[go: up one dir, main page]

CN104591736B - 透红外ZnS整流罩陶瓷的制造方法 - Google Patents

透红外ZnS整流罩陶瓷的制造方法 Download PDF

Info

Publication number
CN104591736B
CN104591736B CN201510011381.8A CN201510011381A CN104591736B CN 104591736 B CN104591736 B CN 104591736B CN 201510011381 A CN201510011381 A CN 201510011381A CN 104591736 B CN104591736 B CN 104591736B
Authority
CN
China
Prior art keywords
zns
fairing
mold
infrared
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510011381.8A
Other languages
English (en)
Other versions
CN104591736A (zh
Inventor
毛小建
柴宝燕
张龙
姜本学
袁强
谢俊喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Kangtai Wei Optoelectronic Technology Co Ltd
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201510011381.8A priority Critical patent/CN104591736B/zh
Priority to PCT/CN2015/071681 priority patent/WO2016109993A1/zh
Publication of CN104591736A publication Critical patent/CN104591736A/zh
Priority to US14/949,801 priority patent/US9559411B2/en
Application granted granted Critical
Publication of CN104591736B publication Critical patent/CN104591736B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

一种透红外ZnS整流罩陶瓷的制造方法,通过冷等静压工艺制造素坯,然后通过真空热压烧结获得整流罩。本发明通过惰性固体颗粒传递压力,能够在热压过程中保持均匀压力分布,从而获得性能均匀一致的红外ZnS整流罩陶瓷产品。

