、氧化铝(Al2O3)、碳纳米管、石墨烯、氧化石墨烯、非晶碳、硫化铜(CuxS)、硫化银(Ag2S)、非晶硅、氮化钛(TiN)、聚酰亚胺(PI)、聚酰胺(PAI)、聚西弗碱(PA)、聚砜(PS)等中的至少一种。The material of the thin film 25 is not limited, including semiconductors, inorganic materials or organic materials with certain insulating properties, such as zinc oxide (ZnO), bismuth ferrite (BiFeO 3 ), lithium cobaltate (LiCoO 2 ), nickel oxide ( NiO), cobalt oxide (Co 2 O 3 ), copper oxide (Cux O), silicon dioxide (SiO 2 ), silicon nitride (SiN x ) , titanium dioxide (TiO 2 ), tantalum pentoxide (Ta 2 O 5 ), niobium pentoxide (Nb 2 O 5 ), tungsten oxide (WO x ), hafnium dioxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), carbon nanotubes, graphene, graphene oxide, non Crystalline carbon, copper sulfide ( CuxS ), silver sulfide (Ag 2 S), amorphous silicon, titanium nitride (TiN), polyimide (PI), polyamide (PAI), polyschiff base (PA ), polysulfone (PS) and the like.
所述的薄膜三6材料不限,包括具有良好导电性能的金属和半导体中的一种材料或者两种以上的组合材料。所述的具有良好导电性能的金属和半导体包括但不限于铋、镍、钴、钾等金属以及其合金,石墨、石墨烯等半导体中的至少一种。The material of the thin film 36 is not limited, and includes one material or a combination of two or more materials among metals and semiconductors with good electrical conductivity. The metals and semiconductors with good electrical conductivity include but not limited to bismuth, nickel, cobalt, potassium and other metals and their alloys, and at least one of semiconductors such as graphite and graphene.
所述的薄膜一、薄膜二以及薄膜三构成的热电偶结构可以采用如下制备方法得到:The thermocouple structure composed of the first film, the second film and the third film can be obtained by the following preparation method:
步骤1、采用镀膜的方法在针尖本体表面制备薄膜一4;Step 1. Prepare thin film-4 on the surface of the tip body by coating;
步骤2、采用镀膜的方法在薄膜一4的表面制备薄膜二5;Step 2, using the coating method to prepare film two 5 on the surface of film one 4;
步骤3、采用刻蚀的方法除去针尖本体尖端处的薄膜二5,露出薄膜一4;Step 3, using an etching method to remove the film 2 5 at the tip of the needle tip body, exposing the film 1 4;
步骤4、采用镀膜的方法在步骤3所述露出的薄膜一表面制备薄膜三6,使薄膜一4与薄膜三6在针尖尖端部位连接,形成热电偶结构。Step 4. Prepare thin film 3 6 on the surface of thin film 1 exposed in step 3 by coating method, so that thin film 4 and thin film 3 6 are connected at the tip of the needle tip to form a thermocouple structure.
上述制备方法中,所述的步骤1、2、4中的镀膜的方法包括但不限于各种溶液旋涂方法、喷墨打印、固体溅射、热蒸发、电子束蒸发等方法中的一种或者两种以上的组合;所述的步骤3中的除针尖尖端薄膜二的方法包括但不限于干刻、湿刻等方法,例如离子刻蚀、反应离子刻蚀、化学刻蚀等。In the above-mentioned preparation method, the coating method in steps 1, 2, and 4 includes but is not limited to one of various solution spin coating methods, inkjet printing, solid sputtering, thermal evaporation, electron beam evaporation, etc. Or a combination of two or more; the method for removing the tip thin film 2 in step 3 includes but is not limited to dry etching, wet etching and other methods, such as ion etching, reactive ion etching, chemical etching and the like.
如图3所示,所述的薄膜一4、薄膜二5以及薄膜三6构成的热电偶结构还可以采用如下另一种制备方法得到:As shown in Figure 3, the thermocouple structure formed by the thin film one 4, the thin film two 5 and the thin film three 6 can also be obtained by another preparation method as follows:
步骤1、采用镀膜的方法,依次在针尖本体3表面制备薄膜一4、薄膜二5与薄膜三6;Step 1. Using the coating method, film one 4, film two 5 and film three 6 are sequentially prepared on the surface of the needle tip body 3;
步骤2、在薄膜三6与电极层7之间施加电压,利用尖端放电原理,通过调节薄膜三6与电极层7之间距离,使针尖尖端部的薄膜三6熔融,露出薄膜二5,而其他部位薄膜三6没有熔融;Step 2. Apply a voltage between the film 3 6 and the electrode layer 7, and use the tip discharge principle to adjust the distance between the film 3 6 and the electrode layer 7 to melt the film 3 6 at the tip of the needle point, exposing the film 2 5, and Other parts of the film 36 are not melted;
步骤3:去除步骤2所述露出的薄膜二5,露出薄膜一4;Step 3: remove the exposed film 2 5 described in step 2, and expose the film 1 4;
步骤4:采用镀膜的方法,在所述露出部位镀与薄膜三6相同的材料,使薄膜一4与薄膜三6在针尖尖端部位连接,形成热电偶结构。Step 4: Coating the exposed part with the same material as thin film three 6, so that thin film one 4 and thin film three 6 are connected at the tip of the needle tip to form a thermocouple structure.
上述制备方法中,所述的步骤1、4中的镀膜的方法包括但不限于各种溶液旋涂方法、喷墨打印、固体溅射、热蒸发或者电子束蒸发等方法中的一种或者两种以上的组合。In the above-mentioned preparation method, the coating method in steps 1 and 4 includes but is not limited to one or both of various solution spin coating methods, inkjet printing, solid sputtering, thermal evaporation or electron beam evaporation. more than one combination.
当采用上述具有热电偶结构的探针时,本发明基于扫描探针显微镜的纳米热电原位探测装置的工作模式包括如下两种,分别用于探测样品的形貌与电信号,以及热信号:When the above-mentioned probe with a thermocouple structure is used, the working mode of the nano-thermoelectric in-situ detection device based on the scanning probe microscope of the present invention includes the following two types, which are respectively used to detect the morphology, electrical signal, and thermal signal of the sample:
(1)模式一:用于探测样品的表面形貌与电信号(1) Mode 1: used to detect the surface morphology and electrical signal of the sample
探针驱动单元驱动探针位移至样品表面某初始位置,探针自该初始位置沿横向对样品表面进行定向扫描,扫描过程中控制探针针尖与样品表面点接触或振动点接触,同时电信号施加单元、薄膜一、薄膜三以及样品形成闭合的电学回路;位移或振动信号采集单元接收探针针尖的纵向位移信号或振动信号,经中心控制单元分析得到样品的形貌信号;同时,电信号施加单元对针尖施加电信号,该电信号流入薄膜一、薄膜三以及样品,形成电压信号,经电信号采集单元得到样品的电信号,经中心控制单元分析得到样品的电信号图像。The probe drive unit drives the probe to move to an initial position on the sample surface. From the initial position, the probe conducts a directional scan on the sample surface along the transverse direction. The application unit, film 1, film 3 and the sample form a closed electrical circuit; the displacement or vibration signal acquisition unit receives the longitudinal displacement signal or vibration signal of the probe tip, and analyzes the shape signal of the sample through the central control unit; at the same time, the electrical signal The application unit applies an electrical signal to the needle tip, and the electrical signal flows into the first film, the third film and the sample to form a voltage signal, the electrical signal of the sample is obtained through the electrical signal acquisition unit, and the electrical signal image of the sample is obtained through analysis by the central control unit.