Description

透红外ZnS整流罩陶瓷的制造方法
技术领域
本发明涉及整流罩,特别是一种透红外ZnS整流罩陶瓷的制造方法。
背景技术
红外探测技术在现代国防技术中占有十分重要的地位,各种导弹的制导,红外预警,观察瞄准(高能束拦截武器等)等许多领域涉及红外探测技术。红外整流罩是导弹红外导引头的重要部件,起着保护内部探测系统中各元器件的作用,同时又能够有效传输红外信号。ZnS具有很宽的可见及红外透过范围,是常用的中波红外及长波红外整流罩材料。目前制造ZnS的方法主要有化学气相沉积(简称为CVD)以及热压烧结。CVD法获得的产品光学质量较好,但是生长周期长,成本高。而且CVD法适合于生长平片产品以及弧度比较平缓的整流罩,对于弧度比较大的整流罩还有一定的困难。
真空热压烧结法是生产透红外ZnS的另一个技术方法,生产周期短,但是产品的形状受限。热压烧结方法适用于厚度较均匀的平片产品。图1是现有技术热压烧结ZnS的热压模具及产品剖面图。热压烧结模具20由外模套23、上压头21以及下压头22组成,平片状热压烧结ZnS产品处于外模套23、上压头21以及下压头22形成的空间中。在烧结过程中液压机将压力传递给上压头21以及下压头22,从而对产品加压。但是对于非平板状材料,尤其是整流罩,热压烧结方法遇到的主要问题是产品在受压收缩过程中,由于各个部位厚度不一致导致相对压缩比差异。相对压缩比例大的部位受到的压强大,而其它部位受到的压强相对较小;最终导致产品各部分结构和性能不一致,产品质量不稳定。而通常热压烧结ZnS的压力一般很高,如《热压多晶硫化锌》【新型无机材料,1978,45-47】公开了热压温度在700-850℃,压力在300-400MPa的条件下能够获得适用于8-14μm波段的较理想的ZnS材料。日本专利昭61-205659(1986.9.11)公开了在770-965℃以及146-292MPa条件下热压烧结多晶透红外ZnS陶瓷。在如此高压条件下,产品各部分受力不均匀往往会导致产品开裂。因此,热压烧结方法难以获得性能和结构均匀一致的透红外ZnS整流罩产品。现有技术中通常使用高温合金材料作为热压烧结的模具[如GB934421A;热压多晶硫化锌,无机材料学报1973-3-25],例如金属钼、GH4037、GH4049、K403、pyromet 625等。根据现有技术中公开的热压烧结制造红外整流罩对粉体的要求,涉及的高纯ZnS粉体纯度不低于99.95%,其中金属离子杂质含量<0.01%。
日本公开特许公报【JPH07242910A】公开了一种采用流动性粉体加压烧结的方法,将烧结体埋入高熔点颗粒中,通过高熔点颗粒向烧结体传递压力。该方法烧结过程中收缩率存在显著的各向异性,烧结体中不同程度上残留大量的气孔,无法应用于对于烧结密度有苛刻要求的光学陶瓷的制造。此外,该方法不能用于制造有凹部结构的烧结体,更不能用于制造整流罩此类内部呈空腔状的产品。再次,该方法需要通过加压前烧结体自身在高温下烧结收缩,以减小加压烧结过程的收缩率各向异性的问题。而ZnS的烧结温度一般不能高于1000℃以防止相变的发生,而该温度下ZnS烧结很不明显,因此不能通过无压烧结的方法减小后期加压烧结时收缩率各向异性程度。
发明内容
为了克服现有热压烧结技术在制造透红外ZnS整流罩陶瓷时各部分相对压缩比例差异,而导致产品各部分性能不均匀、甚至产品开裂等问题,本发明提供一种透红外ZnS整流罩陶瓷的制造方法,该方法能够获得性能均匀的红外光学陶瓷整流罩陶瓷。该方法通过惰性固体颗粒传递压力和位移,能够在热压过程中保持均匀压力分布,从而获得性能均匀一致的产品。
本发明的技术解决方案如下:
一种透红外ZnS整流罩陶瓷的制造方法,其特点包括如下步骤:
1)利用冷等静压的方法制造ZnS整流罩素坯;
2)将所述的ZnS整流罩素坯和与其相配合的下模芯装配好后放入热压模具的外模套和下压头之间,在所述的ZnS整流罩素坯和外模套之间装填惰性颗粒,装入上压头;
3)将所述的包含有整流罩素坯的热压模具放入真空热压炉中,在温度为750-950℃,压力为200-400MPa,真空度小于1Pa的条件下热压烧结30-120分钟;
4)冷却至常温、开炉,取出并打开热压模具,获得透红外ZnS整流罩陶瓷。
利用冷等静压的方法制造ZnS整流罩素坯的方法是:按照所需要的整流罩素坯的形状加工刚性模芯和弹性模具,将所述的刚性模芯和弹性模具装配形成容纳原料的填料空间,从所述的弹性模具的加料口装入高纯ZnS粉体原料,振动加满后用弹性塞子盖住加料口,然后将整个模具放入真空袋中,抽真空除气后密封;将密封后的模具放入冷等静压容器中,缓慢加压至200MPa,获得整流罩素坯。
所述的惰性颗粒是石墨颗粒或六方氮化硼颗粒,或者它们的混合物。
所述的惰性颗粒的大小为20-100目。
在上压头与惰性颗粒之间还装有上模芯,所述的上模芯的下表面与所述的整流罩素坯的外表面相应,上表面为平面与上压头的下表面配合,外侧柱面与外模套的内侧柱面松装配合。
在所述的热压模具的下压头的上表面有一个定位凹孔,在下模芯的下表面有一个与其配合的定位突起,通过该定位突起与所述的定位凹孔的配合固定所述的下模芯的位置。
经热压烧结之后的ZnS整流罩陶瓷,还要经过热等静压处理,热等静压处理温度为800-900℃,压力为200MPa。
本发明的技术效果:
采用本发明制造的透红外ZnS整流罩陶瓷,产品各部分性质均匀,光学透过性能好;产品不易开裂,成品率高。本发明的技术方案同样适用于热压烧结条件相似的ZnSe以及MgF2透红外整流罩陶瓷。
附图说明
图1为现有技术热压烧结ZnS陶瓷的热压模具及产品剖面图
图2为本发明冷等静压制造ZnS整流罩素坯的模具剖面图
图3为本发明热压烧结模具实施例1剖面图
图4为本发明热压烧结模具实施例2剖面图
图5为本发明热压烧结模具实施例3剖面图
图中:01-弹性模具;02-加料口;03-弹性塞子;04-刚性模芯;05-填料空间;10-整流罩素坯;11-间隙;20-热压烧结模具,21-上压头;22-下压头;23-外模套;27-定位凹孔;30-惰性颗粒;40-下模芯;47-定位突起;50-上模芯。
具体实施方式
下面结合实施例和附图说明进一步详细阐述本发明:
实施例1
一种透红外ZnS整流罩陶瓷的制造方法,包括如下步骤:
首先采用冷等静压的方法制造整流罩素坯。图2是本发明实施例1中采用冷等静压制造ZnS整流罩素坯的模具剖面图。ZnS原料纯度≥99.99%,平均粒经3.3-4.3μm,厂家aladdin。
按照所需要的整流罩素坯的形状加工刚性模芯04和弹性模具01,将所述的刚性模芯04和弹性模具01装配成容纳原料的形状如所需要的ZnS整流罩素坯的填料空间05,从弹性模具01的加料口02装入ZnS粉体原料,振动加满后用弹性塞子03盖住加料口02。然后将整个模具放入真空袋中,抽真空除气后密封。将密封后的模具放入冷等静压容器中,缓慢加压至200MPa,获得整流罩素坯。
热压烧结模具采用高温合金K403。用高温合金K403制造一个与整流罩素坯10的下表面相配合的下模芯40。其表面可以涂胶体石墨或者氮化硼,以利于其与产品分离。如图3所示将整流罩素坯10与热压烧结下模芯40装配,且要求两者间的间隙11不大于0.2mm。然后将整流罩素坯随下模芯40放入热压模具20的外模套23和下压头22之间,在外模套23内部整流罩素坯10上方填充惰性颗粒30,最后压上上压头21。所述的下模芯40的下表面平面,并放置在下压头的上表面的中间。所述的惰性颗粒30为等静压石墨切削加工时的颗粒付产物,颗粒大小为100-20目之间。将如图3所示装配好的模具后,放入真空热压炉中烧结,真空度小于1Pa。热压烧结的温度为850℃,压力为350MPa,热压保温保压时间为60分钟。烧结完成后缓慢泄压,降温后获得完整的透红外ZnS整流罩陶瓷。
实施例2
整流罩素坯的制造同实施例1。
在热压模具20的下压头上表面有一个定位凹孔27,在下模芯40的下表面有一个定位突起47。所述的定位凹孔27与定位突起47配合固定下模芯40在热压模具20中的位置。
如图4,将预先装配好的整流罩素坯10与下模芯40一起装入热压烧结模具20内,并通过定位凹孔27与定位突起47相配合固定位置。再加入惰性颗粒30后,装入上模芯50,最后压上上压头21。所述的上模芯50的下表面与整流罩素坯10外表面相应,上模芯50的上表面为平面与上压头21的下表面配合,外侧柱面与外模套23的内侧柱面松装配合。上模芯50可以减小外模套受到惰性颗粒向外的挤压载荷。所述的惰性颗粒30为六方氮化硼陶瓷经切削加工的颗粒物,颗粒大小为100-20目之间。
将如图4所示装配好的模具放入真空热压炉中烧结,真空度小于1Pa。热压烧结的温度为950℃,压力为250MPa,热压保温保压时间为30分钟。烧结结束后缓慢泄压,降温后获得完整的透红外ZnS整流罩陶瓷。
实施例3
采用如实施例1的冷等静压方法制造如图5中的整流罩素坯。按照图3所示,将整流罩素坯10与热压烧结下模芯40装配。所述的下模芯40下部柱面与外模套23的内侧柱面配合,从而可以固定下模芯40的位置。将装配好的整流罩素坯10与模芯40放入如图5所示的热压烧结模具20中,并按照实施例2的方式依次装入惰性颗粒30后、上模芯50、上压头21。所述的惰性颗粒30为实施例1与实施例2中石墨及氮化硼的混合物。