(2)模式二:用于探测样品的热信号(2) Mode 2: used to detect the thermal signal of the sample
电信号施加单元、薄膜一、薄膜三形成闭合的热电回路;探针驱动单元驱动探针位移至样品表面某位置,使针尖与样品表面相接触,电信号施加单元对针尖施加电信号,电流流入针尖并对其进行加热,针尖与样品进行热交换,使热学回路中产生电压信号,经热学信号采集单元得到样品的热信号,经中心控制单元分析得到样品的热信号图像。The electrical signal application unit, film 1, and film 3 form a closed thermoelectric circuit; the probe driving unit drives the probe to a certain position on the sample surface, so that the needle tip is in contact with the sample surface, and the electrical signal application unit applies an electrical signal to the needle tip, and the current flows into the The needle tip is heated, and the needle tip and the sample perform heat exchange, so that a voltage signal is generated in the thermal circuit, the thermal signal of the sample is obtained through the thermal signal acquisition unit, and the thermal signal image of the sample is obtained through the analysis of the central control unit.
当采用上述热电偶结构的探针时,利用本发明基于扫描探针显微镜的纳米热电原位探测装置对样品的形貌、电性能以及热性能进行原位、同步、实时探测的方法如下:When the probe with the above-mentioned thermocouple structure is used, the method for in-situ, synchronous and real-time detection of the morphology, electrical properties and thermal properties of the sample using the nano-thermoelectric in-situ detection device based on the scanning probe microscope of the present invention is as follows:
步骤1:样品固定于扫描探针显微镜平台,采用上述探测模式一,将探针位移至初始位置,沿横向对样品表面进行定向扫描,得到样品的形貌图像与电信号图像;Step 1: The sample is fixed on the scanning probe microscope platform, using the above-mentioned detection mode 1, the probe is displaced to the initial position, and the sample surface is directional scanned along the lateral direction to obtain the topography image and electrical signal image of the sample;
步骤2:探针位移至步骤1中的初始位置,采用上述探测模式二,对样品表面进行步骤1中所述的横向定向扫描,得到样品的热信号图像。Step 2: The probe is moved to the initial position in step 1, and the above-mentioned detection mode 2 is used to scan the surface of the sample horizontally and directionally as described in step 1 to obtain the thermal signal image of the sample.
本发明还提出了另一种优选的探针结构。该结构中,如图1所示,探针包括探针臂1与针尖2。针尖2如图4所示,包括针尖本体3、热电阻材料层8,第一导电层9以及第二导电层10;热电阻材料层8位于针尖本体3表面,第二导电层10位于热电阻材料层表面;第一导电层9与热电阻材料层8相连通;热电阻材料层8由热电阻材料构成,用于探测样品温度变化及热导;第一导电层9由导电材料构成,与热电阻材料连接,用于探测热电阻材料阻值的变化;第二导电层10由导电材料构成。The present invention also proposes another preferred probe structure. In this structure, as shown in FIG. 1 , the probe includes a probe arm 1 and a needle tip 2 . As shown in Figure 4, the needle point 2 includes a needle point body 3, a thermal resistance material layer 8, a first conductive layer 9 and a second conductive layer 10; the thermal resistance material layer 8 is located on the surface of the needle point body 3, and the second conductive layer 10 is located on the surface of the thermal resistance The surface of the material layer; the first conductive layer 9 communicates with the thermal resistance material layer 8; the thermal resistance material layer 8 is made of a thermal resistance material, and is used to detect the temperature change and thermal conductivity of the sample; the first conductive layer 9 is made of a conductive material, and The thermal resistance material is connected to detect the change of the resistance value of the thermal resistance material; the second conductive layer 10 is made of conductive material.
所述的热电阻材料层8材料不限,包括具有低掺杂的硅、半导体及金属电阻材料等。The material of the thermal resistance material layer 8 is not limited, including silicon with low doping, semiconductor and metal resistance materials.
所述的第一导电层9材料不限,包括具有良好导电性能的金属和半导体中的一种材料或者两种以上的组合材料,例如铋(Bi)、镍(Ni)、钴(Co)、钾(K)等金属以及其合金,石墨、石墨烯等半导体中的至少一种。The material of the first conductive layer 9 is not limited, including one material or a combination of two or more materials in metals and semiconductors with good electrical conductivity, such as bismuth (Bi), nickel (Ni), cobalt (Co), At least one of metals such as potassium (K) and alloys thereof, and semiconductors such as graphite and graphene.
所述的第二导电层10材料不限,包括具有良好导电性能的金属和半导体中的一种材料或者两种以上的组合材料,例如铋(Bi)、镍(Ni)、钴(Co)、钾(K)等金属以及其合金,石墨、石墨烯等半导体中的至少一种。The material of the second conductive layer 10 is not limited, including one material or a combination of two or more materials in metals and semiconductors with good electrical conductivity, such as bismuth (Bi), nickel (Ni), cobalt (Co), At least one of metals such as potassium (K) and alloys thereof, and semiconductors such as graphite and graphene.
上述探针的制备方法如下:The preparation method of above-mentioned probe is as follows:
步骤1、采用镀膜的方法在针尖本体表面制备热电阻材料层8;Step 1. Prepare a thermal resistance material layer 8 on the surface of the tip body by coating;
步骤2、采用镀膜的方法在针尖本体表面制备第一导电层9;Step 2. Prepare the first conductive layer 9 on the surface of the tip body by coating;
步骤3、采用镀膜的方法在热电阻材料层8表面制备第二导电层10。Step 3. Prepare the second conductive layer 10 on the surface of the thermal resistance material layer 8 by coating.
上述制备方法中,所述的步骤1、2、3中的镀膜的方法包括但不限于各种溶液旋涂方法、喷墨打印、刻蚀、固体溅射、热蒸发、电子束蒸发等方法中的一种或者两种以上的组合。In the above-mentioned preparation method, the coating methods in the steps 1, 2, and 3 include but are not limited to various solution spin coating methods, inkjet printing, etching, solid sputtering, thermal evaporation, electron beam evaporation, etc. one or a combination of two or more.
作为优选,所述的热电阻材料层8的厚度为0.1μm~10μm。Preferably, the thickness of the thermal resistance material layer 8 is 0.1 μm˜10 μm.
作为优选,所述的第一导电层9的厚度为0.1μm~1μm。Preferably, the thickness of the first conductive layer 9 is 0.1 μm˜1 μm.