将如图5所示装配好的模具放入真空热压炉中烧结,真空度小于1Pa。热压烧结的温度为750℃,压力为200MPa,热压保温保压时间为120分钟。烧结结束后缓慢泄压,降温后获得完整的透红外ZnS整流罩陶瓷。
实施例4
将实施例3所得的ZnS整流罩陶瓷,采用热等静压处理。处理温度850℃,高温时的压强200MPa,处理时间2小时。可以近一步提高产品的光学质量。
实施例1-4ZnS整流罩经过加工,抛光后测试3mm厚度的透过率,结果如下表:
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种透红外ZnS整流罩陶瓷的制造方法,其特征包括如下步骤:
1)利用冷等静压的方法制造ZnS整流罩素坯(10);
2)将所述的ZnS整流罩素坯(10)和与其相配合的下模芯(40)装配好后放入热压模具(20)的外模套(23)和下压头之间,在所述的ZnS整流罩素坯(10)和外模套(23)之间装填惰性颗粒(30),再装入上压头(21);
3)将上述装配好的含有整流罩素坯(10)的热压模具(20)放入真空热压炉中,在温度为750-950℃,压力为200-400MPa,真空度小于1Pa的条件下热压烧结30-120分钟;
4)冷却至常温、开炉,取出并打开热压模具,获得透红外ZnS整流罩陶瓷。
2.根据权利要求1所述的透红外ZnS整流罩陶瓷的制造方法,其特征是所述的利用冷等静压的方法制造ZnS整流罩素坯(10)的方法是:按照所需要的整流罩素坯的形状加工刚性模芯(04)和弹性模具(01),将所述的刚性模芯(04)和弹性模具(01)装配成容纳原料的填料空间(05),从所述的弹性模具(01)的加料口(02)装入高纯ZnS粉体原料,振动加满后用弹性塞子(03)盖住加料口(02),然后将整个模具放入真空袋中,抽真空除气后密封;将密封后的模具放入冷等静压容器中,缓慢加压至200MPa,脱模后获得ZnS整流罩素坯(10)。
3.根据权利要求1所述的透红外ZnS整流罩陶瓷的制造方法,其特征在于所述的惰性颗粒是石墨颗粒或六方氮化硼颗粒,或者它们的混合物。
4.根据权利要求3所述的透红外ZnS整流罩陶瓷的制造方法,其特征是所述的惰性颗粒的大小为20-100目。
5.根据权利要求1所述的透红外ZnS整流罩陶瓷的制造方法,其特征是在上压头(21)与惰性颗粒(30)之间还装有上模芯(50),所述的上模芯(50)的下表面与所述的整流罩素坯的外表面相应,上模芯(50)的上表面为平面与所述的上压头(21)的下表面配合,外侧柱面与外模套(23)的内侧柱面松装配合。
6.根据权利要求1所述的透红外ZnS整流罩陶瓷的制造方法,其特征是在所述的热压模具(20)的下压头(22)的上表面有一个定位凹孔(27),在下模芯(40)的下表面有一个与所述的定位凹孔(27)配合的定位突起(47),通过该定位突起(47)与所述的定位凹孔(27)的配合固定所述的下模芯(40)的位置。
7.根据权利要求1至6任意一项所述的透红外ZnS整流罩陶瓷的制造方法,其特征在于经热压烧结之后的ZnS整流罩陶瓷,还要经过热等静压处理,热等静压处理温度为800-900℃,压力为200MPa。
CN201510011381.8A 2015-01-09 2015-01-09 透红外ZnS整流罩陶瓷的制造方法 Expired - Fee Related CN104591736B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510011381.8A CN104591736B (zh) 2015-01-09 2015-01-09 透红外ZnS整流罩陶瓷的制造方法
PCT/CN2015/071681 WO2016109993A1 (zh) 2015-01-09 2015-01-28 透红外ZnS整流罩陶瓷的制造方法
US14/949,801 US9559411B2 (en) 2015-01-09 2015-11-23 Method for producing infrared ZnS domes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510011381.8A CN104591736B (zh) 2015-01-09 2015-01-09 透红外ZnS整流罩陶瓷的制造方法