当采用上述具有热电阻结构的探针时,本发明基于扫描探针显微镜的纳米热电原位探测装置的工作模式包括如下两种,分别用于探测样品的形貌与电信号,以及热信号:When the above-mentioned probe with a thermal resistance structure is used, the working mode of the nano-thermoelectric in-situ detection device based on the scanning probe microscope of the present invention includes the following two types, which are respectively used to detect the morphology, electrical signal, and thermal signal of the sample:
(1)模式一:用于探测样品的表面形貌与电信号(1) Mode 1: used to detect the surface morphology and electrical signal of the sample
探针驱动单元驱动探针位移至样品表面某初始位置,探针自该初始位置沿横向对样品表面进行定向扫描,扫描过程中控制探针针尖与样品表面点接触或振动点接触,同时电信号施加单元、第一导电层、热电阻材料层以及第二导电层形成闭合的电学回路;位移或振动信号采集单元接收探针针尖的纵向位移信号或振动信号,经中心控制单元分析得到样品的形貌信号;同时,电信号施加单元对针尖施加电信号,该电信号流入第一导电层、热电阻材料层、第二导电层以及样品,形成电压信号,经电信号采集单元得到样品的电信号,经中心控制单元分析得到样品的电信号图像;The probe drive unit drives the probe to move to an initial position on the sample surface. From the initial position, the probe conducts a directional scan on the sample surface along the transverse direction. The application unit, the first conductive layer, the thermal resistance material layer and the second conductive layer form a closed electrical circuit; the displacement or vibration signal acquisition unit receives the longitudinal displacement signal or vibration signal of the probe tip, and the shape of the sample is obtained through the analysis of the central control unit. At the same time, the electrical signal applying unit applies an electrical signal to the needle tip, and the electrical signal flows into the first conductive layer, the thermal resistance material layer, the second conductive layer and the sample to form a voltage signal, and the electrical signal of the sample is obtained through the electrical signal acquisition unit , the electrical signal image of the sample is obtained through analysis by the central control unit;
(2)模式二:用于探测样品的热信号(2) Mode 2: used to detect the thermal signal of the sample
电信号施加单元、第一导电层与热电阻材料层形成闭合回路;电信号施加单元对热电阻材料层进行加热,进而对探针针尖进行加热,使得探针针尖的温度不同于样品的温度(一般选择高于样品的温度);探针驱动单元驱动探针针尖与样品相接触,样品与探针针尖发生热交换,进而影响到热电阻材料层的温度,由于热阻效应,使得热电阻材料层的电阻值发生变化,经热信号采集单元采集后经中心控制单元分析,得到样品的热信号图像。The electrical signal application unit, the first conductive layer and the thermal resistance material layer form a closed loop; the electrical signal application unit heats the thermal resistance material layer, and then heats the probe tip, so that the temperature of the probe tip is different from the temperature of the sample ( Generally, a temperature higher than that of the sample is selected); the probe driving unit drives the probe tip to contact the sample, and heat exchange occurs between the sample and the probe tip, which in turn affects the temperature of the thermal resistance material layer. Due to the thermal resistance effect, the thermal resistance material The resistance value of the layer changes, and after being collected by the thermal signal acquisition unit, it is analyzed by the central control unit to obtain the thermal signal image of the sample.
上述结构中,热电阻材料层以及第二导电层在针尖本体的尖端部位呈层叠排列,考虑到实际制备过程中,由于针尖本体的尖端位置横截面较小,因此覆盖层制备困难,尤其是制备该多层层叠结构时更加困难,因此作为优选,所述的第二导电层集成在热电阻材料层中。In the above structure, the thermal resistance material layer and the second conductive layer are stacked at the tip of the needle tip body. Considering the actual preparation process, because the tip of the needle tip body has a small cross-section, it is difficult to prepare the covering layer, especially the preparation The multi-layer laminated structure is more difficult, so preferably, the second conductive layer is integrated in the thermal resistance material layer.
作为另一种优选结构,所述的电阻材料层与第二导电层之间设置绝缘层,使电阻材料层与第二导电层相电绝缘,所述的第一导电层与第二导电层相电连接。该结构中,当采用上述模式一探测样品的电信号时,电信号施加单元、第一导电层以及第二导电层形成闭合的电学回路,电信号施加单元对针尖施加电信号,该电信号流入第一导电层、第二导电层以及样品,形成电压信号,经电信号采集单元得到样品的电信号,经中心控制单元分析得到样品的电信号图像。As another preferred structure, an insulating layer is provided between the resistive material layer and the second conductive layer to electrically insulate the resistive material layer from the second conductive layer, and the first conductive layer and the second conductive layer are electrically insulated. electrical connection. In this structure, when the above-mentioned mode 1 is used to detect the electrical signal of the sample, the electrical signal applying unit, the first conductive layer and the second conductive layer form a closed electrical circuit, the electrical signal applying unit applies an electrical signal to the needle tip, and the electrical signal flows into The first conductive layer, the second conductive layer and the sample form a voltage signal, the electrical signal of the sample is obtained through the electrical signal acquisition unit, and the electrical signal image of the sample is obtained through the analysis of the central control unit.
当采用上述热电阻结构的探针时,利用本发明基于扫描探针显微镜的纳米热电原位探测装置对样品的电、热性能进行原位、同步、实时探测的方法如下:When the probe with the above-mentioned thermal resistance structure is used, the method for in-situ, synchronous and real-time detection of the electrical and thermal properties of the sample by using the nano-thermoelectric in-situ detection device based on the scanning probe microscope of the present invention is as follows:
步骤1:样品固定于扫描探针显微镜平台,采用上述探测模式一,将探针位移至初始位置,沿横向对样品表面进行定向扫描,得到样品的形貌图像与电信号图像;Step 1: The sample is fixed on the scanning probe microscope platform, using the above-mentioned detection mode 1, the probe is displaced to the initial position, and the sample surface is directional scanned along the lateral direction to obtain the topography image and electrical signal image of the sample;
步骤2:探针位移至步骤1中的初始位置,采用上述探测模式二,对样品表面进行步骤1中所述的横向定向扫描,得到样品的热信号图像。Step 2: The probe is moved to the initial position in step 1, and the above-mentioned detection mode 2 is used to scan the surface of the sample horizontally and directionally as described in step 1 to obtain the thermal signal image of the sample.
本发明还提供了一种优选的探针控制单元结构,如图5所示,该探针控制单元是与探针相连接的压电驱动器。此时,所述的位移信号采集单元包括光源、光电四象限检测器以及信号处理器;工作状态时,样品置于扫描探针显微镜平台,探针在压电驱动器作用下进行振动,光源照射探针臂,反射信号通过光电四象限检测器收集,然后经过信号处理器处理后与中心控制单元相连接。The present invention also provides a preferred probe control unit structure, as shown in FIG. 5 , the probe control unit is a piezoelectric driver connected with the probe. At this time, the displacement signal acquisition unit includes a light source, a photoelectric four-quadrant detector and a signal processor; in the working state, the sample is placed on the platform of the scanning probe microscope, the probe vibrates under the action of the piezoelectric driver, and the light source illuminates the probe. The needle arm, the reflected signal is collected by the photoelectric four-quadrant detector, and then connected with the central control unit after being processed by the signal processor.
作为一种实现方式,如图5所示,所述的信号处理器包括前端放大器、积分器、高压放大器、延时器、锁相放大器与后端放大器。光电四象限检测器通过前端放大器与积分器相连接,积分器与高压放大器相连接,高压放大器的一路信号反馈至压电驱动器,构成闭环控制,另一路信号与延时器相连接,延时器与锁相放大器的1ω(一倍频通道)和3ω(三倍频通道)通道相连接,锁相放大器与后端放大器相连接,后端放大器与控制中心相连接。As an implementation manner, as shown in FIG. 5 , the signal processor includes a front-end amplifier, an integrator, a high-voltage amplifier, a delayer, a lock-in amplifier, and a back-end amplifier. The photoelectric four-quadrant detector is connected to the integrator through the front-end amplifier, and the integrator is connected to the high-voltage amplifier. One signal of the high-voltage amplifier is fed back to the piezoelectric driver to form a closed-loop control. The other signal is connected to the delayer, and the delayer It is connected with the 1ω (one times frequency channel) and 3ω (three times frequency channel) channels of the lock-in amplifier, the lock-in amplifier is connected with the back-end amplifier, and the back-end amplifier is connected with the control center.
作为一种实现方式,如图5所示,所述的热信号采集单元包括延时器、锁相放大器与后端放大器。As an implementation manner, as shown in FIG. 5 , the thermal signal acquisition unit includes a delayer, a lock-in amplifier and a back-end amplifier.
综上所述,本发明提供的基于扫描探针显微镜的纳米热电原位探测装置具有如下优点:In summary, the nano-thermoelectric in-situ detection device based on the scanning probe microscope provided by the present invention has the following advantages:
(1)现有的基于扫描探针显微镜的探测装置仅具有电或热信号探测功能,本发明突破了该探测功能局限性,提供了电信号与热信号的探测功能;(1) Existing detection devices based on scanning probe microscopes only have the detection function of electrical or thermal signals. The present invention breaks through the limitation of the detection function and provides the detection function of electrical signals and thermal signals;
(2)通过原位施加电场和温度场,能够模拟实际使役环境,实现在多重物理场的激励或作用下原位激励热/电畴翻转、引入漏电流等,实现了原位、同步、实时地探测材料的温度与热导分布及其动态演化过程,因此可以原位、直观地研究材料的电-热之间的耦合规律与机制。(2) By applying electric field and temperature field in situ, it is possible to simulate the actual service environment, realize in situ excitation of thermal/electrical domain inversion, introduction of leakage current, etc. under the excitation or action of multiple physical fields, and realize in situ, synchronous and real-time The temperature and thermal conductivity distribution of materials and their dynamic evolution process can be detected accurately, so the coupling law and mechanism between electricity and heat of materials can be studied in situ and intuitively.
因此,本发明拓展了扫描探针显微镜的功能,不仅为热电功能材料及器件的研究提供了先进的探测平台,从而为降低微/纳器件的功耗,提高其稳定性和集成度提供了帮助,同时也将大大推进微/纳尺度热科学的发展。Therefore, the present invention expands the function of the scanning probe microscope, not only provides an advanced detection platform for the research of thermoelectric functional materials and devices, thereby providing help for reducing the power consumption of micro/nano devices and improving their stability and integration , and will also greatly promote the development of micro/nanoscale thermal science.
附图说明Description of drawings
图1是本发明基于扫描探针显微镜的纳米热电原位探测装置中具有热电偶结构的探针的俯视结构示意图;Fig. 1 is the top view structure schematic diagram of the probe with thermocouple structure in the nano-thermoelectric in situ detection device based on scanning probe microscope of the present invention;
图2是图1中具有热电偶结构探针针尖的放大图;Figure 2 is an enlarged view of the probe tip with a thermocouple structure in Figure 1;
图3是采用尖端放电熔融法制备图1中具有热电偶结构探针针尖的示意图;Fig. 3 is a schematic diagram of the probe tip with thermocouple structure prepared in Fig. 1 by tip discharge melting method;
图4是本发明基于扫描探针显微镜的纳米热电原位探测装置中具有热电阻结构的探针针尖结构示意图;Fig. 4 is a schematic diagram of the probe tip structure with a thermal resistance structure in the nano-thermoelectric in-situ detection device based on the scanning probe microscope of the present invention;
图5是本发明基于扫描探针显微镜的纳米热电原位探测装置的一种优选的功能结构示意图。Fig. 5 is a schematic diagram of a preferred functional structure of the nano-pyroelectric in-situ detection device based on the scanning probe microscope of the present invention.
具体实施方式Detailed ways
以下结合附图、实施例对本发明作进一步详细说明,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments. It should be noted that the following embodiments are intended to facilitate the understanding of the present invention, but do not limit it in any way.
其中:1-探针臂,2-针尖,3-针尖本体,4-薄膜一,5-薄膜二,6-薄膜三,7-电极层,8-热电阻材料层,9-第一导电层,10-第二导电层。Among them: 1-probe arm, 2-needle tip, 3-needle tip body, 4-thin film one, 5-thin film two, 6-thin film three, 7-electrode layer, 8-thermal resistance material layer, 9-first conductive layer , 10 - the second conductive layer.
实施例1:Example 1:
本实施例中,基于扫描探针显微镜的纳米热电原位探测装置包括扫描探针显微镜平台、探针、探针控制单元、形貌信号检测平台、电信号监测平台、热信号检测平台,以及中心控制单元。In this embodiment, the nano-thermoelectric in-situ detection device based on the scanning probe microscope includes a scanning probe microscope platform, a probe, a probe control unit, a shape signal detection platform, an electrical signal monitoring platform, a thermal signal detection platform, and a center control unit.
探针控制单元用于驱动或者控制探针进行位移和/或振动;The probe control unit is used to drive or control the probe to perform displacement and/or vibration;
形貌信号检测平台包括位移或振动信号采集单元,用于接收探针的位移信号或振动信号;The topography signal detection platform includes a displacement or vibration signal acquisition unit, which is used to receive the displacement signal or vibration signal of the probe;
电信号检测平台包括电学回路与电信号采集单元;电学回路由电信号施加单元激励电信号,该电信号依次流入探针、样品,经电信号采集单元得到样品的电信号;The electrical signal detection platform includes an electrical circuit and an electrical signal acquisition unit; the electrical circuit is stimulated by an electrical signal application unit to stimulate the electrical signal, and the electrical signal flows into the probe and the sample in turn, and the electrical signal of the sample is obtained through the electrical signal acquisition unit;
热信号检测平台包括热学回路与热信号采集单元;热学回路由电信号施加单元激励电信号,该电信号流入探针并对探针进行加热,探针与样品进行热交换,使热学回路中的电压信号发生变化,经采集得到样品的热信号;The thermal signal detection platform includes a thermal circuit and a thermal signal acquisition unit; the thermal circuit excites the electrical signal by the electrical signal application unit, and the electrical signal flows into the probe and heats the probe, and the probe and the sample perform heat exchange, so that the thermal circuit The voltage signal changes, and the thermal signal of the sample is obtained through collection;
中心控制单元用于初始化系统各单元,控制系统各单元,接收样品的形貌、电以及热信号、分析后得到样品的形貌、电、热信号图像。The central control unit is used to initialize each unit of the system, control each unit of the system, receive the morphology, electrical and thermal signals of the sample, and obtain the morphology, electrical and thermal signal images of the sample after analysis.
如图1所示,探针包括探针臂1与针尖2。As shown in FIG. 1 , the probe includes a probe arm 1 and a needle tip 2 .
针尖2的结构如图2所示,由针尖本体3与表面覆盖层组成,表面覆盖层由薄膜一4、薄膜一4表面覆盖薄膜二5、薄膜二5表面覆盖薄膜三6。薄膜一4具有导电性、薄膜二5具有电绝缘性、薄膜三6具有导电性,薄膜一4与薄膜三6的材料不同;并且,薄膜一4、薄膜二5和薄膜三6构成热电偶结构,即:在针尖本体3的尖端位置,薄膜一4表面覆盖薄膜三6,而针尖本体3除尖端之外的其余部位,薄膜二5位于薄膜一4与薄膜三6之间。The structure of the needle tip 2 is shown in FIG. 2 . It is composed of the needle tip body 3 and the surface covering layer. The surface covering layer consists of film one 4 , film one 4 , film two 5 , film two 5 and film three 6 . Thin film one 4 has electrical conductivity, thin film two 5 has electrical insulation, and thin film three 6 has electrical conductivity, and the materials of thin film one 4 and thin film three 6 are different; and thin film one 4, thin film two 5 and thin film three 6 form a thermocouple structure , that is: at the tip position of the needle point body 3, the surface of the film one 4 covers the film three 6, and the other parts of the needle point body 3 except the tip, the film two 5 is located between the film one 4 and the film three 6.