Publications (2)

Publication Number Publication Date
CN104591736A CN104591736A (zh) 2015-05-06
CN104591736B true CN104591736B (zh) 2016-09-21

Family

ID=53117848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510011381.8A Expired - Fee Related CN104591736B (zh) 2015-01-09 2015-01-09 透红外ZnS整流罩陶瓷的制造方法

Country Status (3)

Country Link
US (1) US9559411B2 (zh)
CN (1) CN104591736B (zh)
WO (1) WO2016109993A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298961A (zh) * 2018-02-28 2018-07-20 清华大学 半球形制品及其制备方法和应用
CN113711435B (zh) 2019-04-18 2025-02-14 Srg全球有限责任公司 天线罩及其制造方法
CN110001088B (zh) * 2019-04-28 2020-05-26 燕山大学 一种碳纤维板件制备装置及方法
CN111890522B (zh) * 2020-07-24 2022-04-05 中国科学院上海光学精密机械研究所 球罩光学元件的加工方法
CN112356231B (zh) * 2020-09-29 2022-03-29 天津津航技术物理研究所 一种高陡度陶瓷整流罩热压成型模具及整流罩制备方法
CN112405791B (zh) * 2020-09-29 2021-10-15 天津津航技术物理研究所 一种超半球形陶瓷整流罩素坯成型模具及成型方法
CN112725901A (zh) * 2020-12-28 2021-04-30 广东先导先进材料股份有限公司 消除CVD-ZnSe缺陷的方法
CN113501723B (zh) * 2021-08-03 2022-11-25 宁波曙翔新材料股份有限公司 纤维增强陶瓷基复合材料天线罩/窗的制备方法和装置
CN115091662B (zh) * 2022-06-16 2024-05-31 哈尔滨哈玻拓普复合材料有限公司 一种整流天线罩生产模具、天线罩的加工方法及天线罩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190502A (zh) * 2010-03-03 2011-09-21 贵州大学 一种热压法制备陶瓷涂层的方法
CN102825428A (zh) * 2012-08-19 2012-12-19 什邡市明日宇航工业股份有限公司 飞行器整流罩及其制造方法
CN103466687A (zh) * 2013-09-10 2013-12-25 中国航天科工集团第三研究院第八三五八研究所 一种高强度多光谱硫化锌的制备方法
US8803088B1 (en) * 2011-03-02 2014-08-12 Texas Biochemicals, Inc. Polycrystalline sintered nano-gran zinc sulfide ceramics for optical windows
CN104148630A (zh) * 2014-08-20 2014-11-19 济南大学 一种真空热压烧结模具

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131025A (en) 1959-10-29 1964-04-28 Eastman Kodak Co Zinc sulfide optical element
US3131238A (en) * 1959-10-29 1964-04-28 Eastman Kodak Co Process for molding zinc sulfide
GB1102712A (en) * 1963-11-16 1968-02-07 Barr & Stroud Ltd Improvements in or relating to a mould assembly for use in the manufacture of optical products
US3589880A (en) * 1966-11-22 1971-06-29 Eastman Kodak Co Plurality optical element pressing process
US4499049A (en) * 1983-02-23 1985-02-12 Metal Alloys, Inc. Method of consolidating a metallic or ceramic body
JPS61205659A (ja) * 1985-03-11 1986-09-11 防衛庁技術研究本部長 多結晶硫化亜鉛の製造方法
SE455277B (sv) * 1986-03-21 1988-07-04 Uddeholm Tooling Ab Sett att pulvermetallurgiskt framstella ett foremal genom varmpressning av pulver i en keramikform medelst ett partikulert tryckmedium
JPH07242910A (ja) * 1994-03-09 1995-09-19 Nippon Steel Corp 流動性粉体を用いた加圧焼結方法
JP4304733B2 (ja) * 1998-04-14 2009-07-29 住友電気工業株式会社 多結晶硫化亜鉛光学部品及びその製造方法
WO2003055826A1 (fr) * 2001-12-26 2003-07-10 Sumitomo Electric Industries, Ltd. Procede de production d'elements optiques ceramiques
JP2010514149A (ja) * 2006-12-13 2010-04-30 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 電気光学窓に関する改良
US20130271610A1 (en) * 2012-04-16 2013-10-17 Keith Gregory ROZENBURG Polycrystalline chalcogenide ceramic material
CN102924073B (zh) * 2012-11-16 2014-07-02 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190502A (zh) * 2010-03-03 2011-09-21 贵州大学 一种热压法制备陶瓷涂层的方法
US8803088B1 (en) * 2011-03-02 2014-08-12 Texas Biochemicals, Inc. Polycrystalline sintered nano-gran zinc sulfide ceramics for optical windows
CN102825428A (zh) * 2012-08-19 2012-12-19 什邡市明日宇航工业股份有限公司 飞行器整流罩及其制造方法
CN103466687A (zh) * 2013-09-10 2013-12-25 中国航天科工集团第三研究院第八三五八研究所 一种高强度多光谱硫化锌的制备方法
CN104148630A (zh) * 2014-08-20 2014-11-19 济南大学 一种真空热压烧结模具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
红外光学材料ZnS多晶热压工艺与性能的研究;李玉斌;《中国优秀博硕士学位论文全文数据库》;20040615;第3.1-3.5节 *