该具有热电偶结构的探针针尖可以采用如下方法制备,该方法包括如下步骤:The probe tip with a thermocouple structure can be prepared by the following method, which includes the following steps:
步骤1、采用镀膜的方法,例如溶液旋涂方法、喷墨打印、固体溅射、热蒸发、者电子束蒸发等方法在针尖本体3表面制备薄膜一4;Step 1. Prepare a thin film-4 on the surface of the needle tip body 3 by a coating method, such as solution spin coating, inkjet printing, solid sputtering, thermal evaporation, or electron beam evaporation;
步骤2、采用镀膜的方法,例如溶液旋涂方法、喷墨打印、固体溅射、热蒸发、者电子束蒸发等方法在针尖本体3表面制备薄膜二5;Step 2, using methods such as solution spin coating, inkjet printing, solid sputtering, thermal evaporation, or electron beam evaporation to prepare a thin film 25 on the surface of the tip body 3 by using a coating method;
步骤3、采用干刻、湿刻等方法,例如离子刻蚀、反应离子刻蚀、化学刻蚀等方法去除针尖本体3尖端处的薄膜二5,露出薄膜一4;Step 3, using methods such as dry etching and wet etching, such as ion etching, reactive ion etching, chemical etching, etc., to remove the film 2 5 at the tip of the needle tip body 3, exposing the film 1 4;
步骤4、采用镀膜的方法,例如溶液旋涂方法、喷墨打印、固体溅射、热蒸发、者电子束蒸发等方法在针尖本体3表面制备薄膜三6,使针尖本体3尖端处的薄膜一4表面覆盖薄膜三6,除尖端之外的其余部位,薄膜二5位于薄膜一4与三6之间。Step 4. Prepare a thin film 36 on the surface of the tip body 3 by methods such as solution spin coating, inkjet printing, solid sputtering, thermal evaporation, or electron beam evaporation, so that the thin film at the tip of the tip body 3 The surface of 4 is covered with film three 6, except for the tip, film two 5 is located between film one 4 and film three 6.
薄膜一4的材料为导电金属Pt,厚度为100nm,薄膜二5的材料为绝缘层Al2O3,厚度为200nm,薄膜三6的材料为导电金属Ni,厚度为100nm。The material of film one 4 is conductive metal Pt with a thickness of 100nm, the material of film two 5 is insulating layer Al 2 O 3 with a thickness of 200nm, and the material of film three 6 is conductive metal Ni with a thickness of 100nm.
探针控制单元采用与探针相连接的压电驱动器。该压电驱动器选用美国AsylumResearch公司生产的MFP-3D-SA-SCANNER扫描器,扫描范围X×Y=90×90μm2。The probe control unit uses a piezoelectric driver connected to the probe. The piezoelectric driver is an MFP-3D-SA-SCANNER scanner produced by Asylum Research Company of the United States, and the scanning range is X×Y=90×90 μm 2 .
如图5所示,位移或振动信号采集单元包括光源、光电四象限检测器以及信号处理器。信号处理器由前端放大器、积分器、高压放大器、延时器、锁相放大器与后端放大器组成。工作状态时,样品置于扫描探针显微镜平台,探针在压电驱动器作用下进行振动,光源照射探针臂,反射信号通过光电四象限检测器收集,然后通过前端放大器与积分器相连接,积分器与高压放大器相连接,高压放大器的一路信号反馈至压电驱动器,构成闭环控制,另一路信号与延时器相连接,延时器与锁相放大器的1ω(一倍频通道)和3ω(三倍频通道)通道相连接,锁相放大器与后端放大器相连接,后端放大器与控制中心相连接。As shown in Figure 5, the displacement or vibration signal acquisition unit includes a light source, a photoelectric four-quadrant detector and a signal processor. The signal processor consists of a front-end amplifier, an integrator, a high-voltage amplifier, a delayer, a lock-in amplifier and a back-end amplifier. In the working state, the sample is placed on the scanning probe microscope platform, the probe vibrates under the action of the piezoelectric driver, the light source illuminates the probe arm, the reflected signal is collected by the photoelectric four-quadrant detector, and then connected to the integrator through the front-end amplifier. The integrator is connected to the high-voltage amplifier, and one signal of the high-voltage amplifier is fed back to the piezoelectric driver to form a closed-loop control, and the other signal is connected to the delayer, and the delayer is connected to the lock-in amplifier's 1ω (one frequency channel) and 3ω (triple frequency channel) channels are connected, the lock-in amplifier is connected with the back-end amplifier, and the back-end amplifier is connected with the control center.
控制中心由计算机、初始化模块、控制模块组成。The control center is composed of a computer, an initialization module and a control module.
热信号采集单元由延时器、锁相放大器与后端放大器组成。电信号采集单元由延时器、锁相放大器与后端放大器组成。本实施例中,该热信号采集单元、电信号采集单元与信号处理器进行集成。The thermal signal acquisition unit is composed of a delayer, a lock-in amplifier and a back-end amplifier. The electrical signal acquisition unit is composed of a delayer, a lock-in amplifier and a back-end amplifier. In this embodiment, the thermal signal acquisition unit, the electrical signal acquisition unit and the signal processor are integrated.
热学回路中的电信号施加单元为电流源。The electrical signal applying unit in the thermal circuit is a current source.
电学回路由电信号施加单元为电压源。The electrical circuit consists of an electrical signal applying unit as a voltage source.
本实施例中,选择铁电衬底PMN-PT上生长的Fe膜为研究样品,该样品的厚度为90nm。In this embodiment, the Fe film grown on the ferroelectric substrate PMN-PT is selected as the research sample, and the thickness of the sample is 90 nm.
利用上述基于扫描探针显微镜的纳米热电原位探测装置,在室温下对样品的热性能进行原位、同步、实时探测的方法如下:Using the above-mentioned nano-thermoelectric in-situ detection device based on scanning probe microscope, the method of in-situ, synchronous and real-time detection of the thermal properties of the sample at room temperature is as follows:
(1)样品固定于扫描探针显微镜平台,通过初始化模块设定系统各单元初始参数;(1) The sample is fixed on the scanning probe microscope platform, and the initial parameters of each unit of the system are set through the initialization module;
(2)在控制模块作用下,压电驱动器驱动探针位移至样品表面某初始位置,光源照射探针臂,反射信号通过光电四象限检测器收集;探针自该初始位置沿横向对样品表面进行定向扫描,扫描过程中控制探针针尖2表面的薄膜三6与样品表面点接触或振动点接触;同时,电流源、薄膜一4、薄膜三6以及样品形成闭合的电学回路;(2) Under the action of the control module, the piezoelectric driver drives the probe to move to an initial position on the sample surface, the light source illuminates the probe arm, and the reflected signal is collected by a photoelectric four-quadrant detector; Carry out directional scanning, during the scanning process, the film 3 6 on the surface of the probe tip 2 is controlled to be in point contact or vibrating point contact with the sample surface; at the same time, the current source, film 1 4, film 3 6 and the sample form a closed electrical circuit;
反射信号通过光电四象限检测器收集,然后通过前端放大器与积分器相连接,积分器与高压放大器相连接,高压放大器的一路信号反馈至压电驱动器,构成闭环控制,另一路信号与延时器相连接,延时器与锁相放大器的1ω(一倍频通道)和3ω(三倍频通道)通道相连接,锁相放大器与后端放大器相连接,后端放大器与计算机相连接,经分析处理后得到样品的形貌信号图像;同时,电流源对探针施加电信号,该电信号流入薄膜一4、薄膜三6以及样品后,流入大地,形成电压信号,采集该信号,经延时器、锁相放大器与后端放大器,与计算机相连接,分析处理后得到该位置样品的电信号图像;The reflected signal is collected by a photoelectric four-quadrant detector, and then connected to the integrator through the front-end amplifier. The integrator is connected to the high-voltage amplifier. One signal of the high-voltage amplifier is fed back to the piezoelectric driver to form a closed-loop control. The delayer is connected with the 1ω (one frequency channel) and 3ω (triple frequency channel) channels of the lock-in amplifier, the lock-in amplifier is connected with the back-end amplifier, and the back-end amplifier is connected with the computer. After analysis After processing, the topography signal image of the sample is obtained; at the same time, the current source applies an electrical signal to the probe, and the electrical signal flows into the film 1 4, film 3 6 and the sample, and then flows into the ground to form a voltage signal. The signal is collected and delayed. The amplifier, the lock-in amplifier and the back-end amplifier are connected with the computer, and the electrical signal image of the sample at the position is obtained after analysis and processing;
(3)压电驱动器驱动探针返回至步骤(2)中所述的初始位置并且向上抬高一定距离,按照步骤(2)所述的横向定向对样品表面进行再次扫描,扫描过程中控制探针针尖2表面的薄膜三6沿步骤(2)得到的形貌图像进行纵向位移或者振动,位移或振动信号采集单元接收探针针尖的纵向位移信号或振动信号,反射信号通过光电四象限检测器收集,然后如步骤(1)所述,通过前端放大器、积分器、高压放大器、延时器、锁相放大器、后端放大器,与计算机相连接,经分析处理后得到样品的电信号图像;(3) The piezoelectric driver drives the probe back to the initial position described in step (2) and lifts up a certain distance, and scans the sample surface again according to the lateral orientation described in step (2). During the scanning process, the probe is controlled. The thin film 36 on the surface of the needle tip 2 performs longitudinal displacement or vibration along the topography image obtained in step (2), the displacement or vibration signal acquisition unit receives the longitudinal displacement signal or vibration signal of the probe tip, and the reflected signal passes through the photoelectric four-quadrant detector Collect, then as described in step (1), connect with computer through front-end amplifier, integrator, high-voltage amplifier, delayer, lock-in amplifier, back-end amplifier, obtain the electric signal image of sample after analyzing and processing;
(4)压电驱动器驱动探针返回至步骤(2)中所述的初始位置;(4) The piezoelectric driver drives the probe back to the initial position described in step (2);
(5)使针尖2表面的薄膜三6与样品表面相接触;电流源、薄膜一4以及薄膜三6形成闭合的热电回路;电流源对探针施加电信号,电流流入针尖2并对其进行加热,针尖2与样品进行热交换,使该热学回路中的电压信号发生变化,采集该信号,经延时器、锁相放大器与后端放大器,与计算机相连接,分析处理后得到该位置样品的热信号图像;(5) Make the film 3 6 on the surface of the needle tip 2 contact the sample surface; the current source, the film 1 4 and the film 3 6 form a closed thermoelectric circuit; the current source applies an electrical signal to the probe, and the current flows into the needle tip 2 and performs Heating, heat exchange between the needle tip 2 and the sample, so that the voltage signal in the thermal circuit changes, the signal is collected, and connected to the computer through the delayer, lock-in amplifier and back-end amplifier, and the sample at the position is obtained after analysis and processing thermal signature image;
(6)按照步骤(2)所述的横向方向,压电驱动器驱动探针至下一位置;(6) According to the lateral direction described in step (2), the piezoelectric driver drives the probe to the next position;
(7)每一点重复步骤(5)与(6),直到按照步骤(2)所述的横向方向对样品表面逐点扫描完毕。(7) Steps (5) and (6) are repeated for each point until the sample surface is scanned point by point according to the transverse direction described in step (2).
实施例2:Example 2:
本实施例中,基于扫描探针显微镜的纳米热电原位探测装置与实施例1中完全相同。In this embodiment, the nano-pyroelectric in-situ detection device based on the scanning probe microscope is exactly the same as that in Embodiment 1.
所不同的是该具有热电偶结构的探针针尖采用另一种方法制备,该方法包括如下步骤:The difference is that the probe tip with a thermocouple structure is prepared by another method, which includes the following steps:
步骤1、采用镀膜的方法,依次在针尖本体3表面制备薄膜一4、薄膜二5与薄膜三6;Step 1. Using the coating method, film one 4, film two 5 and film three 6 are sequentially prepared on the surface of the needle tip body 3;
步骤2、在薄膜三6与电极层7之间施加电压,利用尖端放电原理,通过调节薄膜三6与电极层7之间距离,使针尖尖端部的薄膜三6熔融,露出薄膜二5,而其他部位薄膜三6没有熔融;Step 2. Apply a voltage between the film 3 6 and the electrode layer 7, and use the tip discharge principle to adjust the distance between the film 3 6 and the electrode layer 7 to melt the film 3 6 at the tip of the needle point, exposing the film 2 5, and Other parts of the film 36 are not melted;
步骤3:去除步骤2所述露出的薄膜二5,露出薄膜一4;Step 3: remove the exposed film 2 5 described in step 2, and expose the film 1 4;
步骤4:采用镀膜的方法,在所述露出部位镀与薄膜三6相同的材料,使薄膜一4与薄膜三6在针尖尖端部位连接,形成热电偶结构。Step 4: Coating the exposed part with the same material as thin film three 6, so that thin film one 4 and thin film three 6 are connected at the tip of the needle tip to form a thermocouple structure.
利用该基于扫描探针显微镜的纳米热电原位探测装置在室温下对样品的电、热性能进行原位、同步、实时探测的方法与实施例1完全相同。The method for in-situ, synchronous and real-time detection of the electrical and thermal properties of the sample at room temperature using the nano-pyroelectric in-situ detection device based on the scanning probe microscope is exactly the same as that in Example 1.
实施例3:Example 3:
本实施例中,基于扫描探针显微镜的纳米热电原位探测装置的结构与实施例1中基本相同,所不同的是采用具有热电阻结构的探针。In this embodiment, the structure of the nano-thermoelectric in-situ detection device based on the scanning probe microscope is basically the same as that in Embodiment 1, except that a probe with a thermal resistance structure is used.
如图1所示,该探针包括探针臂1与针尖2。针尖2如图4所示,包括针尖本体3、热电阻材料层8,第一导电层9以及第二导电层10;热电阻材料层8位于针尖本体3表面,第二导电层10位于热电阻材料层表面;导电层9与热电阻材料层8相电连通。As shown in FIG. 1 , the probe includes a probe arm 1 and a needle tip 2 . As shown in Figure 4, the needle point 2 includes a needle point body 3, a thermal resistance material layer 8, a first conductive layer 9 and a second conductive layer 10; the thermal resistance material layer 8 is located on the surface of the needle point body 3, and the second conductive layer 10 is located on the surface of the thermal resistance The surface of the material layer; the conductive layer 9 is in electrical communication with the thermal resistance material layer 8 .