Also Published As

Publication number Publication date
CN104591736A (zh) 2015-05-06
US20160204505A1 (en) 2016-07-14
US9559411B2 (en) 2017-01-31
WO2016109993A1 (zh) 2016-07-14

Similar Documents

Publication Publication Date Title
CN104591736B (zh) 透红外ZnS整流罩陶瓷的制造方法
CN110983264B (zh) 一种高密度细晶粒易成型的w靶材的制备方法
CN204159877U (zh) 热压烧结组合模具
US11667579B2 (en) Polycrystalline chalcogenide ceramic material
EP3159652B1 (en) Whisker reinforced high fracture toughness ceramic tips for radomes
CN115124330B (zh) 一种氧化硅陶瓷靶坯的制备方法
CN112356231B (zh) 一种高陡度陶瓷整流罩热压成型模具及整流罩制备方法
JP2013244621A (ja) レドームの製造方法及びレドーム
JP2015016632A (ja) 円筒形成形型、並びに、円筒形セラミックス成形体およびその製造方法
SG175324A1 (en) Method for preparing of ceramic shaped part, apparatus and use thereof
CN107747128B (zh) 一种ZnS多晶的制备方法
CN105478756A (zh) Ti-Al合金的成型方法
CN115974552B (zh) 一种磁控溅射用导电钽酸锂靶材的制备方法
CN207221875U (zh) 一种人造金刚石合成组装块结构
CN111037710A (zh) 一种锂电池正极材料用匣钵的成型方法
US20190241440A1 (en) Low-cost process of manufacturing transparent spinel
JP6800016B2 (ja) 点火プラグ用絶縁体のための合成物、および、点火プラグ用絶縁体を製造する方法
KR20110072665A (ko) 고순도 튜브형 세라믹스 성형 장치 및 이를 이용한 고순도 튜브형 세라믹스 성형 방법
CN110480800A (zh) 3d陶瓷薄壁件及其制备方法
CN108129169B (zh) 一种金属陶瓷制品及其制备方法
CN110818409B (zh) 制备SrZrO3的方法以及SrZrO3陶瓷
KR102061270B1 (ko) 에어홀이 형성된 열간 가압 소결용 몰드 장치
CN113524723A (zh) 复合壳体胶接装配模具及成型方法
RU2647948C2 (ru) Способ получения керамической вставки для оружейных стволов
CN115029674A (zh) 一种低偏析铝钪合金靶材及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180404

Address after: 528216 Guangdong Province, Foshan City Hardware Industrial Zone, Danzao Town Nanhai District Bo Jin Road No. 6 (East District) Workshop

Patentee after: Foshan Kangtai Wei Optoelectronic Technology Co., Ltd.

Address before: 201800 Shanghai, Shanghai, 800-211 post office box

Patentee before: Shanghai Optical Precision Machinery Inst., Chinese Academy of Sciences

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160921

Termination date: 20210109

CF01 Termination of patent right due to non-payment of annual fee