热电阻材料层8材料为低掺杂的硅,厚度为2m,导电层9材料为铋(Bi)、镍(Ni)、钴(Co)、钾(K)、石墨、石墨烯中的一种,厚度为1μm,第二导电层10材料为铋(Bi)、镍(Ni)、钴(Co)、钾(K)、石墨、石墨烯中的一种,厚度为0.1μm。The material of the thermal resistance material layer 8 is low-doped silicon with a thickness of 2m, and the material of the conductive layer 9 is one of bismuth (Bi), nickel (Ni), cobalt (Co), potassium (K), graphite, and graphene , the thickness is 1 μm, the material of the second conductive layer 10 is one of bismuth (Bi), nickel (Ni), cobalt (Co), potassium (K), graphite and graphene, and the thickness is 0.1 μm.
上述探针的制备方法如下:The preparation method of above-mentioned probe is as follows:
步骤1、采用溶液旋涂方法、喷墨打印、刻蚀、固体溅射、热蒸发、电子束蒸发等镀膜的方法在针尖本体表面制备热电阻材料层8;Step 1. Prepare a thermal resistance material layer 8 on the surface of the needle tip body by coating methods such as solution spin coating, inkjet printing, etching, solid sputtering, thermal evaporation, and electron beam evaporation;
步骤2、采用溶液旋涂方法、喷墨打印、刻蚀、固体溅射、热蒸发、电子束蒸发等镀膜的方法在针尖本体表面制备第一导电层9,该导电层与热电阻材料层8相连通;Step 2. Prepare the first conductive layer 9 on the surface of the needle tip body by coating methods such as solution spin coating, inkjet printing, etching, solid sputtering, thermal evaporation, and electron beam evaporation. The conductive layer and the thermal resistance material layer 8 Connected;
步骤3、采用溶液旋涂方法、喷墨打印、刻蚀、固体溅射、热蒸发、电子束蒸发等镀膜的方法在热电阻材料层8表面制备第二导电层10。Step 3. Prepare the second conductive layer 10 on the surface of the thermal resistance material layer 8 by using coating methods such as solution spin coating, inkjet printing, etching, solid sputtering, thermal evaporation, and electron beam evaporation.
利用上述基于扫描探针显微镜的纳米热电原位探测装置,在室温下对样品的电、热性能进行原位、同步、实时探测的方法如下:Using the above-mentioned nano-thermoelectric in-situ detection device based on the scanning probe microscope, the method of in-situ, synchronous and real-time detection of the electrical and thermal properties of the sample at room temperature is as follows:
(1)样品固定于扫描探针显微镜平台,通过初始化模块设定系统各单元初始参数;(1) The sample is fixed on the scanning probe microscope platform, and the initial parameters of each unit of the system are set through the initialization module;
(2)在控制模块作用下,压电驱动器驱动探针位移至样品表面某初始位置,光源照射探针臂,反射信号通过光电四象限检测器收集;探针自该初始位置沿横向对样品表面进行定向扫描,扫描过程中控制探针针尖2表面的第二导电层10与样品表面点接触或振动点接触;同时,电流源、第一导电层9、热电阻材料层8、第二导电层10以及样品形成闭合的电学回路;(2) Under the action of the control module, the piezoelectric driver drives the probe to move to an initial position on the sample surface, the light source illuminates the probe arm, and the reflected signal is collected by a photoelectric four-quadrant detector; Carry out directional scanning, during the scanning process, the second conductive layer 10 on the surface of the control probe tip 2 is in point contact or vibration point contact with the sample surface; at the same time, the current source, the first conductive layer 9, the thermal resistance material layer 8, the second conductive layer 10 and the sample form a closed electrical loop;
反射信号通过光电四象限检测器收集,然后通过前端放大器与积分器相连接,积分器与高压放大器相连接,高压放大器的一路信号反馈至压电驱动器,构成闭环控制,另一路信号与延时器相连接,延时器与锁相放大器的1ω(一倍频通道)和3ω(三倍频通道)通道相连接,锁相放大器与后端放大器相连接,后端放大器与计算机相连接,经分析处理后得到样品的形貌信号图像;同时,电流源对探针施加电信号,该电信号流入第一导电层9、热电阻材料层8、第二导电层10以及样品后,流入大地,形成电压信号,采集该信号,经延时器、锁相放大器与后端放大器,与计算机相连接,分析处理后得到该位置样品的电信号图像;The reflected signal is collected by a photoelectric four-quadrant detector, and then connected to the integrator through the front-end amplifier. The integrator is connected to the high-voltage amplifier. One signal of the high-voltage amplifier is fed back to the piezoelectric driver to form a closed-loop control. connected, the delayer is connected with the 1ω (one frequency channel) and 3ω (triple frequency channel) channels of the lock-in amplifier, the lock-in amplifier is connected with the back-end amplifier, and the back-end amplifier is connected with the computer. After analysis After processing, the topography signal image of the sample is obtained; at the same time, the current source applies an electrical signal to the probe, and the electrical signal flows into the first conductive layer 9, the thermal resistance material layer 8, the second conductive layer 10 and the sample, and then flows into the ground, forming The voltage signal is collected, and connected to the computer through the delayer, lock-in amplifier and back-end amplifier, and the electrical signal image of the sample at the position is obtained after analysis and processing;
(3)压电驱动器驱动探针返回至步骤(2)中所述的初始位置;(3) The piezoelectric driver drives the probe back to the initial position described in step (2);
(4)使针尖2表面的第二导电层10与样品表面相接触;电流源、第一导电层9以及热电阻材料层8形成闭合的热电回路;电信号施加单元对热电阻材料层8进行加热,进而对探针针尖进行加热,使得探针针尖的温度高于样品的温度;探针驱动单元驱动探针针尖与样品相接触,样品与探针针尖发生热交换,进而影响到热电阻材料层8的温度,由于热阻效应,使得热电阻材料层8的电阻值发生变化,采集该信号,经延时器、锁相放大器与后端放大器,与计算机相连接,分析处理后得到该位置样品的热信号图像;(4) The second conductive layer 10 on the surface of the needle tip 2 is brought into contact with the sample surface; the current source, the first conductive layer 9 and the thermal resistance material layer 8 form a closed thermoelectric circuit; the electrical signal application unit conducts the thermal resistance material layer 8 Heating, and then heating the probe tip, so that the temperature of the probe tip is higher than the temperature of the sample; the probe driving unit drives the probe tip to contact the sample, and heat exchange occurs between the sample and the probe tip, which affects the thermal resistance material The temperature of layer 8, due to the thermal resistance effect, makes the resistance value of the thermal resistance material layer 8 change, collects the signal, connects with the computer through the delayer, lock-in amplifier and back-end amplifier, and obtains the position after analysis and processing The thermal signature image of the sample;
(5)按照步骤(2)所述的横向方向,压电驱动器驱动探针至下一位置;(5) According to the lateral direction described in step (2), the piezoelectric driver drives the probe to the next position;
(6)每一点重复步骤(4)与(5),直到按照步骤(2)所述的横向方向对样品表面逐点扫描完毕。(6) Steps (4) and (5) are repeated for each point until the sample surface is scanned point by point according to the transverse direction described in step (2).
实施例4:Example 4:
本实施例中,基于扫描探针显微镜的纳米热电原位探测装置与实施例3中基本相同,所不同的是第二导电层10集成在热电阻材料层8中。In this embodiment, the nanometer pyroelectric in-situ detection device based on the scanning probe microscope is basically the same as that in Embodiment 3, except that the second conductive layer 10 is integrated in the thermal resistance material layer 8 .
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。The embodiments described above have described the technical solutions of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. All done within the principle scope of the present invention Any modification, supplement or substitution in a similar manner shall be included within the protection scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410495722.9A CN105510637B (en) | 2014-09-24 | 2014-09-24 | Micro-/ nano thermoelectricity in-situ detector based on scanning probe microscopy and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410495722.9A CN105510637B (en) | 2014-09-24 | 2014-09-24 | Micro-/ nano thermoelectricity in-situ detector based on scanning probe microscopy and detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105510637A CN105510637A (en) | 2016-04-20 |
CN105510637B true CN105510637B (en) | 2018-10-19 |
Family
ID=55718761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410495722.9A Active CN105510637B (en) | 2014-09-24 | 2014-09-24 | Micro-/ nano thermoelectricity in-situ detector based on scanning probe microscopy and detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105510637B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106093474A (en) * | 2016-08-02 | 2016-11-09 | 河南师范大学 | The potential barrier probe of solid dielectric thin film is had on needle point |
CN109917407A (en) * | 2019-03-22 | 2019-06-21 | 中国科学院重庆绿色智能技术研究院 | A near-field probe ranging method and device based on laser reflection |
CN110907489A (en) * | 2019-11-13 | 2020-03-24 | 中国科学院上海硅酸盐研究所 | Nanoscale thermal conductivity-electric domain in-situ characterization device based on atomic force microscope |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6566650B1 (en) * | 2000-09-18 | 2003-05-20 | Chartered Semiconductor Manufacturing Ltd. | Incorporation of dielectric layer onto SThM tips for direct thermal analysis |
EP1351256A2 (en) * | 2002-03-29 | 2003-10-08 | Xerox Corporation | Scanning probe system with spring probe |
CN1670505A (en) * | 2005-04-22 | 2005-09-21 | 清华大学 | A multi-mode atomic force probe scanning system |
US7597717B1 (en) * | 2007-06-25 | 2009-10-06 | The United States Of America As Represented By The Secretary Of The Navy | Rotatable multi-cantilever scanning probe microscopy head |
CN101592583A (en) * | 2009-06-26 | 2009-12-02 | 北京航空航天大学 | A Harmonic Excited Imaging System for Tapping Mode Atomic Force Microscopy |
CN201488932U (en) * | 2009-08-24 | 2010-05-26 | 苏州海兹思纳米科技有限公司 | Multi-mode AFM (atomic force microscope) |
CN102692427A (en) * | 2012-06-20 | 2012-09-26 | 中国科学院上海硅酸盐研究所 | Nano-thermoelectric multi-parameter in-situ quantitative characterization device based on atomic force microscope |
CN103336151A (en) * | 2013-06-21 | 2013-10-02 | 中山大学 | Magnetic microscope and measurement method thereof |
CN103901234A (en) * | 2014-04-16 | 2014-07-02 | 中国科学院上海硅酸盐研究所 | In-situ integration representation device of multiferroic material nanoscale domain structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004156958A (en) * | 2002-11-05 | 2004-06-03 | Olympus Corp | Scanning probe microscope |
US8677809B2 (en) * | 2008-06-16 | 2014-03-25 | Oxford Instruments Plc | Thermal measurements using multiple frequency atomic force microscopy |
JP2012047539A (en) * | 2010-08-25 | 2012-03-08 | Hitachi High-Technologies Corp | Spm probe and light emitting portion inspection apparatus |
-
2014
- 2014-09-24 CN CN201410495722.9A patent/CN105510637B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6566650B1 (en) * | 2000-09-18 | 2003-05-20 | Chartered Semiconductor Manufacturing Ltd. | Incorporation of dielectric layer onto SThM tips for direct thermal analysis |
EP1351256A2 (en) * | 2002-03-29 | 2003-10-08 | Xerox Corporation | Scanning probe system with spring probe |
CN1670505A (en) * | 2005-04-22 | 2005-09-21 | 清华大学 | A multi-mode atomic force probe scanning system |
US7597717B1 (en) * | 2007-06-25 | 2009-10-06 | The United States Of America As Represented By The Secretary Of The Navy | Rotatable multi-cantilever scanning probe microscopy head |
CN101592583A (en) * | 2009-06-26 | 2009-12-02 | 北京航空航天大学 | A Harmonic Excited Imaging System for Tapping Mode Atomic Force Microscopy |
CN201488932U (en) * | 2009-08-24 | 2010-05-26 | 苏州海兹思纳米科技有限公司 | Multi-mode AFM (atomic force microscope) |
CN102692427A (en) * | 2012-06-20 | 2012-09-26 | 中国科学院上海硅酸盐研究所 | Nano-thermoelectric multi-parameter in-situ quantitative characterization device based on atomic force microscope |
CN103336151A (en) * | 2013-06-21 | 2013-10-02 | 中山大学 | Magnetic microscope and measurement method thereof |
CN103901234A (en) * | 2014-04-16 | 2014-07-02 | 中国科学院上海硅酸盐研究所 | In-situ integration representation device of multiferroic material nanoscale domain structure |
Also Published As
Publication number | Publication date |
---|---|
CN105510637A (en) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105510636B (en) | A kind of nano magnetic-electric-thermal many reference amounts coupling in-situ detecting system and its detection method | |
Hui et al. | Scanning probe microscopy for advanced nanoelectronics | |
CN105510638B (en) | Probe, preparation method and detection method in a kind of scanning probe microscopy | |
CN105136822B (en) | A kind of nano material transmission electron microscope in-situ test chip, chip preparation method and its application | |
CN102262996B (en) | Comprehensive test sample rod for double-shaft tilting in-situ force and electric property of transmission electron microscope | |
Petersen et al. | Scanning microscopic four-point conductivity probes | |
CN105510639B (en) | Probe, preparation method and detection method in a kind of scanning probe microscopy | |
CN105510637B (en) | Micro-/ nano thermoelectricity in-situ detector based on scanning probe microscopy and detection method | |
CN105510642B (en) | Nano magnetic heating in-situ detector and detection method based on scanning probe microscopy | |
TWI229050B (en) | Microstructures | |
Mishuk et al. | Self-supported Gd-doped ceria films for electromechanical actuation: Fabrication and testing | |
CN106597026A (en) | Magneto-electro-thermo multi-parameter coupling microscope probe, and preparation method and detection method thereof | |
Shen et al. | Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire | |
Otsuka et al. | Point-contact current-imaging atomic force microscopy: Measurement of contact resistance between single-walled carbon nanotubes in a bundle | |
CN107064565B (en) | Magneto-electric-thermal multiparameter coupling microscope probe, preparation method and detection method thereof | |
CN100590440C (en) | A scanning electron microscope in-situ electrical measurement device | |
CN206848304U (en) | The hot many reference amounts coupling microscope probe of magnetoelectricity | |
CN106383250A (en) | Scanning tunneling microscope probe with use of two-dimensional atomic crystal material | |
Nonnenmann | A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures | |
CN202134501U (en) | In situ force and electrical performance comprehensive test sample rod with biaxial tilting for transmission electron microscope | |
Yoshimoto et al. | Independently driven four-probe method for local electrical characteristics in organic thin-film transistors under controlled channel potential | |
Wang et al. | Development of a thermoelectric nanowire characterization platform (TNCP) for structural and thermoelectric investigation of single nanowires | |
Nicklaus | Tip-Enhanced Raman spectroscopy for nanoelectronics | |
TW200805571A (en) | Method to integrate carbon nanotube with CMOS chip into array-type microsensor | |
CN110646640B (en) | Material micro/nano scale magnetocaloric signal detection method based on scanning probe microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |